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Abstract—In this paper, we consider the problem of the
construction of fuzzy decision trees when there exists a graduality
between the values of attributes and values of the class. We pro-
pose a new measure, extended from the measure of classification
ambiguity, that takes into account both discrimination power and
graduality with regards to the class. To highlight the importance
of that kinds of measures, Medical applications is presented in
which often the values of the class are symbolic and ordered
and in which the discovery of gradual links between descriptive
attributes and the class are seek for.

I. INTRODUCTION

Fuzzy decision trees (FDT) are a very popular machine
learning tools. They propose a summarized view of a set of
data. Moreover, there exist several inductive approaches to
construct them from a training data set. Basic approaches are
based on a Top Down Induction of Decision Tree (TDIDT)
method. A tree is built from its root to its leaves, by successive
partitioning of the training set into subsets. An attribute is
selected thanks to a measure of discrimination H (in classical
decision tree, the Shannon entropy is generally use [1], [2])
that ranks the attributes according to their discriminating
power with regard to the class. The attribute with the highest
discriminating power is selected to split the training set.
Methods to construct decision trees differ mainly in their
choice of H [3], [4].

In the fuzzy settings, these measures of discrimination have
been studied in previous work and a hierarchical model of
validation of such a measure has been presented [3], [5],
[4]. This model points out the properties required for a given
measure to be considered as a measure of discrimination in
order to be used in the process of construction of a (fuzzy)
decision tree. Moreover, a comparative study of these measures
has been conducted [6] that leads to a better understanding of
their main properties.

At each step of the construction of a FDT, the measure of
discrimination H is used to value the power of discrimination
of each attribute with regard to the class. Thus, it will produced
a ranking of all the attributes according to this value, and the
winner attribute will be the one that is ranked first (ie. the
one that has the lowest value). As a consequence the whole
ranking is not interesting in this process (only the first one is
selected).

Thus, FDT have been extensively used in the past years as
a powerful knowledge extraction tool, and nowadays it is still

an active domain of researches and applications [7], [8], [9],
[10], [11], [12]. Very recent works have also shown that FDT
can be used too in ranking applications where it is more useful
to associate test example with a degree of classification rather
than a crisp class [13].

There exist a lot of real-world applications problems, and in
particular in Medical application, where the values of the class
are symbolic and ordered. In that kind of problems, it appears
that finding attributes that are gradually linked with the class
could be more valuable in order to explain the decision process
done by means of that tree. For instance, the older the patient,
the most vulnerable to disease.

However, classical measures of discrimination take into
account only the informative properties of attributes with
regards to the class and forget to handle the graduality that
could link their values.

In this paper, we propose a new measure that extend
the measure of ambiguity and take into account both the
discriminative power of an attribute, and the graduality that
links it to the class.

The paper is composed as follow. In Section , we recall
the method to construct fuzzy decision trees and the classical
measures that are used to rank attributes and select them to
construct the tree. In Section , the problem of measuring both
discrimination and graduality is set and a new measure is
proposed that handles them. In Section , a presentation of the
Medical domain and a related application that benefits the use
of the proposed measure is done. Finally, we conclude and
present some future work.

II. CONSTRUCTION OF FUZZY DECISION TREES

Construction of a fuzzy decision tree is based on a machine
learning process. A training set E = {e1, ..., eN} is provided,
composed of examples (or cases, or observations) of a given
phenomenon. The examples are associated with a description
which is a NA-tuple of attribute-value pairs (Aj , vjl), where
each attribute Aj , from a set of attributes A = {A1, ..., ANA

},
can take a (fuzzy, numerical, or symbolic) value vjl in a set
{vj1, ..., vjmj

} of possible values. A value vjl is associated
with a membership function µvjl . We consider supervised
learning, where a set of classes C = {c1, ..., cK} is also
given. Each ck is supposed to be associated with a membership
function µck . In the training set, the description of an example
ei is linked with a particular class ck from C.
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Most algorithms to construct decision trees build a tree
from the root to the leaves, by successive partitioning of the
training set into subsets. Each partition is done by means of
the values of an attribute and leads to the definition of a node
of the tree. An attribute is selected by means of a measure
of discrimination H (in classical decision tree, the Shannon
entropy is generally use [2], it comes from Information Theory
[14]). Such a measure ranks the attributes from A according
to their discriminating power with regard to the class. The
attribute with the highest discriminating power is selected to
construct a node in the decision tree.

