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Abstract— We propose a new algorithm for estimating neural
connectivity during event related potentials (ERP) in EEG. It
is composed of two steps: the estimation of a time-varying
multivariate-autoregressive (MVAR) model and the calculation
of the generalized partial directed coherence (gPDC) for assess-
ing the connectivities between channels where MVAR estimation
is done via an adapted version of the Nuttall-Strand algorithm,
a multivariate generalization of Burg’s spectral estimation algo-
rithm. Successful algorithm validation was performed through
simulations using toys model with physiologically ERP inspired
features.

I. INTRODUCTION

Characterizing neural connectivity has become central to
understanding the brain and its status under different stimulus
and/or behavioural conditions [1]. So much so that it has
been the focus of an almost endless number of approaches [2]
with different levels of rigour, specially for the asymptotic
case of multivariate single trial time series data, see [3]’s
rigorous approach. Amidst the diversity of currently available
approaches, those based on modeling stationary multivariate
time series, such as [4], [5], [6], remain the most popular
ones thanks to the wide avaliability of off-the-shelf linear
modeling routines [7] and decades of practical experience.

This scenario contrasts markedly with the important case
of protocols for event related data [8] which comes in the
form of many repeated short lived responses rather than a
single sufficiently long lasting data record for which rigorous
asymptotic criteria are available. Attempts to address this
issue were pioneered by [9] whose approach consisted of
solving Yule-Walker equations using response averaged au-
tocorrelation estimates. Other approaches are often described
as applying the usual algorithms to ‘stacked’ event data
whereas other ideas rely on averaging model parameters.

Our aim here is to present a multivariate autoregressive
generalization of the univariate proposal in [10] (Sec. II)
and examine its performance under a simulated event related
scenario that induces connectivity structure switches (Sec. III
). After a brief discussion (Sec. IV), some comments finish
the paper (Sec. V).

II. MATERIAL AND METHODS

After a brief of recap algorithm terminology (Sec. II-A) we
describe details of the new algorithm and test it via simulated
models that incorporate level triggered connectivity switches.
Qualitative algorithm success is displayed via gPDC compu-
tation [11].
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Escola Politécnica, University of São Paulo, São Paulo, Brazil, 05508-900
prodrigues@usp.br baccala@lcs.poli.usp.br

A. Estimation of a MVAR model

Linear multivariate autoregressive modeling of simulta-
neously observed data x(n) = [x1(n) x2(n) . . . xK(n)]

T

observed over n = 1, · · · , N instants consists of finding the
A(l) coefficient matrices in

x(n) =

P∑
l=1

A(l)x(n− l) + w(n), (1)

where P is the model order and w(n) stands for a zero mean
Gaussian stationary innovation process with covariance ma-
trix Σw that cannot be predicted based on past observations.

Among the many approaches [7], [12], order recur-
sive algorithms like the Levinson-Wiggins-Robinson (LWR),
Vieira-Morf (VM) and Nuttall-Strand (NS) algorithms are
particularly attractive due to their reduced computational
complexity and observedly robust numerical stability (mostly
for VM and NS) compared to direct solutions of (1) by
recasting it in terms of Yule-Walker equations [7].

In common, LWR, VM and NS, take advantage of sig-
nal stationarity to break the estimation into forward and
backward prediction steps, i.e. for a given order step p ∈
{1, · · · , P}

x̂f
p(n) =

p∑
l=1

Ap(l)x(n− l), x̂b
p(n) =

p∑
l=1

Bp(l)x(n+ l),

(2)
are respectively the best predictors that minimize the mean
squared forward ef

p(n) = x(n) − x̂f
p(n) and backward

eb
p(n) = x(n)− x̂b

p(n) prediction errors.
What distinguishes the latter algorithms is how they update

coefficient matrices in going from one order to the next. In
LWR, this update proceeds through

Ap(k) = Ap−1(k)−Ap(p)Bp−1(p− k), (3)
Bp(k) = Bp−1(k)−Bp(p)Ap−1(p− k), (4)

for k = 1 to k = p− 1 where Ap(p) and Bp(p) are termed
the forward and backward reflection coefficient matrices of
order p which must be computed at each algorithm order
step.

