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Abstract— Photovoltaic solar panels are effective energy sources 
during periods of bright sunlight. Excess energy can be stored for 
later use at night or on cloudy days.  The decision to use the 
stored energy now or later depends largely on being able to 
predict the weather on different timescales.  Short term 
prediction of stored energy is challenging due to the non-trivial I-
V characteristic of the solar cell. The erratic nature of the 
weather makes long term predictive energy management 
difficult. In this paper, we address these issues based on data 
collected from a solar panel, as well as its relationship to 
observations made of the weather. We observe that prediction, 
based on fuzzy decision trees, reduces the energy error by 22% 
compared to a constant prediction equal to the average on the 
studied period. Thus, exploiting the fuzzy classification provided 
by a fuzzy decision tree is a good improvement compared to the 
baseline. 

Keywords: solar energy; photovoltaic; power utilization 
planning; weather; energy prediction; fuzzy decision trees. 

I.  INTRODUCTION 
The availability of solar energy is not guaranteed at any 

particular place or time: it depends, of course, on time-of-day, 
but also on the weather conditions that prevail and that 
prevailed recently. Since meteorological agencies provide 
detailed weather forecasts round-the-clock, we should be able 
to use their predictions to our advantage in planning activities 
that require solar energy. Three interesting questions are 
apparent: (1) given the standard weather forecasts available 
today, can we reliably predict the energy we will be able to 
capture tomorrow? (2) given our own measured actual 
insolation and other local weather conditions right now, to 
what extent can we make that prediction? and (3) what is the 
optimal approach to fusion of these two prediction sources? 
The answers to these questions are not only of academic 
interest but also of crucial practical importance [6]. 
Contemporary solar panels are series-arrays of silicon 
photovoltaic cells that are essentially large-area silicon pn-
junctions. Incident optical photons promote electrons from the 
valence to the conduction band. The band-gap voltage across 
the junction capacitance thus has the potential to drive DC 
current through an external load. The cell's open-circuit voltage 
is essentially the band-gap. Its short-circuit current depends - 
not necessarily simply - on the incident optical power. Their 
ratio is the internal impedance to which an external load must 
be matched to achieve maximum energy transfer to the load. 

Optimally extracting short-term power and long-term 
energy is thus a complicated business that requires active real-
time control intelligently based on knowledge of present 
requirements and an ability to predict and plan for future 
requirements [7], [8]. 

Presenting how a fuzzy prediction method, and in particular 
the Fuzzy Decision Trees (FDTs) can improve energy 
prediction accuracy, prediction is this paper's main goal. We 
have chosen, for this early attempt in estimating the energy 
gain on real conditions, to use FDTs, in contrast to other 
approaches such as neuronal networks or other regression 
techniques, because FDTs produce human understandable rules 
that will allow us, in the future, to improve the system. In fact, 
not only relevant variables are automatically indentified, but 
also their interaction is identified. Moreover FDTs have the 
advantage to be able to handle simultaneously symbolic (here 
weather classes such as cloudy, sunny, thunderstorm) and 
numerical ones (such as temperature). 

In order to achieve real conditions we used a standard solar 
panel for home use, described in Section II. We placed the 
panel in real conditions and collected I-V data with a dedicated 
electronic apparatus and weather conditions and forecast from 
the national service over the Internet, as presented in Section 
III. In the following section we briefly present the Fuzzy 
Decision Trees and how training and testing was performed. 
Section V and VI are dedicated, respectively, to data and 
results analysis. 