Various measures of discrimination H do exist and can be
used to construct a FDT. The main one is the entropy of fuzzy
events [15], [16], [17]. It corresponds to an extension of the
Shannon entropy by substituting probabilities of fuzzy events
[18] to classical probabilities.

The second one deals with methods based on another family
of fuzzy measures [19], [20], [21], [22], [23]. In this second
family of measures, a very different kind of works is presented
in [19]. A method is introduced to construct a FDT by means
of a measure of classification ambiguity as a measure of
discrimination. This measure is defined from both a measure
of fuzzy subsethood and a measure of non-specificity.

Another measure has been studied in [1] for the construction
of decision trees, the Gini index of diversity. This measure is
based on probabilities and can easily be extended to a Fuzzy
Gini index of diversity to handle fuzzy values and, thus, enable
the construction of FDT. For instance, it has been used by [24].

In previous works, the seminal properties of a measure of
discrimination have been studied and a hierarchical model of
validation of such a measure has been presented [3]. This
model points out the properties required for a given measure
to be considered as a measure of discrimination in order to
be used to rank attributes in the process of construction of a
(fuzzy) decision tree. While the model is based on fuzzy values
of attribute, it was only set for crisp values and class in the
description of a training example. An extension of this model
was proposed to handle also fuzzy values in the description of
the example [5]. However, this extension was set for particular
and very restrictive hypotheses: the definition of the inclusion
of fuzzy sets and the t-norm used for the intersection of fuzzy
sets were very narrowed.

A. Measures of Information for Attribute Ranking

We place ourselves in inductive learning where examples
from a training set E = {e1, ..., eN} are associated with
a description which is a NA-tuple of attribute-value pairs
(Aj , vjl). Each attribute Aj , from A = {A1, ..., ANA

}, can
take a fuzzy, or symbolic value vjl from {vj1, ..., vjmj}. A
value vjl can be associated with a membership function µvjl
from E to [0, 1]. Moreover, a set of classes C = {c1, ..., cK}
is also considered. Each ck is can be associated with a
membership function µck from E to [0, 1]. In the training set,
each description is linked with a particular class ck from C to
make up an example e.

During the construction of a FDT, attributes are ranked
according to their discriminating power related to the class C.
The attribute with the better discriminating power is selected
to make up a node in the tree. The discriminating power
H(C|Aj) of attribute Aj with regard to C is valued by
means of a measure of discrimination H . In the following the
three main measures of discrimination used to construct fuzzy
decision trees are presented: the entropy of fuzzy events HE ,
the fuzzy index of Gini HG, and the measure of ambiguity
HY .

1) Entropy of fuzzy events: The discriminating power
HE(C|Aj) is valued by means of the entropy of fuzzy events
which is an extension of the Shannon entropy to fuzzy events.
HE(C|Aj) can be written [6]:

HE(C|Aj) =

mj∑
l=1

p∗(vl) ·GE(vl),

with

GE(vl) = −
K∑
k=1

p∗(ck|vl) log p∗(ck|vl). (1)

with p∗(a|b) = p∗(a∩b)
p∗(a) . The conditional probability p∗(a|b)

of fuzzy events a and b has been defined by [18] with, for all
x ∈ X , µa∩b(x) = µa(x) · µb(x).

