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Abstract—The paper deals with fuzzy equational classes. These
are defined as classes of particular fuzzy algebras refereing to
a fuzzy equality (which replaces the crisp one), closed with
respect to fuzzy identities. In this fuzzy framework we introduce
basic notions of universal algebra, (fuzzy) subalgebras, homo-
morphisms and direct products. Our main result is that every
fuzzy equational class is closed under these three constructions,
hence forming a fuzzy variety.
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I. INTRODUCTION

Investigation of fuzzy algebraic structures has a long history
within a fuzzy era. Most of the researchers have been deal-
ing with particular algebras like fuzzy groups (starting with
Rosenfeld 1971 [18], Das 1981 [8] and then followed by many
others), fuzzy semigroups (see the monograph from 2003. by
Malik, Mordeson and Kuroki [16]), and other structures with
usually not more than two binary operations (semirings, rings,
lattices and connected structures). These were further applied
in other fields like fuzzy automata (e.g., the 2002. monograph
by Mordeson and Malik [15]) and formal languages (e.g.,
Li, Pedrycz 2005, [14]). Notions from general and universal
algebra have also been investigated in the fuzzy framework,
like lattice valued algebras (starting by Di Nola and Gerla
[11]), fuzzy congruences (Šešelja 1981 [19], Murali [17],
and others). Investigating some basic notions in fuzzy math-
ematics, Demirci has been dealing with fuzzy functions and
related notions ([9], [10]) and also Šostak, from the topological
and categorical aspect ([28]). In the last decade of the XX
century, also fuzzy homomorphisms were investigated (for
fuzzy groups and generally, see Chakraborty and Khare, 1993
[7]). Researches of B. Šešelja and A. Tepavčević have also
been addressed to fuzzy algebraic structures, as cited below.
However, a systematic approach to fuzzy general algebra
should be related to Bělohlávek and Vychodil papers (we point
to his book together with Vychodil [2]).

In the present paper we deal with classes of fuzzy algebras
which are defined within a fixed type of algebras. These fuzzy
algebras are usual fuzzy subalgebras of crisp algebras of the
same type, equipped with compatible fuzzy equalities, which
generalize the ordinary crisp equality. The ordered structure
of membership values is fixed for the whole class. If all fuzzy

algebras in the class fulfill a set of particular formulas called
fuzzy identities, then this class is called an equational class
of fuzzy algebras. For the compatible fuzzy relations we use
a special weak reflexivity; in addition, our approach to fuzzy
identities, fuzzy functions and substructures differs from those
existing in the literature, see also our paper [4].

Next we introduce basic algebraic constructions in the
classes of fuzzy algebras. Namely, we define appropriate fuzzy
subalgebras, fuzzy homomorphisms and fuzzy direct products.
We prove that each equational class of fuzzy algebras is closed
under these three constructions. As it is known, a class of
the crisp algebras of the same type closed under the above
constructions is called a variety. Therefore, here we prove that
each fuzzy equational class is a fuzzy variety.

In dealing with fuzzy (lattice-valued) structures, we use our
results obtained for the fuzzy groups and fuzzy algebras in
general, but refereing to the crisp equalities ([20], [22], [23],
[24], [25], [26], [5]). Our first attempt to deal with fuzzy
identities is presented in [27]. What is directly used here are
fuzzy algebras with fuzzy equalities, elaborated in [4]. In order
to make the present material self contained, we list all the
relevant definitions and properties from this article here in
Preliminaries.

Finally, let us comment the structure of the membership
values. In our investigations of universal algebra in the fuzzy
framework, the structure of membership values should meet
requirements for the relevant logical background. Therefore,
we use a complete residuated lattice, though in the part of the
research presented here it has some additional properties, by
which it is a Heyting algebra.

II. PRELIMINARIES

A. Crisp notions: algebras, equational classes, varieties

First we list some notions and claims from the universal
algebra; for more, refer to e.g., book [6].

