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Abstract— Empirical studies of programming language learnability
and usability have thus far depended on indirect measures of human
cognitive performance, attempting to capture what is at its essence a
purely cognitive exercise through various indicators of comprehension,
such as the correctness of coding tasks or the time spent working
out the meaning of code and producing acceptable solutions. Under-
standing program comprehension is essential to understanding the
inherent complexity of programming languages, and ultimately, having
a measure of mental effort based on direct observation of the brain
at work will illuminate the nature of the work of programming. We
provide evidence of direct observation of the cognitive effort associated
with programming tasks, through a carefully constructed empirical
study using a cross-section of undergraduate computer science students
and an inexpensive, off-the-shelf brain-computer interface device. This
study presents a link between expertise and programming language
comprehension, draws conclusions about the observed indicators of
cognitive effort using recent cognitive theories, and proposes directions
for future work that is now possible.

I. INTRODUCTION

Evaluations of the human impact in Human-Computer Interaction
studies have traditionally relied on performance measures such as
task completion timings and completed task accuracies to draw
conclusions. While these types of measurements are effective and
simple to perform, they have also shown significant individual
variation amongst participants. Where factoring out individual dif-
ferences in such an experiment is desirable, measures of human
expertise are typically subjective, relying on self-reporting and
subject to several potential sources of bias, e.g., cultural preference,
personal tendencies, and overestimation. Here we will examine
a direct, non-invasive method of measuring brain activity for the
purpose of augmenting or replacing self-reported data.

To the best of our knowledge, we are the first to explore the
use of electroencephalogram (EEG)-based brain-computer interface
devices in directly observing the cognitive workload associated with
programming tasks. Recent studies of brain activity have served to
refine the existing models of cognition to where they may provide
a basis for useful interpretation of the brain’s electrical activity
captured by inexpensive devices. This study forms a fundamental
proof-of-concept for the field of Human-Computer Interaction by
using an EEG device to quantify expertise based on direct brain
measurement.

II. RELATED WORK

An EEG reading is accomplished by non-invasive placement
of electrodes on the scalp to measure weak electrical potentials
generated by brain activity (5-100 ©V). Each electrode consists
of a gold-plated disk placed close to the scalp and coated with a
conductive liquid. Besides the highly invasive electrocorticogram,
which requires surgical placement of electrodes within the skull,
and magnetoencephalogram, which is prohibitive both in cost
and practicality, it is the only method capable of providing a
milliseconds-range temporal resolution of direct brain activity read-
ings required for recording oscillatory activity. While the combined
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use of EEG and functional near-infrared spectroscopy can add the
spatial resolution that EEG lacks and is considered an important
avenue for our future work, we do not consider it here. Functional
magnetic resonance imaging is generally cost-prohibitive, lacks the
temporal resolution to capture oscillatory activity, and complicates
observations by the subject’s impractical setting.

A. Alpha and Theta Waves

The alpha wave is the most prominent oscillatory activity evident
in EEG readings. Alpha has repeatedly been shown to have a peak
frequency in the 8-13 Hz range in healthy adults, with highest
signal power, or synchronization, occuring during periods of restful
wakefulness, i.e., eyes closed, performing no complex cognitive
tasks. While the functional significance of alpha is unknown, it is
generally considered to be a marker of cognitive inactivity or, more
likely, linked to active inhibition of task-irrelevant populations of
neurons. For this study, the critical observation is that alpha power
increases (populations of neurons contributing to alpha synchronize)
in the absence of a task, i.e., cortical inhibition [1], [2], [3],
[4], [5], [6], and alpha power decrease (alpha desynchronizes) as
increasingly many groups of neurons activate to meet some task
demand [1], [5].