2) Fuzzy Index of Gini: An index of diversity has been
introduced by Gini in statistical inference and by Simpson in
biology [25]. Its use in the construction of decision trees has
been mentioned in [1]. In recent literature, a use of the fuzzy
extension of this index to construct fuzzy decision trees can
be found in [24]. The fuzzy index of Gini HG(C|Aj) can be
written as follows:

HG(C|Aj) =

mj∑
l=1

p∗(vl) ·GG(vl), (2)

with GG(vl) = 1−
∑K
k=1 p

∗(ck|vl)2.
3) Measure of ambiguity: The measure of ambiguity

HY (C|Aj) was introduced by [19] to measure the discriminat-
ing power of attributes for the construction of a fuzzy decision
tree. It is defined as:

HY (C|Aj) =

mj∑
l=1

w(vl) ·GY (vl) (3)

with

w(vl) =
M(vl)∑mj

l=1M(vl)

where M is the sigma-count [18]: M(vl) =
∑
x∈X µvl(x).

It has been prove that this measure can be rewritten by
means of the probability of fuzzy events [6], and thus, Equa-
tion (3) can be rewritten:

HY (C|Aj) =

mj∑
l=1

p∗(vl) ·GY (vl).



In [19], it is considered that GY (vl) = g(Π(C|vl)) where g
is a non-specificity measure, and Π(C|vl) = {π(ck|vl), k =
1, ..,K} is the possibility distribution of ck related to value
vl of attribute Aj . Π(C|vl) is determined as follows. Each
π(ck|vl) is defined from a fuzzy subsethood measure S as:

π(ck|vl) =
S(vl, ck)

max
i=1,..,K

S(vl, ci)

where the fuzzy subsethood S of value w related to value v
is defined as:

S(w, v) =

∑
x∈X

µw∩v(x)∑
x∈X

µw(x)
.

We denote hereafter π(ck|vl) simply πk. It has been prove that
this function can be rewritten [6]:

GY (vl) =

K∑
i=2

p∗(cρ(i)|vl)
p∗(cl+|vl)

log(1 +
1

i− 1
)

with cl+ the majority class, ie. cl+ = argmaxciS(vl, ci) and ρ
is a permutation such that for all i = 1, ..,K, π∗i ≥ π∗i+1, with
π∗i = πρ(i).

B. A comparison of these measures

The presentation of these measures highlights the similari-
ties that exists among them. First of all, it is easy to see that
these three measures are all based on the same aggregation of
a specific function G that differentiates them. We have:

H(C|Aj) =

mj∑
l=1

p∗(vl) ·G(vl).

Afterwards, we can assume that for each value vl, a ranking
of the classes is done. We denote cl1, cl2,. . . clK , the classes
such that for all i = 1, ..,K, p∗(cli|vl) ≥ p∗(cli+1|vl). This
assumption has no effect for the entropy of fuzzy event or for
the fuzzy index of Gini, but it simplifies the notation for the
measure of ambiguity and it enables us to rewrite the three
measures:
• The entropy of fuzzy events:

GE(vl) = −
K∑
k=1

p∗(clk|vl) log p∗(clk|vl)

• The fuzzy index of Gini:

GG(vl) = 1−
K∑
k=1

p∗(clk|vl)2

• The measure of ambiguity:

GY (vl) =

K∑
i=2

p∗(clk|vl)
p∗(cl1|vl)

log(1 +
1

i− 1
)

Let xl = p∗(vl), l = 1, . . . ,m, and ylk = p∗(clk|vl), k =
1, ..,K. We also consider that the following properties hold:

• for all l = 1, . . . ,m, xl ∈]0, 1] and
∑m
l=1 xl = 1.

• for all l = 1, . . . ,m, for all k = 1, ..,K, ylk ∈ [0, 1],∑K
k=1 ylk = 1, and yl1 ≥ yl2 ≥ . . . ≥ ylK .