II. SOLAR PANELS 
Solar cells are connected in series to build solar modules or 

panels. Panels generally consist of 28 to 36 cells in series to 
produce 12VDC under defined illumination conditions. An 
ideal solar panel current-voltage (I-V) curve is shown in Figure 
1.1. For any real panel there is a continuous family of these 
curves wherein open-circuit voltage increases with illumination 
level and current-droop increases with decreasing illumination. 
Thus optimum transfer of solar power to an external load 
requires matching the load impedance to the illumination level. 
Figure 1.2 shows a family of I-V curves for our solar panel 
collected during 5-hour period when insolation was changing. 
Notice especially the variations in curve scale and shape, and, 
based on the teaching of Figure 1.1, the consequent variation of 
available power and optimum load to extract it. 
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Figure 1.1: Ideal solar power panel. Isc is the short circuit current (when 
load resistance RL=0) and VOC is the open circuit voltage (when RL = ∞). 
The black curve is the I-V characteristic, the gray curve is the power 
available to an external load (the IV product), and the dashed-blue load 
line finds the operating point (V,I) - marked by the red cross - at which the 
load will extract maximum possible power from the panel. 
 

A. Getting the maximum power out of a panel (MPPT) 
Consider a system where the load is connected directly 

across the solar panel. Its maximum power point (MPP) is the 
point on the I-V curve where the area under the curve is 
maximum, as shown in Figure 1.1. For optimal simplicity and 
efficiency one should choose a solar panel that perfectly 
matches the intended load. But this is not possible: the I-V 
curve - hence the MPP - changes with illumination. It also 
changes with panel temperature, which also depends in part on 
illumination. Active measuring and switching power 
converters, called maximum power point trackers (MPPT), can 
switch the load so as to keep the operating point at the MPP. 
Several solutions, in particular based on fuzzy control, have 
been proposed [11] and are still under investigation [9]. A 
complete comparison can be found in [10].  

On the one hand this is simple, on the other hand it is 
daunting. If all we want to do is, say, toast bread, then it is easy 
enough to switch the resistance of the heating element; the 
toasting time changes with illumination level, but within 
reasonable limits we still make toast. But for the vast majority 
of practical loads - "appliances" - it is impossible to flexibly 
and efficiently trade off voltage rating and current demand. We 
thus anticipate a critical near-future demand for active power 
converters that will accommodate a plausible range of 
fluctuating DC input voltages and deliver stable standard DC or 
AC output voltages without incurring unacceptable losses [12]. 
Note that the control algorithm required for MPPT is non-
trivial. The MPP is not known a priori, and it moves with 
variations in illumination and temperature. In practice perturb-
and-observe (P&O) algorithms are employed [10], despite the 
objection-in-principle that when the system is actually 
optimized any perturbation is guaranteed to reduce efficiency. 

Clearly the scale of the integral term in the control algorithm is 
crucial, and should itself be dynamic, as the system needs on 
the one hand to respond rapidly to fast changes in illumination 
level, e.g., passing clouds, and on the other hand it must not 
spend too much efficiency hunting when conditions are 
changing only slowly, e.g., on cloudless days. 

 

 
Figure 1.2: I-V of our solar panel at four times on a typical day. Load 
resistors between 5 and 155 ohms in 5 ohm steps are switched in random 
order across the panel, voltage across the load is measured and current is 
calculated from voltage and resistance. Open-circuit voltage is also 
measured and recorded as the zero-current value. A diagrammatic 
representation of the setup is shown and explained in Figure 3.1. 

 

III. SOLAR ENERGY UNDER REAL WEATHER CONDITIONS 
The National Renewable Energy Laboratory recommends 

that solar panels be characterized under standard test conditions 
(STC): temperature 25 C and illumination 1000 W/m2 (1.0 sun) 
with an air mass 1.5 (AM1.5) filtered solar spectrum. The idea 
is to match the illumination and spectrum of sunlight incident 
on a clear day on a sun-facing 37°-tilted surface with the sun at 
an angle of 41.81° above the horizon. This condition - with the 
panel aimed directly at the sun - geometrically approximates 
solar noon near the spring and autumn equinoxes in the 
continental United States. However insolation at the earth's 
surface is rarely as large as the prescribed 1000 W/m2. And, as 
already noted, to realistically study electrical energy generation 
under realistic weather conditions, realistic fluctuations in 
lighting and temperature must be observed. Note also that a 
panel that is optimal in the NREL environment is almost 
certainly suboptimal in any natural environment. So to study 
solar energy production with practical goals under natural 
weather conditions it is advisable to combine the solar panel 
with an MPPT. But there are many such commercial devices, 
each one running some undisclosed proprietary algorithm, none 
of them arguably best or even in any sense standard. Thus we 
elect to organize our measurements in a way that allows us to 
simulate an ideal MPPT algorithm – that is collect all possible 
data first and compute after the fact the real optimal point.  

