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Abstract—A new on-line evolving clustering approach for 

streaming data is proposed in this paper. The approach is based 

on the concept that local mean of samples within a region has the 

highest density and the gradient of the density points towards the 

local mean. The algorithm merely requires recursive calculation 

of local mean and variance, due to which it easily meets the 

memory and time constraints for data stream processing. The 

experimental results using synthetic and benchmark datasets 

show that the proposed approach attains results at par with 

offline approach and is comparable to popular density-based 

mean-shift clustering yet it is significantly more efficient being 

one-pass and non-iterative. 

Keywords-; online clustering, sequential clustering, evolving 

clustering, data streams 

I.  INTRODUCTION  

Clustering algorithms play an important role in learning 

models from data. In the context of learning fuzzy rule-base or 

neuro-fuzzy model, clustering is one of the approaches that is 

applied extensively to automatically generate rules from input-

output data. In the present scenario, the huge amount of data 

with high data rate received from various applications such as 

packet monitoring in the IP network, real time surveillance 

systems, and sensor networks, commonly referred as data 

stream, calls for adaptive or evolving model capable of 

learning continuously without requiring explicitly the past data  

Learning such models from data streams in turn require the 

algorithm to be fast and recursive (non- iterative or one-pass), 

incremental (training examples presented and learnt one at a 

time), memory efficient (need not store previously seen 

training examples). An algorithm possessing all these 

attributes is often referred as on-line algorithm. In addition to 

these requirements, other essential requirements include; i) 

handling outliers; ii) evolving (adapting the structure- create 

new clusters if needed and merge existing ones); iii) not to 

presume the number of clusters which are usually defined by 

the user. An algorithm that possesses these additional 

requirements and is on-line is called evolving [1-4]. 

 

In terms of statistical theory, the two groups of approaches 

to clustering are parametric and nonparametric [5].  In 

parametric approaches, a clustering criterion is defined 

assuming an underlying distribution of the data and attempt is 

made to find the parameter values for this distribution. A 

typical example is Gaussian Mixture Model (GMM). In 

contrast to parametric approach, the nonparametric approach, 

neither considers clustering criteria nor assumes any 

mathematical structure for the distribution of data.  In 

nonparametric approach, clustering can be formulated as the 

problem of estimation of means or modes of a mixed 

probability density distribution.  The regions with high local 

density in the data space can correspond to clusters and these 

dense regions are nothing but the modes of the underlying 

unknown probability density function (PDF).  

 

There are several offline clustering algorithms that are 

based on mode detection. One of the widely used offline 

gradient-based mode detection approaches is mean-shift [6-7]. 

It uses the concept of nonparametric density estimation, 

commonly known as kernel density estimation (KDE) to 

estimate the gradient of a PDF using the neighbouring points 

within a small region around that point. So far, mean-shift has 

been widely used in the areas like image segmentation. Since 

the method automatically detects the modes that are equivalent 

to cluster centres and requires just one user-defined parameter 

(bandwidth/radius), it is quite appealing to the area of fuzzy 

model identification also. However, the main drawback of 

such algorithms is that they are iterative and require all the 

data samples to be present in the memory, thus they are not 

suitable for online applications for example fuzzy model 

identification from data streams. Further, it is difficult to 

define the neighbourhood of a data point when data stream is 

considered because past samples are discarded.  

 

In this paper we propose a novel online evolving clustering 

approach, named as Evolving Local Means  (ELM) clustering. 

Despite being simple and having the desirable features of 

density based approaches, it is applicable to data streams. It 

uses the concept of non-parametric gradient estimate of a 

density function using local mean [5]. During the clustering 

process the local mean is updated as the samples from the data 

stream arrive. It adds new clusters when the density pattern 

changes and thus we use the term evolving. 

 

The rest of the paper is organized as follows: a brief 

overview of related work is presented in section II, section III 

describes the evolving local means clustering algorithm, 
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section IV discusses the experimental results, and section V 

concludes the paper with directions to future work. 