In the NS algorithm, one assumes that the reflection
coefficient matrices can be factored as

Ap(p) = ∆p

(
Σb

p−1

)−1

, (5)

Bp(p) = ∆H
p

(
Σf

p−1

)−1

, (6)
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where Σf
p and Σb

p are the forward and backward error
covariance matrices obtained from the results in step p− 1

Σf
p−1 = E[ef

p−1(n)(e
f
p−1(n))

H ], (7)

Σb
p−1 = E[eb

p−1(n)(e
b
p−1(n))

H ], (8)

but where ∆p is estimated by minimizing a weighted version
of the total prediction error

trace

((
Σf

p−1

)−1

Σ̂
f

p +
(
Σb

p−1

)−1

Σ̂
b

p

)
, (9)

which is equivalent to solving the following Lyapunov matrix
equation:

Σ̂
f

p−1

(
Σf

p−1

)−1

∆̂p+∆̂p

(
Σb

p−1

)−1

Σ̂
b

p−1 = 2Σ̂
fb

p−1, (10)

where Σ̂
fb

p−1 is an estimate of the cross-correlation matrix
between the forward and backward prediction residuals,

Σfb
p−1 = E[ef

p−1(n)(e
b
p−1(n− p+ 1))H ]. (11)

Next we consider how to adapt the NS algorithm for
having several realizations of short records rather than a
single long process realization.

B. Segment Nutall-Strand Algorithm (SegNS)

Consider the data structure x(n, s), comprised of NT

segments, each lasting Ns time samples and assumed to obey
the same model (1). The core of the algorithm consists of
replacing the error covariances eqs. (7), (8) and (11) by their
average over the available segments:

〈
Σ̂

(·)
p

〉
=

1

NT

NT∑
s=1

Σ̂
(·)
p (s), (12)

where the Σ̂
(·)
p (s) matrices are calculated using the forward

(ef
p(n, s)) and backward (eb

p(n, s)) prediction errors of each
segment, as in:

Σ̂
f

p(s) =
1

Ns − p− 1

Ns∑
n=p+1

ef
p(n, s)

(
ef
p(n, s)

)T
,

Σ̂
b

p(s) =
1

Ns − p

Ns−p∑
n=1

eb
p(n, s)

(
eb
p(n, s)

)T
,

Σ̂
fb

p (s) =
1

Ns − p− 1

Ns∑
n=p+2

ef
p(n, s)

(
eb
p(n− (p+ 1), s)

)T
.

(13)
Note that as long as segments obey the same (1) model,
their lengths Ns need not even be equal, though equality is
assumed here due to the nature of ERP data.

Fig. 1: Diagram depicting the network structure correspond-
ing to the multivariate autoregressive model given by: x1(n) = 0.95

√
2x1(n− 1)− 0.9025x1(n− 2) + w1(n)

x2(n) = 0.95
√
2x2(n− 1)− 0.9025x2(n− 2)

+0.75x1(n− 1) + w2(n)

where the boldface coefficient goes to zero in the presence
of the ERP.

C. ERP dynamics

In actual ERP analysis situations, a number of issues need
to be considered, such as model order and window size, in
a tradeoff between size and goodness of fit of the MVAR
model estimated with it. We adopt the guidelines presented
in [9] to allow future comparison.

Assuming NT observed events are available, each lasting
Ns time samples, also for compatibility with [9], we sub-
tract from each event its time mean. From each resulting
record, each time data sample has its average value over
events subtracted. It is the resulting data structure that is
subject to SegNS processing, over L < Ns long sliding
windows, assuming an AIC model order choice criterion
leading to models whose connectivity is portrayed via gPDC.
Unlike [9], no time-variance or ensemble-variance normal-
ization is performed.

III. NUMERICAL ILLUSTRATIONS

To numerically illustrate algorithm performance, we se-
lected two toy models. In the first one, shown in Fig. 1, the
connection from x1 towards x2 is turned off (the coupling
value a21 goes from 0.75 to 0) depending on x1’s value,
something ensured by a realistic ERP event [13] added to
x1.

The time evolution of gPDC, assuming a sampling fre-
quency of 200 Hz, is shown on Fig. 2, where L = 12 samples
(60 ms) and SegNS is performed over 250 ERP trials.