 



 
Figure 3.1: Hardware diagram.  From left to right, solar panel, serial load resistor array in series with disconnect-relay (to measure panel's open-circuit 
voltage), transistor-buffered resistor-shorting relays, voltage divider, Arduino (performing analog voltage input measurement and controlling load-re istor-
shorting relays) 

.

 

A. Instrumentation 
We studied the response of our solar panel - approximately 

32 cm x 60 cm, so approximately 0.19 m2 - using a simple 
single-board data acquisition system in communication with a 
dedicated laptop computer that is in turn in communication 
with the internet. Our panel is an off-the-shelf unit mounted at 
a tilt-angle of approximately 40o outside an approximately 
south-facing window with a reasonably clear view of the sun's 
path most of the day, most of the year. The panel's pointing and 
tilting are probably never perfectly optimal, but are a good 
compromise that receives better-than-average solar radiation 
throughout the year. Data acquisition and control are provided 
by an Arduino Duemilanouve (2009) [3], a low-cost easy-to-
program open-design board that provides convenient access to 
the ATMega168 microcontroller's digital I/O, 10-bit analog 
input, PWM output, and serial communication pins. A program 
written in a C-like language using a simple API on a PC is 
more-or-less invisibly compiled and downloaded via a USB 
channel on which data are subsequently also returned. Digital 
output pins are transistor-buffered and diode-protected to safely 
switch the coils of relays that short-out a series-array of {5, 10, 
20, 40, 80} ohm power resistors to provide 5 to 155 ohm load 
in 5 ohm steps - plus open-circuit - across the solar panel. A 
measurement sequence is initiated and recorded every 10 
minutes. Independently but also every 10 minutes, a USB 
webcam captures a sky picture. The data files and sky pictures 
are stored "in the cloud" using Dropbox [2]. As a practical 
matter, the ATMega168's ADC's rudimentary analog input 
circuitry and 10-bit resolution do not provide precise or 
accurate measurements. But they do appear to be stable, which 
is all that is really required for the present experiments, 
wherein we are interested primarily in reaching qualitative 

conclusions. Of course, since the measurements do seem to be 
stable, after-the-fact calibration can be undertaken if 
subsequently it seems valuable. 

B. Weather Forecast 
The solar panel and its Arduino-plus-Windows-laptop 

based monitoring system are located at an off-campus location, 
which is secure and has a good south-looking view with a large 
open-sky solid-angle. On campus another Windows PC that has 
reliable access to the Internet periodically downloads present 
and predicted weather information from the National Oceanic 
and Atmospheric Administration (NOAA) through the Yahoo! 
Weather RSS Feed [1], in the form of XML files. Since, 
weather conditions tend to vary slowly, we recorded the 
weather conditions every hour, every day. In order to be able to 
match forecast with current condition, we used the 48 standard 
categories provided by the weather service. To minimize the 
prediction error, we choose here to use the forecast just before 
sunrise. Other more complicated methods could take into 
account the evolution or tendency of the forecast. 

