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Abstract—For a horizontal-axis wind turbine (HAWT), a
dynamic nonlinear model with four degrees of freedom is
derived and transformed into a Takagi-Sugeno (TS) model
structure using the sector nonlinearity approach. Thereby, an
exact transformation of the nonlinear model is obtained as a
weighted combination of linear models. This structure allows
for a convenient design of controller and observer structures.
The maps of the rotor thrust and torque coefficients can be
implemented in the model as look-up tables or, alternatively, as
analytical nonlinear functions. Open-loop simulation results of
the derived TS model for a reference model turbine are compared
to those obtained with the aero-elastic code FAST. The small
deviations obtained demonstrate the high model quality of the
control-oriented TS model. In future work, the derived TS model
shall be used as a basis for the design of fault detection and
isolation (FDI) concepts.

I. INTRODUCTION

As wind turbines are gaining a growing significance in
the global energy supply, the demand for advanced control
strategies aiming at higher efficiency and availability as well
as load reduction also rises. Therefore, it is essential to develop
model-based control algorithms that exceed the possibilities of
classical frequency-domain control design concepts.
Based on dynamic wind turbine models with few degrees of
freedom, various control design concepts have already been
employed to address different issues arising in wind turbine
control. For example, LQG controller concepts were used in
[1] and [2] to reduce loads. Classical gain-scheduling tech-
niques have been replaced by more rigorous linear parameter-
variable (LPV) approaches to design the wind turbine speed
control for the different operating regions in [3].

The purpose of this paper is to present a wind turbine
model that shall be used as a basis for fault detection and
isolation (FDI) concepts in wind turbine control in future
work. By using the Takagi-Sugeno model structure with sector
nonlinearities, an exact representation of the nonlinear model
can be obtained as a weighted combination of linear state-
space models. For this structure, both controllers and observers
can be designed by solving linear matrix inequalities (LMIs)
[4]. Fault detection schemes can be developed by extending the
standard TS observer structures to sliding mode TS observers
[5]. In [6], this is used for the detection of sensor faults in the
pitch system of wind turbines. The same methodology shall be

applied in order to detect and isolate more sensor and actuator
faults occurring in the operation of wind turbines, for which
the model presented here serves as a starting point.

The derived wind turbine model is validated against the
aero-elastic simulation code FAST by NREL [7] using a 5
MW reference wind turbine described in [8].

There are a lot of papers that make use of a TS model
structure for wind turbine models and controller design. For
example, in [9] maximum wind power tracking is tackled by
designing a TS controller along with an observer for a turbine
model including an explicit generator/converter model. In [10]
a robust power tracking controller is designed using linear
matrix equalities to account for disturbances and parametric
uncertainties. In [11] a Fuzzy clustering approach is applied
to obtain a TS model in order to achieve maximum energy
extraction.
In most cases, however, the controllers are not validated
against more detailed structural simulation models (like FAST)
normally used in the wind energy industry. This, however, is
important in order to test both the quality of the design models
and the controller performance with more realistic models.

This paper is organised as follows: In Section II, the wind
turbine model is derived and written in state-space form. In
Section III, the state-space model is transformed into a TS
model structure. In Section IV, model parameters for the 5
MW reference wind turbine are given including the nonlinear
aero maps for the rotor thrust and torque coefficients. In
addition, these maps are approximated by nonlinear functions.
In section V, simulation results are presented which are
compared to the results obtained with the FAST aero-elastic
simulation. Conclusion and outlook are given in section VI.

II. WIND TURBINE MODEL

The aero-elastic codes normally used for wind turbine load
simulation contain models with more than twenty degrees
of freedom which are derived by employing modal analysis
techniques. For control design purposes, these models are too
complicated and also capture dynamic effects that are not
directly influenced by the control action. For these reasons,
the models used for control design have to be as simple as
possible but must capture the dominant system dynamics [3].
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Fig. 1. Schematics of the wind turbine model with the submodels for
aerodynamics, mechanics and pitch and their respective inputs and outputs.
v: wind speed; FT , Tr : Rotor thrust and torque; ωr : Rotor angular velocity;
Tg : Generator torque; β: Pitch angle; βd: Demanded pitch angle; x: System
state vector.
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Fig. 2. Tower bending (left) and the mechanical model with translational
spring and damper (right).