II. RELATED WORK 

Though the literature provides a plethora of clustering 

approaches, we are limiting our discussion here to those 

approaches that are based on mode detection via density 

estimation.   The conventional clustering approaches based on 

density estimation mostly uses Parzen windows [8]. Due to the 

demand for online algorithms in real-time applications the 

focus has shifted from conventional offline clustering to 

online clustering. One of the popular offline clustering 

approach is mean-shift which has been applied extensively in 

image processing applications. Fukunaga and Hostetler [7] 

presented a gradient estimation approach to clustering and its 

application to pattern recognition. Like KDE (Parzen 

Windows), the gradient of a probability density function is 

estimated using the data samples bounded within a small 

region and a general form of kernel gradient density estimate 

is presented. A mean-shift class of estimate is developed based 

on the fact that the mean value of samples within a small 

region is closely related to the density gradient. They also 

showed how a gradient ascent clustering can be achieved 

using the mean-shift class of estimates. In [9] the idea of 

mean-shift for mode-seeking is theoretically analysed and in 

[6] mean-shift clustering is applied to feature space analysis.  

Touzani and Postaire [10] identified that since these methods 

are gradient based and use differential operators they tend to 

generate higher number of modes than the actual PDF in noisy 

situations. They proposed a mode detection algorithm where 

modes or high density regions are detected by thresholding the 

PDF at a required level. Samples with estimated value of PDF 

higher than the threshold value are labeled as a mode. 

Similarly, samples with PDF value below the threshold are 

assigned a “valley” label. The decision of labeling a sample as 

mode or valley is made by considering its spatial relationships 

with neighbouring points. Specifically, the clustering approach 

or identification of mode/valley is based on relaxation scheme 

where the labels of samples are iteratively updated according 

to a compatibility measure defined among the neighbouring 

labels. It is shown experimentally that the clustering approach 

works well in noisy data and small sample size. Another 

approach that first discretizes the data space and then apply 

the iterative thresholding method is discussed in [11]. The 

apparent problems with these approaches are that they are 

computationally expensive due to the iterative nature. These 

methods assume all the data is available i.e. require all the 

samples to be present in the memory before processing, thus 

are costly in terms of storage. Also good results are not 

achieved if the sample size is small.  

 

In [12], a sequential method to approximate a multimodal 

density function with a mixture of Gaussians is presented 

where the density is represented as sum of weighted 

Gaussians. The parameters, number of Gaussians, weights, 

means, and covariances are determined automatically. Mean-

shift procedure is applied to detect the modes. Each mode 

corresponds to a Gaussian component and the mode itself 

constitutes the mean of the Gaussians. The weight of each 

Gaussian is determined by adding the kernel weights of the 

data points that converged to the mode. The covariance matrix 

associated with each Gaussian is determined using Hessian 

matrix by fitting the curvature around the mode location. The 

density function is updated at each time the new data arrives 

and again mean-shift is applied to detect the modes. Due to its 

online nature the method is suitable for real-time computer 

vision applications. Though this approach provides good 

models if the modes of distribution are Gaussian and well 

separated, it fails when the distribution is non-Gaussian for 

example in skewed distributions. Literature provides several 

other methods that are based on online estimation of GMM.  

Some methods assume the data to be available as block of data 

[13] while others need some parameters to be specified a 

priori [14-15].  

III. EVOLVING LOCAL MEAN CLUSTERNG APPROACH 

One simple approach to density based clustering is to assign 

each sample to the nearest mode along the direction of the 

gradient at the sample, where each mode represents a cluster 

centre. An iterative gradient based algorithm like mean-shift 

shifts each sample by an amount proportional to the gradient 

at the sample until convergence. It uses the simple concept 

that local-mean can be used as an estimate of gradient of a 

density function at a point. The gradient of the density is, 

therefore, pointing towards the local mean. Since ELM 

clustering adopts the idea of local-mean and gradient from 

mean-shift algorithm, we first discuss briefly the mean-shift 

clustering in section A and then describe our approach in 

section B.  

A. Brief Overview of Mean-shift Clustering Algorithm 

In [7] the mean-shift algorithm is given, which is based on 

gradient clustering algorithm. After each iteration, the 

algorithm shifts each point closer to the nearest mean and 

finally converges to the nearest mode or cluster centre. The 

estimation of the density gradient is obtained by the gradient 

of the kernel density estimate using, for example,  

Epanechnikov kernel. 