C. Data aggregation 
The question of how to aggregate the data may seem simple 

at first sight, but it is in fact extremely complex. We choose to 
work on a one-full-day basis, because it provides a natural, 
regular cycle. Further works could deal with energy prediction 
with a shorter or a longer time horizon. Hence to compute the 
energy produced by the panel over one day we need to start 
from the power measurement obtained every 10 minutes. Our 
first step consists of choosing from each of these series the 
maximum power. In this way we simulate an ideal MPPT. 
Then under the assumption that everything remains equal for 
the following ten minutes we integrate over the whole day to 
obtain the total energy produced. The assumption introduces an 



error for quickly changing conditions (as for instance a sunny 
day with some clouds). In fact, the measurement could have 
been done when the cloud is just over the panel. We believe 
that the introduced error averages out because of the frequency 
and the uniform nature of the sampling. In fact, if there are a lot 
of clouds, more often than not the measurement will be done 
under reduced illumination approximately proportional to the 
average coverage. Since weather conditions fluctuate during 
the day, to obtain a global “for the day” weather classification, 
we choose to aggregate by majority vote all the classifications 
of the National Weather Service reported during the daylight 
hours of that day. In other words, we choose to label the day 
based on the most frequent NWS classification; and we focus 
our attention only on the hours when there should be light 
(between sunrise and sunset). So, if it rains for only one hour 
during the day and it was, for the rest, a sunny day, it is labeled 
as a sunny day (notice that this is not the case for weather 
services). Although the solar panel data, the sky pictures, and 
the downloaded weather data are not perfectly synchronized, 
for the purpose and nature of the experiments described their 
imprecise - and occasionally inconsistent - alignment is 
inconsequential. 

IV. ENERGY AND WEATHER PREDICTION 
Based on the data described above the challenge is to 

predict, before the sun rises, the energy that we will by 
produced during that day. All methods can be grouped in two 
large families: The direct ones, where the energy value is 
computed by a “black-box” algorithm (usually regression like, 
as for instance Neuronal Networks [7] [8]) and the indirect 
ones, where first a weather class is predicted and based on it an 
average electricity is predicted. 

In this paper, we choose to explore the performance of the 
latter. This approach allows using the power of the national 
weather forecast services, without any further modifications, to 
predict the energy. The general formulation has the advantage 
of opening the range of possible algorithms that can be used. In 
particular, we choose here to use Fuzzy Decision Trees, which 
are not only able to deal with symbolic and numerical classes 
simultaneously, but also provide an explanation to the 
prediction. 

A. Fuzzy Decision Trees 
 Fuzzy decision trees (FDTs) are an extension of classical 

decision trees. They have been introduced in Machine learning 
to handle training sets that contains numerical and/or fuzzy 
values [13] [14] [15]. Moreover, such trees introduced a soft 
classification of examples that leads to a smoother decision. 
Thus, degrees of decision and degrees of membership to 
classes are provided as a result of a classification by means of 
the FDTs. 

The construction of a FDT from a training set T = {e1,...,en} 
is based on the well-known ID3 [16] or the CART algorithms 
[17]. A fuzzy decision tree is made up from its root to its leaves 
by sequentially partitioning T into subsets. Each partition is 
obtained from a comparison on the values of a selected 
attribute. This comparison made up a node of the tree. 

Let each example ei from T described by means of a set of 
values for attributes A = {A1, ... , Am}. Where each attribute Aj 

can take a fuzzy, numerical, or symbolic value vjl in the set 
{vj1,..., vjm}. An example's description is a m-tuple of attribute 
value pairs (Aj, vjl). Each description is associated to a class ck 
from C = {c1,..., cK} to make up the training example ei. A 
fuzzy value vjl is associated with a membership function µvjl 
from T that associated to each ei of T the degree of having the 
value vjl. Similarly, each ck is supposed to be associated with a 
membership function µck. 

At each step of the construction of the FDT, an attribute is 
selected by means of a measure of discrimination, for instance, 
the well-known Shannon entropy from Information theory [16], 
[17], that orders the attributes according to their increasing 
correlation to the C in the local training subset. The 
discrimination power of each attribute is valued with regard to 
the classes [18]. The attribute with the highest discriminating 
power is selected to construct a node. Well-known fuzzy 
measures of discrimination are the fuzzy entropy (that is an 
extension of the Shannon entropy to fuzzy events) [15], and the 
measure of ambiguity [13]. A new measure, the gradual 
discrimination measure, has been introduced in [19]. This 
measure is interesting in our case because it values the 
discrimination power of the values of an attribute with regards 
of the values of the class and takes into account a monotonic 
relation between these values if there exists (see [19] for a full 
explanation on that measure). 

