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Abstract—Severe hypoglycemia is potentially life-threatening. 

This article introduces a novel hypoglycemia detection strategy 

using a hybrid particle swarm - based fuzzy support vector 

machine (SFisSvm) technique. The inputs of this system are six 

electrocardiographic (ECG) parameters. The system parameters 

of SFisSvm are optimized using a particle swarm optimization 

method. The proposed hypoglycemia detector system is a 

combination of two subsystems, namely, fuzzy inference system 

(FIS) and support vector machine (SVM). Two most significant 

inputs, heart rate and RTpc are fed to FIS, and its output is used 

for input of the SVM. The other ECG parameters and the output 

of FIS are fed to SVM and, then, are classified to indicate the 

presence of hypoglycemia. In this study, three and five 

membership functions are investigated for FIS. Furthermore, 

radial basis function (RBF), sigmoid and linear kernel functions 

are employed for mapping the inputs to high dimensional space 

in SVM. Performances of SFisSvm with different kernel 

functions are compared. As conclusion, the performance of 

SFisSvm is found with 75.19%, 83.71% and 79.33% in terms of 

sensitivity, specificity and geometric mean. 

Keywords-component; hypoglycemia; electrocardiography, 

fuzzy logic; support vector machine. 

I.  INTRODUCTION  

Severe hypoglycemia is a potentially serious problem in life 
which remits significant morbidity and mortality. In correlation 
with cardiovascular conditions, it could cause atrial fibrillation 
[1, 2], ventricular ectopics, sustained ventricular tachycardia, 
ventricular fibrillation and asystole [3]. Hypoglycemia in type 
1 diabetic patients which happens during sleep was associated 
as the cause of the ―dead in bed‖ syndrome  [4]. 

In recent years, hypoglycemia detection methods have been 
interesting fields studied by research groups [5-7]. The 
detection is essentially employed to provide an early warning 
that hypoglycemia is happening, and then patients or their 
carers can perform appropriate actions to achieve 
normoglycemia. These appropriate actions could help patients 
to reduce hypoglycemic complications.  

Based on invasiveness, there are three types of 
hypoglycemia detections, which are invasive, minimally 
invasive and noninvasive [8]. Obviously, the noninvasive type 
is a preferable choice because it is more convenient for patients 
to use this type of detection. Furthermore, noninvasive 
hypoglycemia detections mostly can be used for continuously 
hypoglycemic monitoring. 

One of the interesting methods to detect hypoglycemia 
noninvasively is by means of physiological effects of 
hypoglycemia. In studies, hypoglycemia detection have been 
developed by means of hypoglycemic physiological effects on 
the heart  [6], [9], [10], brain [5], [11], and skin [12]. 

Studies of hypoglycemia detection employed algorithm 
techniques to process ECG parameters to find a high 
performance of hypoglycemia detection. Several algorithms 
have been investigated for hypoglycemia detection; neural 
network [9], [13], fuzzy neural network [14], self-organizing 
fuzzy estimator [15], and genetic-algorithm-based multiple 
regression [6].  

In general, those studies employ methods to reach 
satisfactory level of reliability in hypoglycemia detection using 
ECG parameters. Until recently, to the best of our knowledge, 
hypoglycemia detections using ECG parameters still require 
extensive validation before they can be adopted for worldwide 
clinical practices. Therefore, the presentation of this paper is an 
effort to develop a method to find hypoglycemia detection 
having high performance. The construction method in this 
paper is based on the classification techniques using hybrid 
particle swarm - based fuzzy support vector machine 
(SFisSvm).  

   SVM has proved good performance in general for 
classification in various application [16] including in 
application to classify features of cardiac signals [17-20]. 
Choosing SVM as a classification tool consider to its good 
performance and SVM classification ability to generalize well 
even with small size sample[21].  FIS also has showed good 
performance in many applications, including in medical field 
[22]. 

   Swarm based SVM (SSvm) algorithms have also been 
studied for hypoglycemia detection using ECG parameters 
[23]. The proposed algorithm might improve the performance 
of the SSvm hypoglycemia detection by including fuzzy 
inference system (FIS) in the SSvm, arising SFisSvm.  