Prior work with oscillatory activity discourages the use of broad-
band frequency ranges for power measurement. The peak, or
gravity, alpha frequency varies between individuals, and displays a
normal distribution within age-matched groups, meaning that a fixed
8-13 Hz band may not sufficiently capture all alpha activity [7].
Instead, we compute the Individual Alpha Frequency (IAF) for
each participant, and used it as the basis for defining sub-band
ranges termed Lower-1 Alpha (L1A, ranging from IAF-4 to IAF-
2), Lower-2 Alpha (L2A, ranging from IAF-2 to IAF), Upper Alpha
(UA, ranging from IAF to IAF+2), as well as theta (IAF-6 to
IAF-4). Decomposition into these sub-bands was shown to improve
precision and more accurately reflect the functional differences of
oscillations [2]. The same study notes that a healthy individual’s
relative alpha power is not expected to change prior to 50 or
60 years of age, meaning that we are not measuring age-related
changes. Event-related desynchronization (ERD) is a measure of the
extent to which neuron populations no longer oscillate in synchrony,
as they become activated and process task demands. We calculate
ERD simply, as the percentage of band power change between the
resting period preceding a trial and the trial itself.

B. Cognitive Load

Cognitive Load Theory (CLT) is based on the premise that work-
ing memory has a limited capacity, and proposes that humans are
only conscious of information currently held in working memory.
In describing the relationship between long-term memory, working
memory and schemas [8], CLT provides the basis for interpretation
of our findings.

In short, while working memory has limited capacity, able to
hold 742 items, this capacity is augmented and extended by
schema pulled from long-term memory, each of which represents
an entity whose complexity is unbounded. Since working memory
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Fig. 1. The 14 data channels provided by the Epoc headset are labeled by
their placement based on the International 10-20 system?. The shaded area
indicates the general location of activity associated with working memory,
and the nearby channels are the ones of interest to us.

performance is measured by spectral changes in the alpha frequency
sub-bands [2], it follows that for like programming tasks, the
observable phasic changes in alpha power should reflect, at least
in part, an increased reliance on acquired complex schema for
task interpretation and comprehension, observed as a relatively
low working memory load, implying expertise, or a high working
memory load, implying a lack of expertise.

Direct measures of cognitive load with the use of EEG have
more recently seen practical application in studies of visualization
effectiveness, dynamic activation of haptic guides, and video game
learning rate [9], [10], [11].

C. Program Comprehension and Experience

Program comprehension plays a significant role in experiments
that must account for human performance factors, for example,
studies which evaluate software development methodologies or pro-
gramming aptitude [12], [13], and may aid in understanding the role
of language design paradigms in language acquisition, adoption, and
learnability. A recent survey [14] showed both a lack of consistent
measures of expertise in extant program comprehension studies, as
well as the shortfalls of self-assessment data in predicting expertise.

Program comprehension studies which fail to account for pro-
gramming experience may lack reproducibility. Expertise-related
implications of EEG-based measures of cognitive load pose a
potential paradigm shift towards reproducibility and an immediate
step toward a cogent unifying definition of programming expertise.
The primary contribution of this study is the direct observation of
indicators of cognitive activity as it relates to expertise, as it applies
to program comprehension.

[II. METHODOLOGY

We used an off-the-shelf research version of the Emotiv Epoc
headset, a device capable of capturing a raw EEG signal at a
sampling rate of 128Hz. The device consists of 14 electrodes,
providing a 14-channel subset of the International 10-20 system
of electrode placement, seen in Figure 1. An additional benefit of
this device is that the raw data are transmitted wirelessly, allowing
the participants mobility pre- and post-experiment (the participants
were discouraged from excessive movement during the experiment).
The use of this low-cost EEG solution has a precedent in cognitive
load measurement [9].

A. Procedure

At each session, a single participant provided informed consent,
was given a brief tutorial, was fitted with the device and participated

2Figure reproduced from [9], with author’s permission.
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Fig. 2. Major components of the experimental toolchain, along with types
of data passed between them, from raw EEG signal capture to SPSS-ready
dataset.

in the experimental tasks after a brief period of calibration and ad-
justment. The details of each significant portion of the experimental
procedure are given below. Figure 2 shows the major components of
the experimental setup described in detail in the following sections.

1) Pre-Session Tutorials: Each participant was given a brief
training session, consisting of instructions for behavior during the
experiment, syntax of the programming language used for the
presented tasks, format of responses, and interaction with the front-
end software.