The model in [12] or variations of it are useful for this
aim. In this paper, the model as presented in [3] is used, with
slight modifications. The complete model consists of three
submodels: the mechanical submodel, which includes drive-
train and structure, the aerodynamics submodel, and the pitch
actuator submodel. These submodels are coupled, which is
illustrated in Fig. 1. An explicit generator/converter submodel
is omitted here, i.e. an ideal frequency converter is considered,
where the demanded generator torque is equal to the actual
generator torque. However, it would be straightforward to
include also converter dynamics, for example as a first order
delay model.

A. Mechanical Submodel

For the mechanical submodel, four degrees of freedom are
considered: rotor and generator angles, as well as fore-aft
tower top deflection and flapwise blade tip deflection.

The vector of the generalised coordinates is therefore given
by q := (yT yB θr θg)

T , where yT and yB denote the
tower top and blade tip deflections, while θr and θg denote
the rotor and generator rotational angles.
The vector of external forces is given by
F := (FT FT Tr − Tg)T , where FT denotes the aero-
dynamic rotor thrust force, Tr the aerodynamic rotor torque
and Tg the applied generator torque.

For the tower and blade degrees of freedom, the mechanical
models are illustrated in Figs. 2 and 3. The tower top and
blade tip motions are modelled as translational mass, spring
and damper systems, where mT and mB denote the tower
and blade mass.1 kT and kB denote the effective stiffness

1mT also includes the nacelle and hub masses.
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Fig. 3. Blade bending (left) within the moving tower coordinate system and
the mechanical model with translational spring and damper (right).
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Fig. 4. Drive-train model with torsional spring and damper. The angular
velocities ωr and ωg are the time-derivatives of the angles θr and θg .

coefficients for the tower top and blade tip motion. dT and dB
denote the damping coefficients for tower and blade, which can
be estimated from the aerodynamic rotor damping (see section
IV).

The drive-train model is illustrated in Fig. 4. The rotor and
generator are modelled as inertias Jr and Jg , respectively. ωr
and ωg denote the rotor and generator angular velocities, which
are the time-derivatives of the rotational angles θr and θg . kS
and dS denote the torsional stiffness and damping coefficients
of the shaft.
As gearbox dynamics is not considered here, a gearbox ratio
could easily be included into the model by appropriately
modifying the generator inertia Jg and the generator torque
Tg .

The derivation of the differential equations governing the
behaviour of the mechanical model is done by employing the
formalism of Lagrangian mechanics. The derivation is omitted
here, as it can be found, for example, in [3].

The equations of motion, which describe the dynamics of
the mechanical model, are obtained in matrix form as

Mq̈ + Dq̇ + Kq = F , (1)

where the mass matrix M, the damping matrix D and the
stiffness matrix K are given by

M=


mT +NmB NmB 0 0

NmB NmB 0 0

0 0 Jr 0

0 0 0 Jg

 (2)



D=


dT 0 0 0

0 NdB 0 0

0 0 dS −dS
0 0 −dS dS

 (3)

K=


kT 0 0 0

0 NkB 0 0

0 0 kS −kS
0 0 −kS kS

 (4)

B. Pitch actuator submodel

The pitch actuator dynamics is modelled as a first-order
delay system [3], [12]:

β̇ = −1

τ
β +

1

τ
βd , (5)

where β and βd denote the actual and demanded pitch angle
and τ denotes the delay time constant. This model is a simpli-
fied, but reasonable assumption for the overall pitch actuator
dynamics, which subsumes the dynamics of all internal control
structures normally used in hydraulic or electromechanical
pitch systems.