This paper proposes a novel hypoglycemia detection 
strategy using hybrid particle swarm - based fuzzy support 
vector machine (SFisSvm). This hypoglycemia detection 
strategy employs six electrocardiographic (ECG) parameters as 
inputs and was constructed by two subsystems, FIS and SVM. 
Two most significant ECG parameters are fed to the FIS, and 
the other ECG inputs are fed directly to the SVM; the two most 
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significant ECG parameters are found from [23], which are the 
ECG parameters resulting the highest performance in 
hypoglycemia detection.  The output of the FIS is also used as 
the input of the SVM; thus, there are five inputs for the SVM 
module. FIS is the famous system employing fuzzy logic and 
fuzzy set theory[24]. Its frameworks are based on the concepts 
of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. 
The advantages of FIS include its ability to handle linguistic 
concepts and universal approximator, performing nonlinear 
relation between inputs and outputs. Thus, by applying FIS to 
the two ECG parameters a hypoglycemic index can be found 
from the two ECG parameters and the index is used for input of 
SVM.       

The parameters of FIS and SVM are optimized using 
hybrid particle swarm optimization with wavelet mutation 
(HPSOWM) [25] which could find the optimal model of 
hypoglycemia detection with the best performance.  
Furthermore, the performances of SFisSvm using different 
kernel functions in hypoglycemia detection are presented; in 
addition these performances are also compared with the 
performance of the SSvm hypoglycemia detection [23].  

The rest of this paper is organized as follows. Section II 
presents the construction of the proposed strategy; by 
describing FIS, SVM and HPSOWM. Section III presents the 
experimental results, and the conclusion for this research is 
drawn in Section IV. 

II. METHOD 

This paper presents hypoglycemia detection strategy by 
employing SFisSvm with inputs or ECG parameters, shown in 
Fig. 1. The ECG parameters used are HR, RTpc, QTc, TpTec, 
ToTec and QTpc (Fig. 2); the output is binary level, which is 
hypoglycemic or nonhypoglycemic level. In this system, 
HPSOWM [25] is used to optimize the parameters of FIS and 
SVM.  

The ECG parameters are extracted form ECG signal (Fig. 
2)). Heart rate is 60/RR in which RR is the interval of the 
consecutive R peaks. The six ECG parameters of HR, RTpc, 
QTc, QTpc involve ventricular depolarization and 
repolarization. TpTec and ToTec involve only repolarization. 
The index of c in the parameters is to indicate that the ECG 
parameters are corrected using Bazett formula.        
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Figure 1.  SFisSvm for hypoglycemia detection with input of ECG parameter 
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Figure 2.  ECG parameters used for the input of the hypoglycemia detection 

A. FIS 

As in the Fig. 1, FIS is used to find the approximating 
function between the two ECG parameters (HR and RTpc) and 

hypo-index . The output FIS  becomes one of the input of 
SVM. 

The first step of FIS is to find the degree of membership 
function for these two ECG parameters. The membership 
function adopts the Gaussian membership function. The 
membership degree of HR can be expressed as 
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k
 are the mean value and the standard deviation of the 

membership functions, respectively. The membership degrees 
of the other input, RTpc, are obtained using by similar way.  

The second step is the mapping between the inputs and 

hypoindex   created by means of the fuzzy if-then rules as in 
the following rule: 

Rule : IF HR(i) is  HR
kN HR( i ) AND RTpc(i) is  cRTp RTpk

cN ( i )  

 THEN  (i) is w, (2) 

  

in which  HR
kN HR( i ) and  pcRT RTk

pcN ( i )  are fuzzy terms of rule 

.  = 1,2,…,nr; nr denotes the number of rules. In the case of 
three membership functions, nr is 9 which is (mf)

p 
; mf (= 3) is 

the number of membership functions, and p (= 2) is the number 
of inputs.   