 

Given N independent and identically distributed random 

data points xi, i = 1, .., N in an n dimensional space R
n
  with an 

unknown density p, the multivariate kernel density estimator 

)(ˆ xp at  x is given as  , 
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where )(⋅K  is the kernel function that is symmetric but not 

necessarily positive and integrates to one, and r> 0 is the 

radius or bandwidth.  

The density gradient estimate can be given as [7], 
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The density gradient estimate using Epanechnikov kernel (3) 

can be given as (4), 
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where cn is the volume of the unit n-dimensional sphere. 

Now, using Epanechnikov kernel, 
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where the region Sr(x) is a hyper-sphere of radius r having the 

volume n
n
cr , centred at x, and containing Nx data points.  

The last term in (5) is known as sample mean shift (M(x)) [7].  
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where µ is the local-mean i.e. the mean of samples in the 

region Sr(x).  

Also, the constant term in (5) 
)( n

n

x
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N
is the probability 

density estimate using a uniform kernel over the region Sr(x), 

thus we can write, 

)(
)(ˆ

n
n
x

crN

N
xp =      (7) 

)(
)2(

)(ˆ)(ˆ
2

xM
r

n
xpxp

+
=∇    (8) 

 

Each sample is moved towards the mode using gradient ascent 

(9) with normalized gradient. The normalized gradient allows 

data points far from the mode (local maximum) to move faster 

with larger step size, and smaller step size near the mode. This 

is because the density )(ˆ xp at the points far from the mode (or 

near local minimum) would be small.  
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Thus, equation (10) shows that each sample is shifted with a 

value equal to the local mean. 
 

B. ELM Clustering Algorithm  

The mean-shift algorithm (10) transforms each data sample to 

the mean of the data samples within the region Sr around it. 

Considering that the entire data set is divided into convex 

subsets that are greater than r distance apart, the data samples 

will always remain within their respective sets or clusters and 

cannot diverge. This is due to the fact that equation (10) is 

always a convex combination of members from the same 

convex set. Also, as soon as all the observations in such a set 

lie within a distance r from one another, the next iteration will 

transform them all to a common point, their sample mean [7]. 

ELM approach is developed based on this feature of the mean-

shift algorithm. The issue with the online approach is that 
since past samples are required to be discarded so it is not 

possible to identify the neighbourhood of a sample. Therefore, 

we use heuristics to determine the neighbourhood of a sample 

and to decide to which local mean (cluster centre) the sample 

should be associated to. In ELM, a cluster is represented with 

two parameters: cluster centre, denoted by µi, is the local 
mean, and a distance parameter, denoted by σi, is the average 

norm in the i
th

 cluster. The algorithm can learn model either 

from scratch or with already existing clusters, provided each 

cluster is represented with the two parameters, µi and σi. Each 

sample is considered to be bounded by a region of radius r 

(similar to a kernel). As a sample x arrives, its distance to all 

the existing cluster centres is computed. Let us denote the 

distance from x to ith cluster centre µi by di. If x satisfies 

condition 1, it means the region around x and the region 

around µi overlaps (Fig. 1), then sample x is assigned to cluster 

i.  
 

 Condition 1:  di  < (max (σi , r) + r)  (11) 

 

The parameters µi and σi are updated recursively after the 

assignment. If the region around x overlaps with more than 

one cluster then the nearest one is considered. Once the 
parameters µi and σi are updated it is checked if there is any 

further overlapping with existing clusters in such a case 

clusters are merged. On the other hand, if the region around x 

does not overlap with any existing clusters i.e. if condition 1 is 

not satisfied then x is declared as a new cluster centre. 

Algorithm 1 in Appendix summarizes the ELM clustering 

approach. 

 

The idea is that in a convex region with unimodal data 

distribution, the mean of all the samples in that region can be 

considered as the point with highest density and thus the 

mode. If we apply mean shift approach in such a convex 

region, all the samples would converge to the sample mean. In 

ELM clustering approach we avoid the intermediate steps of 

moving a sample towards the mode in steps proportional to the 

gradient. Consider a convex region (or cluster) i represented 

by µi and σi. Since in online approach past samples are 



 
Figure 2. Mean-shift over hypothetical data 

           Figure 1. ELM over  hypothetical data 

TABLE I.  DATA SET DESCRIPTION 

Data Set #Features #Samples 
#Classes 

#Cluster 

DS1 (normal distribution) 2 350 3 

DS2 (uniform distribution) 2 400 3 

DS3 (non-convex data set) 2 3000 2 

Iris 4+1 label 150 3 

Wine 13+1 label 178 3 

 

discarded, the local mean represents the samples seen so far. 