For describing formally algebraic structures like groups,
rings etc., we need a language or a type L, which is a set F
of functional symbols, together with a set of natural numbers
with zero (arities) associated to these symbols. An algebra
A = (A,F ) of a type L consists of a nonempty set A,
and a collection F of (fundamental) operations on A. Each
operation in F corresponds to some symbol in the language;
if it is n-ary, then its arity is n. Terms in the language L
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are usual regular expressions constructed by the variables and
operational symbols (see [6] for the precise definition). An
identity in L is a formula t1 = t2, where t1, t2 are terms in the
same language. A class of algebras of the same type, fulfilling
a set of identities is an equational class. A subalgebra of A
is an algebra of the same type, defined on a non-empty subset
of A. A subset closed under fundamental operations is called a
subuniverse of A, which can also be the empty set. If A and
B are algebras of the same type, then the function h : A → B
compatible with the fundamental operations in the sense that
for an n-ary f ∈ F , and x1, . . . , xn ∈ A, h(f(x1, . . . , xn)) =
f(h(x1), . . . , h(xn)) is a homomorphism of A into B. The set
of images h(A) under h is a subalgebra of B, a homomorphic
image of A. For a family {Ai | i ∈ I} of algebras of
the same type, Πi∈IAi is their direct product, an algebra
of the same type with operations defined componentwise. A
class of algebras of the same type is a variety if it is closed
under subalgebras, homomorphic images and direct products.
By the well known Birkhoff’s theorem, an equational class
is a variety and vice versa. An equivalence relation ρ on A
which is compatible with respect to all fundamental operations
(xiρyi, i = 1, . . . , n imply f(x1, . . . , xn)ρf(y1, . . . , yn)) is a
congruence relation on A. If ρ is a congruence on A, then
A/ρ is the quotient algebra, where the underlying set consists
of congruence classes under ρ, and operations are defined over
representatives. A/ρ is a homomorphic image of A under
x 7→ [x]ρ, where [x]ρ is the congruence class to which x
belongs.

B. Fuzzy notions

First we introduce the structure of membership values that
we use in this research. Definitions follow, and more details
can be found in [1].

A complete residuated lattice (L,∧,∨,⊗,→, 0, 1) is an
algebraic structure in which:
(L,∧,∨, 0, 1) is a complete lattice, i.e., a partially ordered

set whose ordering is denoted by 6 , and in which for every
subset there is the greatest lower bound, infimum, meet, and
the least upper bound, supremum, join; 0 is the least element
(the bottom) and 1 is the greatest element (the top);
(L,⊗, 1) is a commutative monoid with the unit 1;
operations ⊗ (multiplication) and → (residuum) form an

adjoint pair, meaning that for all x, y, z ∈ L

x⊗ y 6 z if and only if x 6 y → z.
A residuated lattice in which multiplication (⊗ ) coincides

with meet (∧ ) is a Heyting algebra.
Throughout the paper, L is supposed to be the above

introduced ordered structure and it is used as a set of
membership values for all the fuzzy objects.

Next we list some relevant notions concerning fuzzy
relations. Some of these are known and some are introduced
in our paper [4].

A fuzzy set µ on a nonempty set A is a function µ : A → L.
Consequently, a mapping ρ : A2 → L is a fuzzy relation on
A.

What we use here are the fuzzy relations on fuzzy sets,
defined as follows. If µ : A → L is a fuzzy set on a nonempty
set A, then a fuzzy relation ρ : A2 → L on A is said to be a
fuzzy relation on µ if for all x, y ∈ A

ρ(x, y) 6 µ(x)⊗ µ(y). (1)

A fuzzy relation ρ on fuzzy set µ is reflexive if for all x, y ∈
A,

ρ(x, x) = µ(x). (2)

The following is obvious.
Lemma 1: If ρ is a reflexive fuzzy relation on a fuzzy set µ

on A, then for every x, y ∈ A,

ρ(x, x) > ρ(x, y) and ρ(x, x) > ρ(y, x). 2

A fuzzy relation on a fuzzy set µ on A is symmetric and
transitive if it fulfills these conditions as a fuzzy relation on
crisp domain A:

ρ is symmetric if ρ(x, y) = ρ(y, x) for all x, y ∈ A;
(3)

ρ is transitive if ρ(x, y) > ρ(x, z)⊗ρ(z, y) for all x, y, z ∈ A.
(4)

A reflexive, symmetric and transitive relation ρ on a fuzzy
set µ is a fuzzy equivalence on µ.