In the following, we denote X = (x1, . . . , xm), Yl =
(yl1, . . . , ylK), and Y = (Y1, . . . , Ym). Under these assump-
tions, we can rewrite the three measures as functions from
[0, 1]m×m×K to [0, 1] where m is the number of values of
the attribute and K is the number of classes. (for the sake of
simplicity, we denote m rather than mj the number of values
of attribute Aj):
• the entropy of fuzzy events HE(C|Aj) can be rewritten:

fE(X,Y ) = −
m∑
l=1

xl

K∑
k=1

ylk log ylk,

• the fuzzy index of Gini HG(C|Aj) can be rewritten:

fG(X,Y ) = 1−
m∑
l=1

xl

K∑
k=1

y2lk,

• the measure of ambiguity HY (C|Aj) can be rewritten:

fY (X,Y ) =
m∑
l=1

xl

K∑
k=2

ylk
yl1

log(1 +
1

k − 1
).

A more deeper study that compares these measures can be
found in [4].

III. GRADUALITY AND INFORMATION

As seen in the previous section, there exists various discrim-
ination measures to select attributes during the construction of
the fuzzy decision trees. However, if these measures tackle
perfectly the information brought out by an attribute with
regards to the class, they are always independent of the
distribution of the examples.

A. Illustrative examples

For instance, in Table I and Table II, some illustrative
examples of the independence of the measure with regards
to the graduality of the values are shown. Let Ai, i = 1, . . . , 4
be attributes with 4 ordered values vil, l = 1, . . . , 4 such that
vil ≤ vij for all l ≤ j. Let C be the class to recognize
with 4 values ck, k = 1, . . . , 4 such that ck ≤ ck+1 for all
k = 1, . . . , 3.

Considering attributes A1 and A2 given in Table I, we
have HE(C|A1) = HE(C|A2) = 0. However, looking at the
distribution of the examples (10 examples from the training
set have the value v11 for A1 and the value c1 for C, and so
on...), a graduality could be highlighted for the values of A1

with regards to C: the greater is A1, the greater is C.
Considering attributes A3 and A4 given in Table II, we have

HE(C|A3) = HE(C|A4) = 0.588. Here again, looking at the
distribution of the examples a graduality could be highlighted:
the greater is A3, the greater is C.

In that last case, the graduality is more predominant for
attribute A1 than for attribute A3 due to the loss of discrimi-
nation power if that attribute, but this graduality do exist.



TABLE I
NULL ENTROPY AND GRADUALITY (LEFT) OR NO GRADUALITY (RIGHT)

A1 v11 v12 v13 v14
c1 10 0 0 0
c2 0 10 0 0
c3 0 0 10 0
c4 0 0 0 10

A2 v21 v22 v23 v24
c1 0 0 10 0
c2 10 0 0 0
c3 0 0 0 10
c4 0 10 0 0

TABLE II
SAME ENTROPY AND GRADUALITY (LEFT) OR NO GRADUALITY (RIGHT)

A3 v31 v32 v33 v34
c1 7 3 0 0
c2 2 6 0 2
c3 1 0 7 2
c4 0 1 3 6

A4 v41 v42 v43 v44
c1 0 7 0 3
c2 0 2 2 6
c3 7 1 2 0
c4 3 0 6 1

Such consideration can be done with the two other mea-
sures of discrimination, the Gini index and the measure of
ambiguity.

Our aim is thus to introduce a measure to enable the
selection of attribute gradually linked to the class. For instance,
here, we would prefer attribute A1 to attribute A2, and we
would prefer attribute A3 to attribute A4, as attributes that
should appear in the node of the built fuzzy decision tree.

It is important to note here that the choice of the attribute
can not be only solved by means of a order comparison
measure as, for instance, the Spearman’s rank or the Kendall’s
rank correlation coefficients. The main reasons are on one
hand, the fact these correlation coefficients measures only the
distribution of the values and are not able to take into account
the information power associated with the values. On the other
hand, the complexity of their valuation could be seen as too
expensive in a data mining process (the complexity of their use
in the process of construction of a fuzzy decision tree could
not often be afforded).

Moreover, the use of two different measures (one for the
discriminative power, and the other one for the graduality
detection) could generally be not convenient because an aggre-
gation problem could arise here: how to aggregate the values
of such two measures in order to rank the attributes and enable
us to select one?

B. A new measure to value graduality and information

An alternative solution we propose in this paper is to
construct a single measure that could combine discrimination
and graduality measurements.