The third step of FIS is defuzzification, to find the hypo-

index , which uses the following formula  
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(3) 

 

B. SVM 

In Fig. 1, SVM is used to classify five inputs; four ECG 

parameters TpTec, ToTec, QTpc, QTec and  (output of FIS). 
The output of SVM is the hypoglycemic level, which is 
hypoglycemic or non-hypoglycemic state. SVM is a classifier 
that constructs an optimal hyperplane which separates binary 



class data. Let X=(xi,yi) be a set of training data which can be 

linearly separated, where xiR
m
 is an m dimensional space and 

the associated yi[1 1] is class label, i=1,2,…,k, knd is the 
number of data. The optimal hyperplane can be defined by 

wx+b=0, which maximally separates the training data; w is the 
hyperplane perpendicular vector. The training data satisfy 

yi(wx+b)10, in which training data lie in the equality of this 
equation are support vectors. The optimum hyperplane can be 
determined through maximizing distance, referred as margin, 

between two hyperplanes: wx+b = +1 and wx+b = 1. The 

margin between those two hyperplanes is 2/w|. 

For many real world problems, such separating hyperplane 

does not exist. Hence slack variable i is introduced and then 

yi(wx+b)≥1-i. The optimal separating hyperplane is 
determined by minimizing 
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where C is a cost constant that is used to control the tradeoff 
between margin size and error. 

Searching the optimal hyperplane is performed using 
Lagrange multiplier approach through maximizing 
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where i is the Lagrange multiplier. 

In a case of imbalanced distributions between two class 
data, a higher error weight (w0 or w1) need to be given to the 
class with the smallest population [26]. Then (4) is modified by 
minimizing 
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The inner-product in (5) is replaced by a kernel function 
K(xi,xj) to map input data to higher dimensional space so that 
nonlinearly separable data can be linearly classified. In this 
paper, three kernel functions are adopted; 

Radial basis function (RBF),   
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In this paper, C, w0, w1 in (7) and   in (8) and (9) are 
parameters which are optimized using HPSOWM [25]. Finally, 

the class prediction for any test vector xR
N 

is given by 

 ( ) ( ( ) + ),
i i i

f sgn y k , b x x x  (11) 

in which sgn is a signum function; the value of f(x) which is 
greater than 0 is associated with +1 class and the negative one 

is associated with 1 class.   

 

Figure 3.  Pseudo code for HPSOWM 

C. Hybrid particle swarm optimization with wavelet mutation 

SFisSvm parameters are optimized to find the best 
performance of the hypoglycemia detection. The SFisSvm 
parameters are FIS parameters, which are mean value and the 
standard deviation of the membership functions in (1), and 

SVM parameters, which are C, w0, w1 in (7) and   in (8) and 
(9). To optimize the parameters, HPSOWM is investigated. 
HPSOWM performs optimization considering an evolutionary 
technique based on the movement of swarms and inspired by 
the social behavior of bird flocking and fish schooling [27] 
with wavelet mutation.  

The algorithm of HPSOWM can be expressed as in the Fig. 
3. The particles of the swarm Z(t) are initialized and then are 
evaluated by a defined fitness function. The objective of 
HPSOWM is to minimize the fitness function f(Z(t)) of 
particles iteratively.  The swarm evolves from iteration t to t +1 
by repeating the procedures. 

Particles fly through a search space with adjusted velocity 
and position. The velocity is adjusted as 

        1 1 2 21 ( 1)( ) 1p gv t q v t c r z z t c r z z t         (12) 

and 

      1z t z t v t    (13) 

Where zp is the best previous position of a particle, and zg is the 
best particle position among the all particle. r1 and r2 are 

random functions in the range [0 1], and is inertia weight 
factor.  c1 and c2 are acceleration constants. q is a constriction 
factor to ensure the system to be converged but not 
prematurely, which is formulated is in the following:  

 

begin 

         t0                    // iteration number 

         Initialize Z(t)     // Z(t): swarm for iteration t 

         Evaluate f(Z(t)) // f(): fitness function 

while (not termination condition) do 

           begin 

tt+1 

Update velocity v(t) and position of each particle z(t) based 

on (12)  (15) respectively 
if v(t)>vmax , v(t)= vmax end 

if v(t)<vmax, v(t)=  vmax end 

Perform wavelet mutation operation with m 

         Update   ̅
 
     based on (16)  (18) 

Reproduce a new Z(t) 
Evaluate f(Z(t)) 

            end 

end 
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where c = c1 + c2 and c > 4. In general,  can be formulated as 

in the following: 
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where t is the current iteration number, T is the total number of 

iteration, max and min are the upper and the lower limits of the 

inertia weight, and are set to 1.2 and 0.1, respectively. 