A fuzzy equivalence relation ρ on µ, fulfilling for all x, y ∈
A, x ̸= y,:

if ρ(x, x) ̸= 0, then ρ(x, x) > ρ(x, y), (5)

is called a fuzzy equality relation on a fuzzy set µ.
Let A = (A,F ) be a crisp algebra. As it is known, a fuzzy

subalgebra of A is any mapping µ : A → L fulfilling the
following:

For any operation f from F with the arity greater than 0,
f : An → A,n ∈ N, and all x1, . . . , xn ∈ A, we have that

n⊗
i=1

µ(xi) 6 µ(f(x1, . . . , xn)).

For a nullary operation (constant) c ∈ F , we require that

µ(c) = 1, (6)

where 1 is the greatest (the top) element in L.
A fuzzy relation ρ : A2 → L on a fuzzy subalgebra µ : A →

L of A = (A,F ) is said to be compatible with the operations,
if it is compatible as a fuzzy relation on A, i.e., if for every
n-ary operation f ∈ F and for all x1, . . . , xn, y1, . . . , yn ∈ A

ρ(f(x1, . . . , xn), f(y1, . . . , yn)) >
n⊗

i=1

ρ(xi, yi). (7)



In particular, for n = 1, ρ(f(x1), f(y1)) > ρ(x1, y1).

A compatible fuzzy equivalence on a fuzzy subalgebra µ
of A is a fuzzy congruence on µ. Obviously, particular fuzzy
congruences on µ are compatible fuzzy equalities on this fuzzy
subalgebra.

III. RESULTS

First we introduce a new concept of fuzzy algebras, and
then we generalize the basic relevant notions: subalgebras,
homomorphisms and direct products.

A. Fuzzy algebra, identity, equational class

Let A = (A,FA) be an algebra and let L be a structure
of membership values, as introduced above. Further, let µA :
A → L be a fuzzy subalgebra of A and EA : A2 → L a
compatible fuzzy equality on µA. Then we say that the four-
tuple Ā = (A, µA, EA, L) is a fuzzy algebra of the type
(F, σ).

In other words, a fuzzy algebra is a fuzzy L-valued subalge-
bra of a given crisp algebra, endowed with a compatible fuzzy
equality. That is why all relevant parameters are explicitly
listed in the defining four-tuple.

Remark 1: If we take µA : A → L to be a characteristic
function, then the above definition gives an algebra with fuzzy
equality, [3] (actually a subalgebra of A). If in addition EA is
a crisp equality, then a classical subalgebra of A is obtained.
2

Clearly, the above definition implies that two given fuzzy
algebras Ā = (A, µA, EA, L) and B̄ = (B, µB , EB , L)
coincide if A = B, µA = µB , EA = EB and both refer
to the same lattice L.

As defined in [4], a fuzzy identity of the type (F, σ)
over a set of variables X is the expression E(t1, t2), where
t1(x1, . . . , xn), t2(x1, . . . , xn), briefly t1, t2 belong to the set
T (X) of terms over X and both have at most n variables.