C. Aerodynamics submodel

The aerodynamics submodel comprises the expressions for
the rotor thrust force FT and the rotor torque Tr. These
depend on the aero maps CT and CQ for the thrust and torque
coefficients [3], [13]:

FT =
ρπR2

2
CT (λ, β) v2 (6)

Tr =
ρπR3

2
CQ (λ, β) v2 . (7)

where R denotes the rotor radius, ρ the air density, v the wind
speed and λ = R ωr

v the tip speed ratio.2

D. State-space model

In order to design controllers or observers for the wind
turbine model, it is necessary to write the model equations
in state-space form. i.e., ẋ = f(x,u), where f is a function of
the state vector x and the input vector u. The output equation
y = Cx describes which states of the system are actually
measurable. The measurable states form the output vector y.
The choice of the output matrix C will become important for
an observer design. For the purpose of this paper, it can be
chosen arbitrarily, as only the dynamics of the state vector is
considered.

A state-space form for the complete wind turbine model
can be obtained by inserting the aerodynamic equations (6)
and (7) into the mechanical model equations (1) and adding
the pitch model (5).

2A dynamic correction of the wind speed by the tower and blade tip
velocities is left out, as the aero maps correspond to static values of the
aerodynamic forces.

The resulting state-space model is

ẋ = Ax +Bu + g(x, v)

y = Cx ,
(8)

with the state-vector

x =
(
yT yB θr θg ẏT ẏB θ̇r θ̇g β

)T
, (9)

the input vector u = (βd Tg)
T ,

and the output vector y = x, i.e. the output matrix is given
by C = I9×9, where I denotes the unit matrix. The wind
speed v is considered as a disturbance input.

The linear part of the state-space model is given by the
system matrix

A =

 04×4 I4×4 04×1

−M−1K −M−1D 04×1

01×4 01×4 − 1
τ

 (10)

and the input matrix

B =

 07×2(
0 − 1

Jg

)(
1
τ 0

)
 . (11)

In addition, there is a vector that nonlinearly depends on
the system states and the wind speed:

g(x, v) =


05×1

1
NmB

FT (x, v)
1
Jr
Tr (x, v)

02×1

 . (12)

III. TAKAGI-SUGENO MODEL STRUCTURE

As the model (8) is nonlinear, standard state-space tech-
niques for controller or observer design cannot be directly
applied. The main advantage of a TS model structure is its
flexibility. In this paper, a TS model is derived by means of the
sector nonlinearity approach which provides a way to obtain an
exact representation of the full nonlinear model as a weighted
combination of linear submodels, where the nonlinearities of
the system are shifted into the membership functions.
Another approach would be to derive an approximated TS
model by linearising the nonlinear model equations around
different operating points and using predefined fuzzy member-
ship functions to combine the linear submodels to an overall
nonlinear model. For a system in TS model structure, stable
controllers can be designed by solving LMIs where conditions



for the overall decay rate or for optimal controller design can
be included.
Because of these advantages, TS model structures are an ideal
basis for the design of controllers and observers for FDI
concepts.

The general TS model structure for systems without direct
feed-through is [4]

ẋ(t) =

Nr∑
i=1

hi(z(t)) (Ai x(t) +Bi u(t))

y(t) =

Nr∑
i=1

hi(z(t))Ci x(t) ,

(13)

with Nr = 2Nl , where Nl denotes the number of differing
nonlinearities in the model. z is the vector of known premise
variables, which may be functions of the state variables,
external disturbances and/or time [4]. The matrices Ai, Bi and
Ci have constant coefficients and the membership functions
hi fulfill the condition

Nr∑
i=1

hi(z(t)) = 1 , ∀t. (14)

The nonlinear wind turbine model (8) will now be transformed
into a TS model structure, thus the nonlinear dependency of
g(x, v) in (12) has to be transformed into the membership
functions hi, such that the subsystems Ai x +Bi u are linear
state-space models. In order to achieve this, g(x, v) can be
written as

g(x, v) =


05×9

01×6
1

NmB
FT (x, v) 1

x7
01×2

01×6
1
Jr
Tr (x, v)

1
x7

01×2

02×9


︸ ︷︷ ︸

=:ANL

x , (15)

such that (8) can be rearranged as

ẋ = (A+ANL)︸ ︷︷ ︸
=: Ã

x +Bu

y = Cx .