In the wavelet mutation operation, every element of particle 
has a chance to be selected to find mutation such that   
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where 
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and max and min are the upper and lower boundary of the 
element of particle. The dilation parameter a is set to vary with 
the value of t/T as in the following: 
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where αwm is the shape parameter of the monotonic increasing 
function, g is the upper limit of the parameter a.   

 The objective function of The HPSOWM is as in the 
following 

     1 1t t v v                (19) 

where t and t are the sensitivity and specificity, respectively, 
obtained from the hypoglycemia detection model which is 

tested by using a training data set; and v and v  are the 
sensitivity and specificity, respectively, obtained from the 
hypoglycemia detection model which is tested by using a 

validation data set.  The inclusion of v and v in the fitness 

function is to reduce the risk of overtraining [28].  is set as 
0.58 to avoid risk of low sensitivity.    

To force a high sensitivity in the detection,  is given by using 
the following definition, 
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The  definition in (20) is to force the sensitivity and 
specificity to be higher than 70% and 40%, respectively. 

III. RESULT 

The proposed hypoglycemia detection strategy using 
SFisSvm was investigated using the ECG parameters resulted 
from a hypoglycemia study. The hypoglycemia study was 
performed at Princess Margaret Hospital in Perth, Australia, 
with approval from Women’s and Children’s Health Service, 
Department of Health, Government of Western Australia, and 
with informed consent. Five patients with type-1 diabetes 
voluntarily participated for this study.   

The ECG parameters used in the study are (i) TpTec, (ii) 
ToTec, (iii) RTpc, (iv) QTec, (v) QTpc, and (vi) HR. Index of c 
in the parameters indicates that the heart rate correction for the 
variables uses the Bazett’s formula [29], which is normalized 
using square root of RR interval. The detail of procedure to 
obtain these ECG parameters from the patients’ ECG signals is 
referred to [23]. 

The resulted ECG parameters are 1327 and 399 data points 
of non-hypoglycemia and hypoglycemia, respectively. The data 
points were randomly divided to three subsets having same 
size; thus each subset consists of 575 data points of 
nonhypoglycemia and 133 data points of hypoglycemia. The 
three subsets were used as training, validation and final testing 
data sets. The training data set was used during the training to 
create a hypoglycemia detection model. The validation and 
training data set were used to test the hypoglycemia detection 
model during the optimization. The testing data set was used to 
test the best hypoglycemia detection model obtained from the 
optimization. 

The optimized membership functions of the SFisSvm 
which employed RBF (SFisSvmR) are plotted in Fig. 4 and the 
tabulated fuzzy rule is presented in Table I. Three Gaussian 
fuzzy terms are used; the terms are L (low), M (medium) and H 
(high). The optimized fuzzy singleton for different fuzzy terms 
is presented in Table I. Fuzzy if-then rules (9 rules) can be 
presented using the singletons, such as: IF HR(i) is ―H‖ AND 

RTpc is ―H‖, THEN (i) is ―H‖ (or  = 0.9132).  

 

Figure 4.  Fuzzy membership function of heart rate and RTpc.  
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TABLE I.  FUZZY RULE TABLE  

 

HR 

L M H RTpc  

L 0.7408 0.5360 0.7631 

M 0.6854 0.5547 0.9500 

H 0.0500 0.1083 0.9132 

The other optimized parameters are the parameters relating 
to SVM; they are C, g, wo, w1 as presented in Table II. These 
parameters relates to SFisSvm using RBF kernel function. The 
optimized w0 and w1 are 0.0987 and 0.9917, respectively. 
These values show that to find the optimal performance the 
hypoglycemic class uses far higher weight factor (w1) than non-
hypoglycemic class weight factor (w0). As mentioned above, 
the data number of hypoglycemic class is around a third of 
nonhypoglycemic class, and thus it needs higher weight factor. 
Furthermore, the training used 250 iterations with population 
size of 50. The values of the fitness function during the 
optimization of SFisSvmR are plotted in Fig. 5. 