We say that a fuzzy algebra Ā = (A, µA, EA, L) satisfies
a fuzzy identity E(t1, t2) (or that this identity holds on Ā), if
for all x1, . . . , xn ∈ A

n⊗
i=1

µA(xi) 6 EA(t1, t2). (8)

Remark 2: In paper [4] we proved that for every fuzzy
identity E(t1, t2) on a fuzzy subalgebra µ of a crisp algebra
A, there is the smallest compatible fuzzy equality Em, such
that E(t1, t2) holds on µ. The approach in the present paper
is slightly different, since here we deal with a fuzzy algebra,
which is by definition a fuzzy subalgebra µ, together with a
compatible fuzzy equality on it. 2

Let Σ be a set of fuzzy identities of the type (F, σ) and let
L be fixed. Then all the fuzzy algebras Ā = (A, µA, EA, L)
of this type satisfying all identities in Σ form an equational
class M of fuzzy algebras.

B. Fuzzy subalgebra of a fuzzy algebra

Here we start with a fuzzy algebra Ā = (A, µA, EA, L) and
identify particular fuzzy subalgebras of A as fuzzy subalgebras
of Ā.

The next theorem formalizes our intuition and enables the
definition that follows.

Theorem 1: Let Ā = (A, µA, EA, L) be a fuzzy algebra
and µB : A → L a fuzzy subalgebra of A, fulfilling the
following conditions:

1) µB(x) 6 µA(x) for all x ∈ A.
2) If x and y are distinct elements of A and µB(x) > 0, then

EA(x, y) < µB(x).
3) µB(c) = µA(c), for any constant c in the language.

Then, a fuzzy relation EB on µB given by

EB(x, y) := EA(x, y)⊗ µB(x)⊗ µB(y),

is a compatible fuzzy equality on µB .
2

Now we are ready for the following definition.
Let Ā = (A, µA, EA, L) be a fuzzy algebra and µB : A →

L a fuzzy subalgebra of A, fulfilling the following:

1) µB(x) 6 µA(x) for all x ∈ A.
2) If x and y are distinct elements from A and if µB(x) >

0, then EA(x, y) < µB(x).
3) µB(c) = µA(c) , for any constant c.
4) EB(x, y) := EA(x, y)⊗ µB(x)⊗ µB(y).

Then we say that the fuzzy algebra B̄ = (A, µB , EB , L) is a
(fuzzy) subalgebra of the fuzzy algebra Ā.

Theorem 2: Let M be an equational class of fuzzy algebras
and let Ā ∈ M where Ā = (A, µA, EA, L). If B̄ =
(A, µB , EB, L) is a fuzzy subalgebra of Ā, then also B̄ ∈ M.

2

Observe that by the definition of a fuzzy subalgebra it
follows that

uA(x1, ..., xn) = uB(x1, ..., xn)

for every term u(x1, ..., xn).

C. Fuzzy homomorphism

Let Ā = (A, µA, EA, L) and B̄ = (B, µB , EB , L) be fuzzy
algebras of the same type. We say that f : A → B is a fuzzy
mapping of Ā into B̄ if the following conditions hold:

1. (∀a ∈ A) µB(f(a)) > µA(a)

2. Let t1(x1, ..., xn), t2(x1, ..., xn) be terms in the language
of A, let tA1 , tA2 be the corresponding term operations and
a1, ..., an elements from A.



If EA(t
A
1 (a1, ..., an), t

A
2 (a1, ..., an)) >

n⊗
i=1

µA(ai),

then EB(f(t
A
1 (a1, ..., an)), f(t

A
2 (a1, ..., an))) >

µB(f(t
A
1 (a1, ..., an)))⊗ µB(f(t

A
2 (a1, ..., an))).

Remark 3: A fuzzy mapping defined here differs from the
one defined by Demirci in [9], [10]. In the cited articles the
domain is a crisp set equipped with a fuzzy equality and a
fuzzy mapping is defined as a particular fuzzy binary relation.
In our approach, both the domain and the co-domain are fuzzy
sets, while the mapping is a special ordinary function. 2

Theorem 3: Let Ā = (A,µA, EA, L), B̄ = (B,µB , EB , L)
and C̄ = (C, µC , EC , L) be fuzzy algebras of the same type
and f : A → B, g : B → C fuzzy mappings. Then also their
composition f ◦ g : A → C is a fuzzy mapping.