Since EEG is susceptible to noise from muscle movement, the
participants were instructed to refrain from excessive movement
by keeping arms at rest on the table in a position that allowed
them to reach the keyboard without excessive movement. To further
aid in limiting movement, the task presentation system was fully
automated and keyboard driven. The participants did not have to
intervene manually to progress the rest/task sequence, except by
ending their input by depressing the enter key. Participants were
also asked to try to minimize any behavior which would cause
blinking or jaw clenching.

2) Experimental Sessions: The individual experimental sessions
were designed to last no more than 30 minutes after the fitting of the
EEG device in order to prevent excessive noise due to the drying of
the saline-infused device electrodes. Impedance of each channel is
tested during fitting to ensure a good signal-to-noise ratio. Finally,
each participant was seated in a typical working environment (office
chair, desk, and computer) within a partially shielded room with
minimal distractors.

The interactive session is performed using an automated task
presentation system, designed and developed specifically for this
study. Throughout the course of the session, the participant is
presented with one of three screens, in succession and driven only
partly by the participant’s responses: the rest screen (blank except
for a single word “Relax” and displayed for 10 seconds at a time),
task screen (no time limit, progressed by user actions) presenting
code and an input box, and an answer verification screen stating
that the answer was either correct or incorrect.

The task screen contains a set of input values, a snippet of code
that uses these input values to produce some result, and at the
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Class Level 0 1 2 3 4
“w o “w o m o “w o “w o
Age 20,1 [ 21 | 233 [ 98 [ 213 [ 1.5 | 224 | 32 | 244 | 6.1
Estimated Experience (1-10) 1.7 09 | 2.7 1.3 50 | 2.1 7.0 1.7 7.4 1.3
Programming Experience (Years) 0.3 0.7 0.9 0.3 4.8 2.2 2.3 0.9 4.6 1.8
CS Courses Taken 0.3 0.7 1.1 0.3 6.2 1.7 6.6 1.8 | 12.7 | 5.6
Java (1-5) 1.3 0.5 2.3 0.7 3.8 0.9 36 | 0.7 3.7 1.3
Experience vs Classmates (1-5) 2.2 1.0 2.9 1.0 32 1.5 3.3 0.5 3.6 0.9
Experience vs Experts (1-5) 1.0 | 0.0 1.1 0.3 1.5 0.5 14 | 0.5 1.6 | 0.5

TABLE I

PARTICIPANT DETAILS: CLASS LEVELS CORRESPOND TO THE HIGHEST-LEVEL COURSE THAT HAS BEEN COMPLETED OR IS CURRENTLY BEING TAKEN
BY THE PARTICIPANT (I.E., 0 — NO PROGRAMMING, 1 — INTRODUCTORY PROGRAMMING COURSES, 2 — SOPHOMORE LEVEL, ETC.)

Welch’s Method: Rest vs Trial
30

— — —Rest
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10
Frequency (Hz)
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Fig. 3. An example comparison of the Power Spectral Density between
the Rest and Trial states. The IAF is marked by a circle, and the resulting
sub-band ranges are indicated as Theta, L1A, L2A, UA from left to right.

bottom of the screen, a text-box where the participant was to place
the expected output of the code. The output text-box is always
in focus, ready for their typed input, and depressing the enter key
records their answer and progresses the interface to the next screen.
All keyboard input was recorded and timestamped. The participants
were also informed that they have the option of skipping any task
by pressing the escape key. The task screen was not timed, so as
to relieve any pressure that may affect a participants performance.

The automated task presentation system is integrated with the
Emotiv EEG headset and BCI2000. BCI2000 records the raw signal
from the Emotiv headset and the presentation system, tagging the
signal with the relevant state changes (i.e., Rest to Trial state
transition).

Each participant completed an expertise survey following the
completion of the experimental session, similar to the one used
in Siegmund et al. [14].