TABLE II.  OPTIMIZED SVM PARAMETERS  

Parameter Value 

C 39394.4265 

g 51.6522 

w0 0.0987 

w1 0.9917 

 

Figure 5.  Fitness function values during the optimization of the SFisSvm 

which employed RBF kernel function (SFisSvmR), 

The performances of the hypoglycemia detections using the 
SFisSvm which employed RBF (SFisSvmR), sigmoid 
(SFisSvmS) and linear kernel (SFisSvmL) functions are 
described in Table III. The performances are presented in terms 
of sensitivity, specificity and geometric mean (gm). Geometric 
mean or gm equals to the square root of the multiplication of 

sensitivity and specificity [31], or gm=(.). The geometric 
mean is suitable to indicate performance of imbalanced data. 
This work used an imbalanced data in which data number of 
nonhypoglycemia is about triple of the number of 

hypoglycemia data. The presented result involves the 
performance in training, validation and testing. For comparison 
purpose, the result of the detection using swarm based SVM 
algorithm [30] is also presented in Table III. The algorithm 
involves the swarm based SVM applying RBF kernel function 
(SSvmR), sigmoid kernel function (SSvmS) and linear kernel 
function (SSvmL). 

As indicated in Table III, SFisSvmR outperform SFisSvmS 
and SFisSvmL in all three terms, which are sensitivity, 
specificity and geometric mean. The outperformance includes 
in training, validation and testing. Furthermore, the proposed 
methods outperform to the associate SVM without fuzzy 
inference system (SFisSvmR vs. SSvmR and SFisSvmSL vs. 
SSvmL) in all three terms of training, validation and testing. 
The performances of SFisSvmS and SVMS are nearly same. 
Thus, in general the proposed algorithm which is hybrid fuzzy 
SVM is higher than SVM without fuzzy. SFisSvmR was also 
investigated using five membership functions (tabulated in 
Table IV), and the resulted performance is nearly same with 
that uses three membership functions. The best performances 
of the proposed hypoglycemia detection strategy are 75.19%, 
83.71% and 79.33% in terms of sensitivity, specificity and gm.  

TABLE III.  PERFORMANCES OF THE HYPOGLYCEMIA DETECTION 

ALGHORITHMS   

  SSvm [30]  SFisSvm 

  SSvmS SSvmL SSvmR  SFisSvmS SFisSvmL SFisSvmR 

Training  Sens.  88.72 53.38 96.99 
 

88.72 78.20 100.00 

 Spec.  64.93 95.25 84.84 
 

66.74 81.67 90.05 

 gm.  75.90 71.31 90.71 
 

76.95 79.92 94.89 

Validation Sens.  83.46 45.86 70.68 
 

84.96 75.94 78.20 

 Spec.  61.76 92.31 76.02 
 

63.35 76.47 81.67 

 gm.  71.80 65.07 73.30 
 

73.36 76.20 79.92 

Testing Sens.  79.70 53.38 70.68 
 

79.70 74.44 75.19 

 Spec.  61.31 88.69 81.45 
 

61.54 77.60 83.03 

 gm.  69.90 68.81 75.87 
 

70.03 76.00 79.01 

Values in % 

TABLE IV.  PERFORMANCES OF SFISSVMR USING 3- AND 5- MEMBERSHIP 

FUNCTIONS    

  SFisSvmR 

  3 membership 
function 

5 membership 
function 

Training  Sens.  100.00 100.00 

 Spec.  90.05 90.27 

 gm.  94.89 95.01 

Validation Sens.  78.20 76.69 

 Spec.  81.67 83.26 

 gm.  79.92 79.91 

Testing Sens.  75.19 75.19 

 Spec.  83.03 83.71 

 gm.  79.01 79.33 

Values in % 
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IV. CONCLUSION 

This article has presented the strategy of SFisSvm 
implemented for hypoglycemia detection. HPSOWM has been 
employed to optimize the fuzzy and SVM parameters. 
Compared to the hypoglycemia detection strategy by using 
SVM algorithm only, the proposal hybrid fuzzy and SVM 
system has an improvement in term of the performance of the 
hypoglycemia detection.  Furthermore, three kernel functions 
for the SVM, and three- and five- membership functions have 
been investigated for this strategy. The best performance of the 
hypoglycemia detection found in the experiment is 75.19%, 
83.71% and 79.33% in terms of sensitivity, specificity and 
geometric mean. A further study could be conducted by 
implementing the proposed algorithm in a real time device.   
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