2

Let Ā = (A, µA, EA, L) and B̄ = (B, µB , EB , L) be fuzzy
algebras of the same type. We say that the fuzzy mapping
h : A → B is a fuzzy homomorphism of the fuzzy algebra
Ā into the fuzzy algebra B̄ if the following holds:

1) For each n-ary operation fA and for all a1, ..., an ∈ A,
h(fA(a1, ..., an)) = fB(h(a1), ..., h(an)).

2) h(cA) = cB , for every nullary operation c in the
language, cA and cB being the corresponding constants
in A and B respectively.

Obviously, a fuzzy homomorphism is a fuzzy mapping
which is also a homomorphism.

In the following proposition we introduce a particular fuzzy
subalgebra, which we need in order to locate a homomorphic
image of a fuzzy homomorphism.

Proposition 1: Let Ā = (A, µA, EA, L) be a fuzzy algebra
and B = (B,FB) a crisp subalgebra of A. If

µB(x) :=

{
µA(x), x ∈ B

0, else
and

EB(x, y) := EA(x, y)⊗ µB(x)⊗ µB(y),

then B̄ = (A, µB , EB , L) is a fuzzy subalgebra of Ā.
2

Theorem 4: Let Ā = (A, µA, EA, L) and B̄ =
(B, µB , EB , L) be fuzzy algebras and h : A → B a fuzzy
homomorphism. Define D̄ = (B, µD, ED, L), where

µD(d) :=

{
µB(d), d ∈ D = h(A)

0, otherwise

and
ED(x, y) = EB(x, y)⊗ µD(x)⊗ µD(y).

Then, D̄ is a fuzzy subalgebra of fuzzy algebra B̄.
2

Fuzzy subalgebra D̄ = (B, µD, ED, L) of B̄, introduced in
Theorem 4, is said to be the homomorphic image of fuzzy
algebra Ā.

Theorem 5: Let Ā = (A, µA, EA, L) and B̄ =
(B, µB, EB, L) be fuzzy algebras and h : A → B a fuzzy
homomorphism. If F (x1, ..., xn) is a term in the same language
and FA, FB the corresponding term operations in A and B
respectively, then h is a fuzzy homomorphism of fuzzy algebra
(Ā, FA) into fuzzy algebra (B̄, FB).
Proof: Straightforwardly, by the corresponding theorem in
the classical general algebra. 2

We are now ready to prove that the equational classes of
fuzzy algebras are closed under the homomorphic images.

Theorem 6: Let M be an equational class of fuzzy algebras.
If Ā ∈ M and D̄ is a homomorphic image of Ā, then also
D̄ ∈ M.

2

D. Direct product of fuzzy algebras

Here we deal with the third algebraic construction in the
fuzzy framework, namely with the fuzzy direct products.

Theorem 7: Let {Āi = (Ai, µi, EAi), L | i ∈ I} be a
family of fuzzy algebras of the same type, A =

∏
i∈I

Ai the

direct product of algebras Ai and let the following holds for
all g1, g2 ∈

∏
i∈I

Ai, g1 ̸= g2:

If
⊗
i∈I

µi(g1(i)) ̸= 0, then

⊗
i∈I

EAi
(g1(i), g2(i)) ̸=

⊗
i∈I

µi(g1(i)).

Then the following holds: If

1) µ(g) :=
⊗
i∈I

µi(g(i)), g ∈
∏
i∈I

Ai and

2) EA(g1, g2) :=
⊗
i∈I

EAi(g1(i), g2(i)); g1, g2 ∈
∏
i∈I

Ai,

then Ā =
∏
i∈I

Āi := (A, µ, EA, L) is a fuzzy algebra.

2

The fuzzy algebra Ā := (A, µ, EA, L) introduced in The-
orem 7 is said to be the direct product of fuzzy algebras
Āi, i ∈ I.