(16)

In principle, the nonlinear function entries can be placed in
any column of the matrix ANL, they only have to be divided
by the respective coordinate of the state-vector, such that the
vector g(x, v) is correctly reproduced. Here, the nonlinear
functions were placed in the seventh column, because the state
x7 = θ̇r = ωr, i.e. the rotor angular velocity, can always safely
be assumed to fulfill ωr > 0. Even if starting procedures
of the wind turbine shall be explicitly examined, the initial
rotor angular velocity can be chosen as a small positive value,
so that ωr > 0 is fulfilled for the complete simulation time.
However, other states would not be equally well-suited as a

dividing factor for the nonlinear functions in the matrix ANL.
For example, the states x1 = yT , x2 = yB , x5 = ẏT , x6 = ẏB
can all oscillate around 0 in normal operation and therefore
cannot be used.

In the combined matrix Ã = (A+ANL), at positions (6,7)
and (7,7) there are now two scalar, nonlinear functions:

f1(x, v) :=
1

NmB
FT (x, v)

1

x7
(x7 > 0) (17)

f2(x, v) :=
1

Jr
Tr (x, v)

1

x7
− dS

Jr
(x7 > 0) . (18)

If these two functions are bounded, i.e. fi ∈ [f
i
, f i], they can

be written as sector functions in order to arrive at a TS model
structure:

f1(x, v) = w11 f1 + w12 f1 (19)

f2(x, v) = w21 f2 + w22 f2 , (20)

where the weighting functions wjk are defined by

wj1 :=
fj(x, v)− f j
f j − f j

wj2 :=
f j − fj(x, v)
f j − f j

. (21)

This is the sector nonlinearity approach [4], [14]. Equations
(19) and (20) are exact expressions for the functions f1 and
f2 if these are bounded, which is the case for f1 and f2 as
defined in (17) and (18).

From equations (17) and (18), the minimum and maximum
values of f1 and f2 can be estimated as

f
1
= 0 f

2
= −0.1603 s−1

f1 = 6.2 · 104 m
s

f2 = 335.46 s−1 .

Here, a maximum wind speed of vmax = 60 m
s and a minimum

rotor angular velocity of ωr,min = 0.01 rad
s was assumed.

From (19), (20) and (21) it follows that the weighting
functions fulfill the convexity condition

wj1 + wj2 = 1 (j ∈ {1, 2}) . (22)

Using (22) and defining the membership functions as

h1 := w11 w21, h2 := w11 w22,

h3 := w12 w21, h4 := w12 w22,

the functions f1 and f2 can be written as



f1 =
(
w11 f1 + w12 f1

)
(w21 + w22)

= h1 f1 + h2 f1 + h3 f1 + h4 f1 (23)

f2 =
(
w21 f2 + w22 f2

)
(w11 + w12)

= h1 f2 + h2 f2 + h3 f2 + h4 f2 . (24)

It also follows that
Nr∑
i=1

hi(x, v) = 1, i.e., condition (14) for

the TS membership functions is fulfilled.
Using the expressions (23) and (24) instead of (17) and (18)
in the matrix Ã and multiplying all other matrix entries by
Nr∑
i=1

hi(x, v) = 1, the state-space model (8) can now be written

in TS form as

ẋ =

Nr∑
i=1

hi(x, v) (Ai x +Bu)

y = Cx ,

(25)

which is an exact representation of (8). The entries of the
submatrices Ai are the coefficients f

j
, f j of (23) and (24) for

the matrix positions (6,7) and (7,7). For all other positions,
the entries of Ai are equal to those of Ã.