The second toy model, shown in Fig. 3, has the connection
from x2 towards x4 turned off (a42 goes from 0.95 to
0) when x2 reaches a threshold value, due to an ERP
event starting from x3. The original network connections
are re-established after toff = 250 ms. The gPDC time-
frequency plot in Fig. 4 shows the algorithm’s ability to
capture connectivity change whereas a glimpse of estimation
improvement with NT can be appreciated in Fig. 5.
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Fig. 2: Time-frequency plot of the autospectrum of each
channel on the diagonals (in dB). The off-diagonals show
the estimated gPDC over time.

Fig. 3: Diagram depicting the network structure correspond-
ing to the multivariate autoregressive model given by:

x1(n) = 0.95
√
2x1(n− 1)− 0.9025x1(n− 2) + w1(n)

x2(n) = +0.6875
√
2x3(n− 1)− 0.9x1(n− 2)

−0.4x1(n− 3) + w2(n)

x3(n) = −0.6875
√
2x2(n− 1) + w3(n)

x4(n) = 0.95
√
2x4(n− 1)− 0.9025x4(n− 2)

+0.95x2(n− 1) + w4(n)

where the boldface coefficient is zeroed upon an ERP trigger
returning to its former value toff = 250 ms later.

A. Correctly dealing with segments

One often reads treatments in the literature that propose
tackling the availability of many short time records of data
following the same model by constructing a single record
composed of all records stacked one after the other. Then,
the estimation is done using algorithms for single continuous
records. Confirming [10], who warns of the danger of such
procedures for the univariate case, we show that NS (red),
as opposed to SegNS (blue), fails to capture the existing
connection from x2 to x4 in the pre-ERP period. The figure
also contains the theoretical results (black) with the main
diagonal showing the rather biased NS (flattened) auto-
spectra results.

Fig. 4: Time-frequency plot of the autospectrum of each
channel on the diagonals (in dB). In the off-diagonals lie the
estimated gPDC over time.

Fig. 5: Time-frequency plots of gPDC for increasing
numbers of available trials during MVAR estimation.

Fig. 6: Plots of the gPDC and the autospectrum (in dB) when
using the coefficients estimated with two kinds of algorithm:
NS for segments in blue and NS stacked in red. The results
using the true values of Ap(·) are in black.
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IV. DISCUSSION

We have chosen to adapt the Nuttall-Strand algorithm
because it is a generalization of Burg’s algorithm for spectral
estimation [7] that has proven to be very efficient for autore-
gressive estimation in the univariate case, and because [14]
has shown that the NS algorithm often outperforms LS and
VM in multichannel autoregressive estimation when long
records are available. Using the same considerations for the
SegNS, implementing Vieira-Morf algorithm for segments
(SegVM) is immediate.

Algorithm validation was based on testing two toy models.
Care was taken so that the models would follow realistic ERP
behaviour [13]. This kind of concern is of crucial importance
and yet absent from related works in the literature.

ERPs generated via [13]’s model have an intrinsic variabil-
ity in amplitude and time delays so that network structure
change happen at slightly different times. Additionally, some
simulated trials randomly failed to trigger network switch
thereby adding a realistic feature to our simulations. This
rate of ERP failure impacted MVAR estimation, since con-
nectivity trial subpopulations coexist whereas a single esti-
mated model is being used for both. It is the subpopulation
proportions that decide whether the results point towards one
network structure or another. For the examples here, the rate
of switch failure was of approximately 20%, and the residual
post-ERP gPDC seen in Fig. 2 is due to this fact.

The results obtained in this work show that our algorithm
is a viable option for studying the influence of an ERP signal
on a network of neural structures. However, one should be
aware that parameters like model order and window size must
be appropriately tuned before performing any estimation. The
results of Fig. 5 show that an increase in the number of
available trials induces a decrease in gPDC’s time variability.

V. FINAL COMMENTS

We have presented a new alternative for estimating time-
varying neural connectivity, using an algorithm based on the
Nuttall-Strand algorithm for MVAR estimation. Simulations
used physiologically-inspired toy models, portraying the in-
trinsic viability of our algorithm in this kind of application.

Further work is now concentrated on the statistically
based comparison between the algorithms proposed here
to alternatives like [15] and [9], using simulations on toy
models and real EEG data. Furthermore, we intend to extend
the results in [3] to the short segment case.
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