When a sample x arrives, and if it satisfies the condition 1 then 

it means the neighbourhood of x contains samples that are in 

region around µi (Fig. 1). In mean-shift algorithm, x will be 

shifted to the mean of the samples in region, and with 

successive iteration x will finally converge to µi . (Fig. 2) 

because region around x is part of the convex region and µi is 

the mode of that region. In ELM clustering we directly assign 

x to i
th

 cluster since the distance between region around x and  
around µi is less than r. Whenever a sample is newly assigned 

to a cluster its density changes thus µi and σi are updated. 

Thus, we use the term evolving local mean for the local mean. 

When region around x overlaps with more than one cluster, we 

consider that x will move towards the cluster with largest 

overlap using a simple heuristic that larger region will contain 

more number of samples and thus density will be high.   

 

IV. EXPERIMENTAL RESULTS 

In order to evaluate our approach and compare it with classical 

mean-shift approach [7] we conducted various experiments 

with both synthetic and benchmark datasets [16]. The 
algorithms, both ELM and mean-shift, were developed using 

MATLAB 7.1 and performance was evaluated on a PC with 

processor speed 2.66 GHz and  2.0 GB RAM. The data is 

considered as pseudo data streams and processing is done on a 

per-sample basis in case of ELM. When considering data 
streams, the sequence in which samples are received often 

affects the model. So, ELM is tested on 10 different random 

variations of the same data set and the average of the results is 

presented here. This is equivalent to 10 different data 

sequences when processing is done on a per-sample basis. A 

total of 6 data sets are considered for testing, three synthetic 

data sets, two benchmark datasets (Table I), and an image 

data. The aim of using the simple synthetic data sets is mainly 

to analyze the cluster centre positions of the two clustering 

algorithms. For evaluation and comparison we have 

considered the following parameters: average cluster purity, 

average distance between the cluster centers (modes), and 
execution time.  The cluster purity parameter measures the 

quality of the clusters using the class information and is given 

as: 

%100
1
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∑ =
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i
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where C is the number of clusters, d

iN is the number of 

samples in cluster i with the dominant class label, and 

iN denotes the total number of samples in cluster i.  

To measure the closeness of the cluster centers identified by 

ELM and mean-shift approach, we use the average distance 

between the centers. With a fixed radius, it is not certain that 

both mean-shift and ELM would generate the same number of 

clusters. Suppose, ELM has generated M number of clusters 

and mean-shift has N number of clusters, and M>N then while 

measuring the average distance, we take into account only N 

number of clusters. For a typical data sequence of the 

synthetic dataset, Fig. 2 (a), (c), (d) show the clusters obtained 

by ELM and Fig. 2 (b), (e), (f) show the clusters obtained by 

mean-shift. Fig. 3 compares the cluster centers identified by 

ELM and mean-shift. Fig. 4 gives the KDE using Gaussian 

kernels and shows the cluster centres obtained by ELM over 

the same plot. Table II gives a comparison of various 

evaluation parameters for the synthetic dataset. While 

applying the algorithms on the various data sequences a fixed 

radius has been used. For DS1, Ds2, a radius of 0.25 was 

chosen and for DS 3, a radius of 0.15 was used.  As different 

data sequences give different number of clusters, the average 

and the mode of the number of clusters generated are given in 

column II of Table II. It is apparent from the Fig. 2, Fig.3, Fig. 