As the nonlinearities were included in the new matrix Ã,
the term Bu, as well as the output equation y = Cx,
remain unaltered. This special TS structure with only one input
matrix B is advantageous for controller design, as the resulting
number of submodels in the closed-loop system is equal to
Nr, compared to the more general TS structure (13), where
N2
r submodels are obtained for the closed-loop system.

IV. MODEL PARAMETERS

For simulation studies, the TS wind turbine model (25) is
validated against an aero-elastic simulation with FAST of the
NREL 5 MW reference turbine defined in [8]. To this end,
the model parameters for the 5 MW reference turbine are also
chosen for the TS wind turbine model.
Some parameters can be directly taken from [8] and from
NREL example input and log files for the 5 MW turbine.
These are:
N = 3, R = 63 m, ρ = 1.225 kg

m3 ,
mB = 17740 kg, mT = 644240 kg, 3,
Jr = 38759227 kg m2, Jg = 5025347 kg m2,
ks = 867637000Nm, ds = 6215000Nm s.

As a gearbox ratio is included in the FAST simulation
model, the generator inertia given in the FAST model
(Jg = 534.1 kg m2) was multiplied by the square of the
gearbox ratio (ng = 97) to obtain the correct value for the
generator inertia Jg in the TS model, where no gearbox ratio
is included.

3mT was obtained by adding the masses of tower, nacelle and hub given
in [8]

The damping factors dT and dB for tower top and blade tip
motion are mainly determined by the aerodynamic damping
of the rotor, which can be estimated as [13], [15]:

daero (λ) = d∗ (λ)
ρ

2
R2 v , (26)

where the coefficient d∗ depends on the tip speed ratio. For
a rotor with a similar design tip speed ratio (λd ≈ 6) as
the 5 MW reference turbine (λd ≈ 7.6), the values of d∗

lie between -0.5 (in the stall region around λ ≈ 4) and 2
(from [16], chapter 25, lit. 10). For the simulation studies,
d∗ was set to 1 (independent of the tip speed ratio). This is
a reasonable approximation, as it is hard to determine exact
values for the damping and the dynamic behaviour will be
well approximated if the orders of magnitude for the damping
coefficients are correct. Following the same argument, it is
reasonable to calculate the aerodynamic damping factor in (26)
using a constant wind speed. Here, a wind speed of 8 m/s was
used to obtain
daero = ρ

2 R
2 v ≈ 2 · 104 Ns

m and the damping factors dT and
dB for tower and blade were set equal to this value.

The stiffness coefficients kT and kB for the tower top and
blade tip motion cannot be directly taken from [8], as the tower
and blade bending stiffness coefficients for the FAST model
are given separately for each tower and blade section. It would
be possible to obtain effective bending stiffness coefficients for
the whole tower and the whole blade by applying a transition
matrix technique used in structural mechanics calculations.
This was omitted here, as it would be beyond the scope of
this work. Instead, kT and kB were chosen such that the mean
tower top and blade tip deflections yT and yB for an idling
wind turbine at a stationary operating point λ ≈ 17.85 assume
approximately the same values as the respective degrees of
freedom in the FAST simulation. This procedure was done
for a constant wind speed of v = 8 m

s at a constant pitch
angle of β = 0◦ and generator torque Tg = 0Nm.
The values obtained are: kT = 1962000 N

m and kB = 39333 N
m .

The delay time constant for the pitch actuator model (5)
was estimated considering a pitch velocity limit of 10 deg/s
(as in [2]) and a reference step jump of 1 deg and can thus
be set to τ = 0.1 s.

Aero Maps for Rotor Thrust and Torque Coefficient

The aero maps CT (λ, β) and CQ (λ, β) for the rotor thrust
and torque coefficients were extracted from FAST simulations
for different pitch angles. In each simulation, the generator
torque was set to 0 Nm, and the initial rotor angular velocity
to 0 rpm, such that the wind turbine assumes all values of the
tip speed ratio from λ = 0 up to the stationary idling tip speed
ratio (λ ≈ 17.85), where an equilibrium of accelerating and
decelerating aerodynamic forces has built up. In this way, the
aero maps can be obtained for the whole range of tip speed



ratios and pitch angles as look-up tables4. For pitch angles
between 0◦ and 20◦, the obtained curves for CQ are depicted
in Fig. 5a, those for CT in Fig. 6a.