Remark 4: The technical condition⊗
i∈I

EAi(g1(i), g2(i)) ̸=
⊗
i∈I

(µi(g1(i)))

in the definition of the fuzzy direct product is needed in the
proof of Theorem 7 which is not provided here due to lack of
space.

Observe that the corresponding condition for the crisp
algebras is trivially fulfilled. 2

Theorem 8: If a fuzzy identity
E(u(x1, ..., xn), v(x1, ..., xn)) holds in all fuzzy algebras



Āi, i ∈ I of a fixed type, then also this fuzzy identity holds
in their product Ā =

∏
i∈I

Āi.

2

Now we formulate the main result, i.e., we prove that
any fuzzy equational class is closed under fuzzy subalgebras,
homomorphic images and products.

Theorem 9: Let M be an equational class of fuzzy algebras.
Then the following hold:

1) If Ā ∈ M , and B̄ is a fuzzy subalgebra of Ā, then B̄ ∈
M.

2) If Ā ∈ M , and D̄ is a homomorphic image of Ā, then
D̄ ∈ M.

3) If for every i ∈ I, Āi belongs to M, then also
∏
i∈I

Āi ∈

M.

Proof: Straightforward by Theorems 2, 6, 8. 2

In order to formulate the above result appropriately in terms
of general algebra, let us define the following notion. For a
fixed language and a complete residuated lattice L, a class V
of fuzzy algebras Ā = (A, µA, EA, L) closed under fuzzy
subalgebras, fuzzy homomorphic images and fuzzy direct
products is a fuzzy variety.

In terms of fuzzy varieties, Theorem 2 can be formulated
as follows.

Corollary 1: Every fuzzy equational class is a fuzzy variety.
Theorem 9 (1) is a one way fuzzy version of the famous

Birkhoff Theorem in universal algebra (see Preliminaries).
Under the present conditions, the converse is not true. E.g.,
the class of crisp commutative groupoids with the usual
equality is closed under formation of (fuzzy) subalgebras,
homomorphisms and products, as they are defined here.
However, the corresponding equational class defined by the
fuzzy identity E(xy, yx) is wider, as shown by the following
example (taken from [4]).

Example Let G be a four-element groupoid given by the
Table 1, and L a 16-element Boolean lattice (Figure 1).
Boolean lattice is residuated and multiplication coincides with
meet.

· a b c d
a b b c c
b b a d d
c c c d d
d d d d c

Table 1: Groupoid G
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e
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e
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e
ee eee ee
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TT
HHH ����
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���

1

p q

t

0
Figure 1: Lattice L

Em a b c d
a p 0 0 0
b 0 p 0 0
c 0 0 q t
d 0 0 t q

Table 2: Fuzzy equality Em

Consider the fuzzy groupoid (G,µ,E), where µ : G → L
is given by:

µ(x) =

(
a b c d

p p q q

)
.

If E is a fuzzy equality on G presented by the Table 2, then
(G,µ,E, L) fulfils the fuzzy identity E(x · y, y · x). Though,
this fuzzy commutative groupoid could not be obtained by
H,S, P operators applied on crisp commutative groupoids.

IV. CONCLUSION

In the present research we are focused on fuzzy identities as
a new fuzzy notion generalizing crisp identities and we apply
these to fuzzy algebras. This is a natural way to define fuzzy
equational classes. It is obvious that one way round results,
starting with fuzzy equational classes and proving that these
are fuzzy varieties should be investigated also in the opposite
direction. In order to fulfil this task we intend to further
investigate fuzzy algebras. These should satisfy additional
conditions, so that when closed under (fuzzy) subalgebras,
homomorphisms and products, they form an equational class.
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[24] B. Šešelja, A. Tepavčević, On Generalizations of Fuzzy Algebras and
Congruences, Fuzzy Sets and Systems 65 (1994) 85–94.
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