The aim of a FDT is to classify any forthcoming example, 
not necessarily present in T. To classify an example e, paths in 
the FDT are followed from the root to leaves of the tree, 
according to the values of the attributes of the description of e. 
At each node of a path, a membership degree for e is valued 
depending on the value of e for the attribute presents in the 
node and the fuzzy values that label vertices going out that 
node. On a path, all the membership degrees valued from the 
root to the leaf are aggregated thanks to a conjunctive operator 
(typically, a t-norm). The membership degrees for e obtained 
for the whole leaves of the FDT are aggregated thanks to a 
disjunctive operator (typically, a t-conorm). That leads to value 
a membership degree for e to belong to each class c according 
to the FDT. Various pairs of t-norms and t-conorms can be 
used to aggregate the membership degrees. The most classical 
ones are the Zadeh’s operators (minimum, maximum), or the 
Lukasiewicz operators. More details can be found in [15]. A 
FDT can also be used as a crisp decision tree: the alpha-cuts of 
level 0.5 of each fuzzy membership functions are used to 
replace the fuzzy sets. Such crisp use of a FDT enables the tree 
to produce a single class, non fuzzy, as result of classification 
of an example. 

 

B. Baseline prediction 
In order to measure the improvement obtained by our 

method, we need to define a distance measure and a baseline. 
To assess the extent to which we can predict the energy 
production of a solar panel, we calculate the average of the 
absolute values of the differences between the predicted energy 
and the observed energy for the proposed models.  

To enrich the analysis we propose three baselines: 



• Constant average prediction: we assume that the 
average energy for a region and for a period of time 
can be perfectly predicted, but is constant for all 
period. To achieve this we compute, after the fact, the 
average energy observed during the whole period. 
Notice that this is an ideal point that cannot be 
achieved, in real predictions conditions. Any constant 
prediction will augment the proposed energy distance. 

• Energy tomorrow equals the one produced of today: 
this is a standard method used for time series and in 
particular in weather forecast prediction. 

• Pure weather forecast based prediction: we propose to 
use the weather forecast as the predicted energy class. 
This approach corresponds to the natural way we 
would address the problem: “If today is going to be 
sunny and on a sunny day we produce on average 
energy E then today we should observe energy E.” 

TABLE I.  ENERGY BASED ON OBSERVED CURRENT CONDITIONS 

Majority Weather 
April - July 2010 

Nr of Days Watt-hr Std 
Deviation 

Fair (day) 38 449.6 119.4 

Partly cloudy (day) 12 396.9 136.3 

Mostly cloudy (day) 8 261.6 114.8 

Cloudy 14 149.1 96.2 

Showers 5 70.2 122.6 

Globally 77 342.6  

V. DATA ANALYSIS  
Between end of April and beginning of July 2010, we 

collected data for 77 successive days. The average energy 
produced per day was 342 watt-hour with standard deviation 
178 W-h. Table I shows that roughly half the days are “fair” 
and half are “cloudy” or “rainy”. As expected, “fair” days tend 
to produce more energy than “partly cloudy”, which are better 
than “mostly cloudy”, “cloudy”, and “shower” days in that 
order. This conformity of semantic and energetic descriptions 
gives us confidence that our model, and in particular the 
majority aggregation process, are suitable. The variability of 
the daily energy production is rather large, but more or less 
constant for each category. 