Analytical Approximation of the Aero maps

For the simulation of the TS wind turbine model (25), the
thrust and torque coefficients can be calculated in each step
by simply interpolating the values in the look-up tables of the
aero maps, because CQ and CT appear in the membership
functions hi.

However, it is useful to find good analytical approximations
for CQ and CT , especially if the controller design shall be
based on linearised submodels. In that case, derivatives of the
aero maps are needed and differentiating analytical functions is
advantageous to calculating numerical derivatives of tabulated
look-up tables.
For the rotor torque map CQ, the function given in [18] ( [19],
[20]) for approximating the power coefficient was modified to
be used for CQ:

C̃Q (λ, β) = c1

(
1 + c2 (β + c3)

1
2

)
+

c4
λ

(c5 λi (λ, β)− c6β − c7β
c8 − c9) e−c10 λi(λ,β),

(27)

with (λ > 0) and

λi (λ, β) :=
1

λ + 0.08β
− 0.035

c11 + c12β
3 (λ > 0) . (28)

To exclude unphysical negative terms, this expression was
limited to values ≥ 0:

CQ (λ, β) = C̃Q (λ, β)
1 + sign C̃Q (λ, β)

2
. (29)

Using the MATLAB R© curve fitting toolbox and manual cor-
rections, the following coefficients were obtained :

c1 = 0.005 c2 = 1.53 c3 = 0.5 c4 = 0.18

c5 = 121 c6 = 27.9 c7 = 198 c8 = 2.36

c9 = 5.74 c10 = 11.35 c11 = 16.1 c12 = 201 .

Fig. 5b shows the plots of function (29) with these coefficients
for pitch angles between 0◦ and 20◦ compared to the plots of
the curves from the look-up tables in Fig. 5a.

For the rotor thrust map CT , the following nonlinear func-
tion was used to approximate the look-up table.

4The aero maps were obtained by extracting the aerodynamic forces acting
on each blade element from the aerodynamics module AeroDyn [17], by
adding the contributions of all blade elements and smoothing the obtained
curves. This was done, since the FAST outputs of CT and CQ contain not
only pure aerodynamic but also non-aerodynamic contributions.

C̃T (λ, β) = a1 + a2 (λ− a3β) e−a4β +
a5 λ

2 e−a6β + a7 λ
3 e−a8β .

(30)

As for CQ, this expression was limited to values ≥ 0:

CT (λ, β) = C̃T (λ, β)
1 + sign C̃T (λ, β)

2
. (31)

The following coefficients were obtained:

a1 = 0.006 a2 = 0.095 a3 = −4.15 a4 = 2.75

a5 = 0.001 a6 = 7.8 a7 = −0.00016 a8 = −8.88 .

Fig. 6b shows the plots of function (31) with these coefficients
compared to the plots of the curves from the CT look-up tables
in Fig. 6a.

V. SIMULATION RESULTS

The TS wind turbine model (25) was implemented in
MATLAB/Simulink R© and simulation runs of the open-loop
dynamics were done around different operating points, i.e.,
fixed values of pitch angle and generator torque, using IEC
wind gusts as input signals.5. For the CQ and CT curves,
both the look-up tables and the analytical approximations (29)
and (31) were used. The results were compared to FAST
simulations at the same operating points.6 For wind gusts
around 8 m/s and 18 m/s, results are depicted in Fig. 7,
with time-series of tower top and blade tip displacement (yT
and yB), rotor angular velocity (ωr) and the torsion angle
(θs = θr − θg).