4, and the results shown in the Table II that for DS1 and DS2 



TABLE III.      BENCHMARK DATA SETS TEST RESULTS 

#Clusters Cluster Purity 

(%) 

Execution Time 

(ms) 

ELM Mean-

shift 

Data 

set 

Avg., 

Mode 

Avg., 

Mode 

ELM 
Mean-
shift 

ELM 
Mean-
shift 

Average 

distance 

between 

centers 

Iris 4.6,5 
 

3.6,4 
 

91.92 
 

86.75 
 

104.63 
 

148.27 
 

0.95082 
 

Wine 6,6 5,5 78.73 

 

79.64 

 

87.60 

 

122.69 

 

1.27527 

 

 

TABLE II.  SYNTHETIC DATA SETS TEST RESULTS 

#Clusters Execution Time 

(overall) (ms) 

Execution Time (ms) 

(addition of one sample ) 

ELM Mean
-shift 

Data 

set 

Avg., 

Mode 

Avg., 

Mode 

ELM 
Mean-

shift 
ELM Mean-shift 

Average 

distance 

between 
centers 

DS1 3,3 3,3 

 
80.30 

 

 
129.53 

 

83.46+23.35 

= 106.81 

 

131.18+ 

131.59 = 

262.77 
 

 
0.00001 

 

DS2 

 

3.2,3 
 

3,3 

 

160.96 
 

 

250.44 
 

161.43+23.35

= 184.78 

 

254.12+ 

240.87 = 

494.99 

 

 

0.00086 
 

DS3 

 

8,8 

 

9,9 

 

929.63 

 

 

18442.18 

 

927.31+23.38

= 950.69 

 

18405.94+ 

18414.03 = 

36819.97 

 

 

0.13534 

 

 

both the algorithms give similar clusters with 

negligible difference in the coordinates of the 

cluster centres. For the non-convex data, both the 

algorithms behave in a similar manner, though they 

do not generate the actual number of clusters. 

However, such clusters or partitions are useful for 

some problems like online identification of 

evolving fuzzy models [1, 3]. In such applications, 

identification of cluster centres is more important 

than identifying patterns. With a higher value of 

radius, both the crescent shape distributions would 

be merged into a single cluster with the cluster 

centre in between the two crescents. Thus, the 

centre would not lie on the actual distribution. This 

is because both the algorithms are based on 

computation of means and use Euclidean distance 

as a distance measure. Also, the data distribution in 

the two crescents is somewhat uniform. In Fig. 4, 

the black dots indicate the centres identified by 

ELM. It clearly shows that the centres identified by 

ELM can be considered as modes of the 

distribution. Table III compares the two algorithms 

in terms of cluster purity along with other 

parameters for the benchmark datasets. In case of 

the Iris dataset, ELM gives high cluster purity, and 

in case of Wine dataset it is marginally lower than 

mean-shift. As far as the average distance between 

the cluster centres are concerned they are not too 

far from each other. If we compare the execution 

time, mean-shift incurs more time in all the 

datasets due to its iterative nature. The significant 

difference in execution time of ELM over mean-

shift is noticeable in column III of Table II where the 

execution time is calculated after addition of just one sample. 

After executing both the algorithms once for each of the three 

synthetic data sets, a sample, x = [0.6 0.2] was added to all the 

datasets. Due to the incremental nature, ELM just needed an 

additional 23.35 ms. ELM reused all the information, like 

local mean and variance calculated in the past, and just 

updated them when this new sample arrived. On the other 

hand, addition of just one sample to the data sets induced 

mean-shift to re-compute the clusters over the entire data sets. 

It is worth to mention here that we have programmed both the 

algorithms in a general manner without giving any special 

emphasis to software principles for optimization of execution 

time. Also, mean-shift is mostly applied to data with not very 

high dimensions and has been predominantly applied to image 

processing area. So, for preliminary experiments, we selected 

two bench mark datasets with reasonable number of features. 

Finally, both ELM and mean-shift were applied to image 

colour segmentation and the results are shown in Fig. 5. For 

the given image, ELM generated 22 clusters and mean-shift 

generated 25 clusters. The result achieved by ELM is 

comparable to mean-shift.  

V. CONCLUSIONS AND FUTRURE WORK 

In this paper a new evolving clustering approach is proposed 

that inherits the basic concept from mean-shift. The algorithm 

mainly requires recursive calculations of two parameters viz. 

local mean and local variance. Like other non-parametric 

approaches, it requires a predefined parameter, the radius or 

bandwidth.  The preliminary experimental results presented 

here show that ELM results are comparable to mean-shift  and 

requires less execution time compared to mean-shift approach 

especially in case of large data sets.  Also, while processing it 

requires only the current sample and previously stored local 

mean and variance, thus needs only a meager amount of 

memory.  Though only experimental results with few datasets 

have been presented, the results are very promising. A 

thorough experimental analysis and comparison with other 

online clustering approaches is needed to be done. At present, 

the radius parameter is predefined. Though the literature 

provides several approaches for adaptation of the radius, there 

is still scope for an investigation especially for the online case. 