The accuracy of the weather prediction for the studied 
period, using the standard set of categories, was of 60% (of 
correct prediction at sunrise for the day). This surprisingly 
small proportion can be explained by two phenomena: aversion 
to risk in the prediction and mismatch of categories. In Table 
II, which shows the number of forecast weather conditions, we 
can observe a shift towards an increased number of rainy days 
(predictions). We observed 5 “shower” days, but 37 “showers” 
or “thunderstorms” predictions. This discrepancy may come 
from the aversion to risk of the weather forecaster. In fact, if it 
should rain for only an hour in day the weather forecast will be 
“rainy day”. But our majority observation, suitable for the 
energy prediction, would be sunny day, with consequent 
category mismatch. Moreover, by comparing labels on Table I 

and 2, we notice that the number and labeling of categories 
differs in the two sets, thus more-or-less guaranteeing 
mismatches. Labels appearing in the forecast do not appear in 
the current weather observations. For instance there are no 
“cloudy” predictions and no “sunny” forecasts. This reveals an 
even more profound and structural problem: class boundaries 
are fuzzy. In fact, if we predict “mostly cloudy” and we 
observe “partly cloudy” it will be considered a mismatch. New 
weather classes could be created by grouping labels, as for 
instance “cloudy” with “partly cloudy” in an “overcast” class; 
but preliminary work showed that the prediction accuracy does 
not improve, because the descriptions then become too vague 
or arbitrary. 

TABLE II.  ENERGY BASED ON FORECASTED CONDITIONS 

Forecast at Sunrise 
April - July 2010 

Nr of Days Watt-hr Std 
Deviation 

Sunny 12 533.3 54.5 

Fair (day) 10 489.2 82.2 

Partly cloudy (day) 16 381.5 151.5 

Mostly cloudy (day) 2 239 103 

Showers 8 98.8 109.6 
Isolated 
thunderstorms 7 380.3 79.7 

Scattered 
thunderstorms 19 242.8 135.4 

Thunderstorms 3 146.7 134 

Globally 77 342.6 94.4 

 

 

Improved weather forecast based prediction: To increase 
the prediction quality due to what is described above, the total 
mismatches (no sunny day observation) were manually 
matched to the closest class: sunny to fair, any thunderstorms 
type to showers, etc.  

VI. RESULTS 
Table III shows the energy prediction difference. By 

assuming that a solar panel produces more-or-less the same 
(constant prediction, baseline) we observe an average 
discrepancy of 152 W-hr compared with what is really 
observed. If we use the naïve model that assumes that 
tomorrow energy is equal to what was observed today, we 
observe that difference predicted-observed is increased. This 
proves that the energy tends to change rather quickly and that a 
constant assumption is a good baseline not easy to beat.  

If we focus our attention to the improved (with manual 
match of fuzzy classes) method based only on the weather 
forecast, we observe a reduction of 12% with respect to the 
constant average estimation. 

We used the fuzzy decision trees to predict the energy. In 
this approach, we use the Salammbô software [15] to build a 
FDT from the whole dataset. From a training set, the 
Salammbô software provides us with a FDT with fuzzy set 



values that label vertices going from a node associated with a 
numerical attribute. 

Numerical attributes are automatically discretized (as a 
fuzzy partition) by means of the software, at each step of 
selection of an attribute to build a node of the tree. Attributes to 
build nodes of the FDT are selected by means of a 
discrimination measure [18]. In this experiment, we use the 
gradual discrimination measure introduced in [19]. The 
predicted energy class has been discretized in 4 intervals, from 
0 (0 to 180 W-hr) to 3 (greater than 500). The classification of 
an example by means of the FDT provided a set of membership 
degrees to each intervals that define the class. In order to obtain 
the predicted energy of the example, median values of each 
interval weighted by the corresponding membership degrees 
are aggregated to provide a predicted energy. 

The FDT constructed from the whole training set (77 
examples) is composed of 38 paths, with a maximum of 7 
nodes on a path,  and an average number of 5.1 nodes on a 
path. Some instances of paths are: 

• If the majority weather at sunset is mostly cloudy, and if 
the temperature max is lower1 than 20 then the predicted 
energy ranges from 370 to 500 (class 2). 

• If the majority weather at sunset is cloudy or showers, and 
if the temperature min is greater2 than 9 and the weather 
at sunrise is fair then the predicted energy ranges from 
180 to 370 (class 1). 