As explained in the previous section, the discrimination
power of attribute Ai is measured thanks to the conditional
probability p∗(ck|vil) of each of its value vil. The graduality
of the values of Ai with regards to C could be also valued by
taking into account the relation between all the values p∗(c|v)
of the class and of the attribute. The main linked attribute Ai
and class C will have a distribution of their values such that
p∗(ck|vik) will be optimal and p∗(ck|vil), for k 6= l, will be
non optimal.

In order to value that, we propose to use an adapted measure
of ambiguity. In spite of taking into account the p∗(ck|vik)
values to value HG(C|Ai) after ordering them, that will
produce the information of their ranking with regards to both
the values of C and pf Ai, we propose to keep the order of
that conditional values.

Moreover, as we need to penalize a non gradual order of the
distribution of the values, we propose to introduce the value
of k − j in the valuation of the discrimination power.

Let HO(C|Ai) be the measure:

HO(C|Ai) =

mi∑
l=1

p∗(vl) ·GO(vl),

with

GO(vl) =
K∑
k=1

p∗(ck|vl)
p∗(c+|vl)

log(1 +
1

max(mi,K)− |k − l|
).

with p∗(c+|vl) = maxk=1,...,K p
∗(ck|vl).

By means of HO(C|Ai), the measure of the discrimination
power of Ai with regards to C will take into account a gradual
order between the values of Ai and those of C.

For instance, with the examples given in Table I and
Table II, we have HO(C|A1) = 0.097, HO(C|A2) = 0.15,
HO(C|A3) = 0.173, and HO(C|A4) = 0.254. Here we can
see that the measure HO favors not only attribute with a good
discrimination power but also attributes with a high gradual
relation with the class. For instance, A1 will be preferred to
A2 clearly, and A3 will be preferred to A4.

IV. GRADUALITY FOR MEDICAL DIAGNOSIS

A. Assessing asthma severity

We describe here a data mining application for assessing
asthma severity. This work has been conducted jointly with
the physician Dr. Alain Lurie1 and more details can be found
in [26].

1) Study on observance: The aim of this study has been
to identify variables and decision pathways patients use to
determine the severity of their asthma (perceived severity of
the asthma). Thus, the identified variables were compared to
those involved in the assessment of asthma severity according
to the National Asthma Education and Prevention Program
(NAEPP) Guidelines (objective severity of the asthma).

The database is composed of a set of 113 outpatients (51
men, 62 women), with a percentage of patients with mild
intermittent (6.2), mild persistent (15.9), moderate (65.5) and
severe (12.4) asthma.

A questionnaire was filled by each patient. It is composed of
several information, including the patients’ sociodemographic
characteristics and their asthma characteristics. For the latter,
two parts are to be distinguished, respectively assessed by
the patients and by the doctors: the patients had to assess
their perceived asthma severity (rated as mild intermittent,

1Service de Pneumologie, Hpital Cochin, Assistance Publique-Hpitaux de
Paris, 27 rue du Faubourg Saint-Jacques, F75679 Paris Cedex 14, France.



mild persistent, moderate or severe), the response to treatment
(perceived treatment efficacy), the quality of their life, valued
by means of the asthma-related quality of life questionnaire
(AQLQ), and the rating of its medical adherence by the
patients.

The doctor part concerned the objective asthma severity
(also rated as mild intermittent, mild persistent, moderate or
severe) derived from medical criteria and the valuation of
the respiratory functions. All these variables were pooled,
and considered as potential variables patients might use to
determine the perceived severity of their asthma.

In order to analyze the relationships between the features
and the perceived severity of the asthma, a fuzzy decision tree
was constructed and enables to highlight variables and decision
pathways patients use to determine themselves the severity of
their asthma.

In this Medical application, as often in such kind of applica-
tion, the main aim is to characterize relationships between the
features and the class with regards to the patients’ perception.
The values of the class are symbolic and ordered: from mild
intermittent to severe asthma. Thus, in this kind of application,
it will be valuable to discover gradual relations between
attributes and class in order to offer a more understandable set
of rules that will help the Physician to consider the diagnosis
proposed by the fuzzy decision tree.