Though, the algorithm updates the cluster centres 

automatically, a strategy is required to remove outdated cluster 

centres. Further, during our experiments, we simply 

considered clusters with less than three samples as outliers. A 

formal approach for identification of outliers is required. In 

online approaches when to declare a cluster as an outlier is 



   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 2. ELM (a, c, d) and Mean-shift (b, e, f) clustering over synthetic data 

 

  

   
(a) (b) (c) 

Figure 3. Cluster centres identified by ELM and mean-shift (a) DS1 (b) DS2 (c) DS3 

 

   
(a) (b) (c) 

Figure 4. Density Estimates using KDE. Black dots indicate the modes identified by ELM. (a) DS1 (b) DS2 (c) DS3 

  

more difficult. For example, a cluster presently with only two 



 

  
(a) (b) (c) 

Figure 5.(a) original Image (b) Segmented image using ELM (c) Segmented image using mean-shift 

 

 
samples may receive more samples later and thus may not 

qualify for an outlier in future. ELM is anticipated to be 

applicable to numerous areas. For example, online 

identification of fuzzy models that requires mainly detection 

of modes, online object tracking etc. In future, we intend to 

develop applications using this simple online clustering 

approach. 
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APPENDIX 

 
Algorithm 1 

 

xi = current data sample, i indicates the instant at which x has arrived 

or simply the position in a data sequence. xi is n-dimensional vector, 

n
R∈x   . 



µi = ith cluster centre (local mean). 

r = radius, which is a predefined parameter required during 

clustering. 

σi = average  from  ith centre to all the samples in cluster i. 

c = number of clusters,  

counti = number samples belonging to ith cluster. 

||x- y|| = norm of vector x-y. 

αi = sum of all x in ith cluster, βi = sum of all x2 in ith cluster. 

 

Step 1: Read the first sample x1. 

Create the first cluster around this sample and set the 

following. 

µ1 = x1, σ1 = 0, c = 1, count1 = 1, αi = x, βi = x2 

 

Step 2: Repeat the following steps until samples are available (or 

until not interrupted). 

 

Step 3: Read the next sample xi. 

Calculate the distance between xi and all the existing cluster 

centres ccj 

distij = || xi – µj ||,  for all j = 1, .., c 

 

Step 4: Select the cluster centres that satisfies the following: 

distij < (max (σj , r) + r) for all j = 1, .., c 

 

  Let s1 be the set of indices of all such cluster centres that 

satisfy the above condition.  

 

Step 5: IF s1 is not empty THEN go to Step (6)  

            ELSE   Create a new cluster around xi. 

c = c+1, µc = xi, σc = 0, countc = 1,   

go to Step (2)  

               

Step 6: Select the pth cluster centre that is closest to xi and satisfies 

the condition given in Step (4). 

             distip = || xi – µp|| = min(||xi – µl||) for all l ∈  s1 

            

Considering that now xi belongs to pth cluster, update the 

cluster centre and average distance. 

           βp= βp+xi
2, αp= αp+xi 

           mean = (countp × µp + xi ) / (countp +1) 

           variance = (βp+countp×mean
2
-2 ×mean*αp)/(countp +1) 

           µp = mean,   σp = variance,   countp = countp +1 

 

Step 7: Since now the position of the pth cluster centre has shifted. 

            Determine if it is required to be merged with any existing 

cluster centre that is close enough. 

 distpj = || µp – µj || for all j = 1, .., c and j ≠ p 

 

Select the cluster centres that satisfy the following 

condition. 

 distpj < max(σp , r) + max(σj, r) for all j = 1, .., c and j ≠ p 

  

Let s2 be the set of indices of all such cluster centres that 

satisfy the above condition. 

 

Step 8: If s2 is not empty then select the closest cluster centre q. 

  distpq = || µp – µq || = min (||µp- µl||) for all l ∈  s2 

  

 Merge cluster p and cluster q and update centre position, 

variance, and count. 