We recall that a path in a FDT is equivalent to a fuzzy rule: 
premise of the rule is composed of the attribute values that 
pertains to the path, and the conclusion of the rule is the value 
of the class presents in the leaf of the path. 

We investigate the validity of this approach by means of a 
leave one out experiment with the whole collected data set. 
Results are presented in Table III. 

With a crisp use and a crisp output of the FDT, the FDT 
products a single weather class as output. In that case, we can 
observed (column “Crisp”) that the prediction is worse than the 
baseline one.  

The accuracy of energy prediction can be further improved 
by taking into account the fuzzy classification provided by the 
FDT. The use of FDT with either min-max t-norms or 
Lukasiewicz tnorms to aggregate the membership to the 
vertices on paths from the root to the leaves (see [15]) provides 
an important improvement of the prediction. The min-max 
weighting scheme provides excellent results reaching a 33% 
improvement compared to the baseline, with an average energy 
difference of 106 W-hr. Good results are also obtained by 
means of the Lukasiewicz weighting scheme that provides a 
26% improvement compared to the baseline, with an average 
energy difference of 112 W-hr. 

                                                           
1 Lower than 20 is a fuzzy set deduced automatically during the construction 

of the FDT. It is a piecewise linear membership function with a support 
equals to (-∞, 21] and a kernel equals to (-∞, 19]. 

2 Greater than 9 is a fuzzy set deduced automatically during the construction 
of the FDT. It is a piecewise linear membership function with a support 
equals to [7, +∞) and a kernel equals to [11, +∞). 

TABLE III.  AVERAGE ENERGY DIFFERENCE BETWEEN THE DIFFERENT 
PREDICTION MODELS, COMPARED TO BASELINE (BEST CONSTANT PREDICTION) 

 

Prediction Models Comparison 
 Fuzzy Decision Trees 

Best 
Constant 
(baseline) 

Today 
equals 

Tomorrow 

Improved 
Weather 
Forecast 

Crisp  Min-max 
Lukasi-
ewicz 
norms 

Average 
Energy 

Difference 
(watt-hr) 

152 170 134 223 106 112 

Compared 
to baseline -- worse -12% worse -30% -26% 

VII. CONCLUSIONS AND FUTURE WORK 
The use of the weather forecast service allows improving 

the energy production prediction. It not only improves 
compared to any fixed prediction (based on average of other 
studies), but also compared to a naïve sequential approach. 

Since the weather forecast is wrong forty percent of the 
time - based on the predictor's own categories – it is necessary 
either to manually add coherence by realigning the fuzzy 
categories or use a machine learning algorithm (as here the 
fuzzy decision trees) to automatically discover the underlying 
rules. These rules can be used in a second step to setup efficient 
controllers, as for instance fuzzy Takagi Sugeno ones. But it is 
important to point out that without such a study, any controller 
would perform poorly, due to complex relationship existing 
between weather class, weather forecast and energy production. 

One of future works should focus on comparing the 
performance of this approach with other regression algorithms, 
such as neuronal networks – although the problem of the 
symbolic weather classes remain a challenge. The interest will 
be, not only to compare the performance with a dedicated 
blackbox, but also, on addressing the challenge of 
incorporating knowledge in these types of systems, improving 
the overall performance. Another potential possibility is to test 
prediction techniques that include temporal evolution, as for 
example Markov models. Improved prediction models could 
take advantage of available data sources not incorporated into 
this first attempt at analysis, e.g., the recorded images of the 
sky and the locally measured reported temperature: allowing to 
correct national versus local measurement bias. 

Other future work might focus on more complex but more 
practical setups, for instance, sun-tracking panels, integration 
with storage batteries, etc. We believe that sun tracking will not 
dramatically change the conclusions of this work; though of 
course it will improve absolute collection efficiency. Storage 
batteries are obviously advantageous in that they give the 
system designer control over several time scales that are 
otherwise only in nature's hands, but with these additional 
handles comes additional complexity and uncertainty. 
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