2) Experiment: In order to study the proposed measure, a
cross validation has been done on this medical data set.

The set of 113 patients has been split 10 times by selecting
75% of patients (86 patients) to set a training set, and the other
25% of patients (27 patients) to set a test set. Each patient is
described by means of 94 attributes (age, AQLQ answers, and
so on.). The class associated with each patient is the valuation
of the severity of the asthma expressed by the physician, and
ranges gradually from 1 (mild) to 4 (severe). The main aim
here is to study the attributes involved in the decision.

We compare 3 measures to select attributes during the
construction of the fuzzy decision tree: entropy of fuzzy events
(HE), Yuan and Shaw’s measure (HY ), and the measure we
proposed (HO). The results presented here are only provided
to compare the HO to other fuzzy measures used to construct
fuzzy decision trees.

TABLE III
COMPARISON OF MEASURES

Measure Accuracy (avg.) Max. depth (avg.) Avg. Depth (avg.)
HE 0.833 ±0.07 5.9 ±1.1 3.9 ±0.27
HY 0.833 ±0.07 5 ±0 3.84 ±0.14
HO 0.837 ±0.10 5 ±0.66 3.81 ±0.23

Results are presented in Table III. In this table, we present
the average accuracy values obtained from the 10 fuzzy deci-
sion trees (FDT) constructed as explained on the 10 random
training samples, and the corresponding standard deviation.
Moreover, we present the average depth of the constructed
FDT (in number of nodes on pathes from the root to leaves)
that is a measure of the complexity of the trees (the smaller,
the better).

It can be seen that the accuracy of the trees is very high.
The FDT constructed by means of the HO measure have a
good accuracy and outperform slightly the FDT constructed
by other measures but with a higher standard deviation that
highlight a lower robustness.

Concerning the size of the obtained FDT, if the FDT
constructed by means of the HO measure are, in average,
smaller that those constructed by means of the other measures.
As a consequence, they have a better complexity in depth (e.g.
reduced number of nodes) than the FDT constructed by means
of other measures.

Thus, to summarize, the HO measure brings out a good
performance both in accuracy and in complexity, with regards
to those constructed by means of the two other well-known
measures.

B. Cardio-vascular diseases

In such applications, the main aim is to build predictions
that should help medical scientists to detect and prevent cardio-
vascular diseases for hypertensive patients.

For instance, the INDANA (INdividual Data ANalysis of
Antihypertensive intervention) database [27] has been used by
several teams for such application. Thus, in [28], this database
was used to study cardio-vascular risks for patients.

For each patient, a set of classical features was combined
with a set of medical measurements on several years and lead
to the conclusion for this patient (death or not). The particular
database used for this experiment was composed of 20 features
(ident, sex, age, height, weight, medical measures, and the
class either death or not) for 2230 patients. These features
were measured during a long period of time and the class
associated to each patient indicated if the patient died or not
during the period. In this set, 107 patient died of a cardio-
vascular disease during the period, and 2123 were alive at the
end of the period.

As in the previous Medical application, here, the detection
and the highlight of gradual relations between attributes and
the class will be of great benefit. For instance, inferring rules
such that the more cigarettes smoked, the higher the cardio-
vascular diseases risk could bring a lot of information in order
to understand better the relation between the attributes and the
class.

V. CONCLUSION

In this paper, we have proposed a new measure, extended
from the measure of classification ambiguity, to take into
account both discrimination power and graduality with regards
to the class.

In future work, the proposed measure will be used to
construct fuzzy decision trees for Medical applications in order
to highlight and to discover gradual links between descriptive
attributes and the diagnosis class. Moreover, a deeper study of
the properties of that measure will be conducted by means of
the hierarchical model of measures of discrimination [6], [4],
in order to ensure their good properties to be used in a fuzzy
decision tree construction process.
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