The results show a good agreement between the FAST
simulations and the simulations of the TS model using the CQ
and CT look-up tables. However, there are some deviations:
1) The amplitudes of the oscillations in the tower and blade
degree of freedom are higher in the TS model than in FAST.
This is partly due to the fact that no dynamic correction of
the wind speed was included. Including such a correction in
turn leads to higher deviations in the rotor rotational velocity.
2) For the blade tip deflection, the deviation between the TS
model and FAST is very pronounced for high tip speed ratios
(not shown here). In FAST, a centrifugal stiffening of the
blades is taken into account by including terms proportional
to ω2

r in the blade stiffness coefficients. In first tests, it could
be verified that including centrifugal terms in the state-space
model (8) yields better agreements with the FAST simulation
results. In Fig. 7 it can also be seen that the blade tip deflection
in the FAST simulation, where each blade is treated separately,
oscillates with the rotor angular frequency, which is probably
due to gravitational effects that have also not been included
in the TS model.

5The wind gusts were generated using the tool IECWind [21] by NREL
6For the FAST simulations, only the four degrees of freedom corresponding

to those in the TS model were switched on.
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Fig. 5. Rotor torque coefficient curves for different pitch angles for the NREL 5 MW reference turbine (Note for non-color mode: Increasing pitch angle
corresponds to decreasing values of CQ)

 

 

β = 20
◦

β = 15
◦

β = 10
◦

β = 5
◦

β = 0
◦

C
T

λ
0 2 4 6 8 10 12 14 16 18

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) Tabulated values obtained from FAST simulations.
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(b) Analytical approximation with (31).

Fig. 6. Rotor thrust coefficient curves for different pitch angles for the NREL 5 MW reference turbine. (Note for non-color mode: Increasing pitch angle
corresponds to decreasing values of CT

Using the analytical approximations for the CQ and CT
maps, the agreements to the FAST simulation results are
still acceptable, however, the TS model simulations show
higher deviations, which is simply due to the difficulty of
finding analytical functions that yield very precise fits to the
complicated nonlinear aero maps. Still, the functions given
in (29) and (31) should be good candidates in cases where
analytical expressions for the aero maps are needed.

VI. CONCLUSION AND OUTLOOK

In this paper, a four-degree of freedom wind turbine model
was derived and transformed into a Takagi-Sugeno (TS) model
structure using the sector nonlinearity approach. The TS
model exactly represents the nonlinear model as a weighted
combination of linear models.

The open-loop dynamics of the TS model were compared
to results obtained using the simulation code FAST for the
NREL 5 MW reference turbine. The overall agreement for

the different degrees of freedom is good, which demonstrates
that the reduced 4 DOF model is appropriate for controller
and observer design. To further improve the model quality,
centrifugal and gravitational effects could be included. How-
ever, each model improvement must be carefully traded off
against the aim of using the model for controller and observer
design, as additional nonlinearities increase the number of TS
submodels and can thereby lead to more conservative LMI
design results.

The TS model structure can be extended to design TS sli-
ding mode observers and therefore serves as an ideal starting-
point to develop FDI concepts for wind turbines in future
work.
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(a) input values: βd = 0◦, Tg = 2231 kNm, initial
conditions: ωr,0 = ωg,0 = 0.8 rad

s , β0 = 0◦, all other
initial values were set to zero. θs = θr − θg : torsion angle
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(b) input values: βd = 15◦, Tg = 3946 kNm, initial
conditions: ωr,0 = ωg,0 = 1.26 rad

s , β0 = 15◦, all other
initial values were set to zero. θs = θr − θg : torsion angle

Fig. 7. Open-loop simulation results of the wind turbine TS model with IEC wind speed gusts around 8 m/s and 18 m/s at constant input values of generator
torque and pitch angle. Blue thick solid curves: Simulation of the TS model using the look-up tables for the CT and CQ maps. Red thick dashed curves:
Simulation of the TS model using the analytical approximations for the CT and CQ maps; Green thin solid curves: FAST simulations results.
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