B. Experimental Tasks

The participants performed three tasks encoding simple concepts
accessible to those with no programming experience. The program-
ming tasks are: Task 1 — iterates across a string, in reverse, printing
each character; Task 2 — computes and prints the mean of five
numbers; Task 3 — doubles the values of each input integer in-
place, printing comma-separated values on completion. Each task
is associated with five trials, each corresponding to a unique set
of input values. Trials corresponding to the same task were never
presented in succession, but were rotated round-robin, until all trials
were exhausted. All tasks were presented in the same order to all
participants. Presenting the experimental tasks in this manner serves
to reduce several potential sources of bias.

C. Signal Analysis

In post-analysis, the raw EEG signal is divided into epochs of
rest and trial periods according to our timestamped annotations.
A rest period is bookended by markers showing the start and end
of the rest screen presentation. A trial period is marked when the
trial screen is first presented and ends when the first keystroke is
encountered following the onset of the trial screen.

In post-analysis we focus on four of the available 14 channels:
AF3, F7, F3, and FCS. These electrode locations are clustered near
Brodmann areas 8 and 46, shown in a prior study to correspond to
working memory activity [15], and roughly indicated in Figure 1
by the shaded areas.

The signal was first adjusted by a band-pass filter on the range
of 2Hz to 15Hz, based on expected ranges of the Theta to Alpha
bands. The mean of the signals was found and subtracted from
the total signal for baseline adjustment. Power Spectral Density
(PSD) estimates were obtained using Welch’s method. The gravity
frequency, IAF, for the range 7Hz to 13Hz was found for each
participant and used to calculate L1A, L2A, and UA sub-band
ranges, as well as the theta range. Figure 3 shows an example
Welch’s PSD estimate of the Rest state versus the Trial state.

Next, the ERD values were obtained using rest and trial periods
split into 125ms windows. Averaged over the windows, the rest
period power is used as reference for calculating ERD of the
subsequent trial period. Readings outside the bounds of +200uV
are considered errors; if errors comprise more than 20% of an
epoch, the rest/trial pair is discarded.

D. PFarticipants

Data were collected from 34 computer science undergraduates
at the authors’ institution (IRB 13-0218-2). Each of the individuals
was enrolled in at least one computer science course and grouped
according to class level corresponding to the highest numbered
computer science course completed or enrolled in at the time of the
experiment (see Table I for the makeup of each class level). Due
to the expected familiarity with programming language constructs
used in the tasks, we regard participants in class levels 0 and 1
as novices, and 2 and above as expert. Accuracies achieved by
individuals from each group are shown in Table II.

Correct Trials | Incorrect Trials | Skipped Trials
Novices 40 167 3
Experts 213 72 0
TABLE II

ACCURACY PER GROUP, SHOWING THE NUMBER OF CORRECT AND
INCORRECT TASK RESPONSES FOR EACH, AS WELL AS THE NUMBER OF
TASKS SKIPPED.
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IV. RESULTS

We performed an analysis across all trials for each participant,
using only those trials remaining after those with high EEG error
rates were discarded (more than 20% of the trial is outside of
the expected -200 to 200 pV range). Our intuition tells us that
over the course of 15 trials, the expert group will more quickly
recognize the concept encoded by the task code, arriving at ERD
levels corresponding to the task’s intrinsic load, i.e., the cognitive
load experienced irrespective of task encoding, more quickly than
the novice group.

Collapsing the five self-reported class levels into two groups,
novices and experts, we consider performance over time for each
task, and measure the overall inter-trial performance by computing
a regression line over each participant’s task-specific ERD values.
Recall that there are three tasks, with five related trials each. Once
regression lines are obtained, they are clustered by slope using sev-
eral thousand iterations of k-means clustering. We thereby minimize
the classification distance, defined as the absolute difference of the
participants’ class-level and cluster assignment (class-level indicates
the extent of the participants’ progression through a CS curriculum,
and so is ostensibly not subject to reporting bias).

Considering all trials containing both correct and incorrect re-
sponses, a random cluster assignment of the participants results in
an average distance of 0.5. Perfect, or 100% accurate classification
would yield an average distance of 0. Clustering the performance
on Task 1 by Upper Alpha and Theta ERD results in average
distances of 0.45 for both. This means that the class levels of
our participants were correctly identified only 55% of the time.
Clustering the performance on Task 2 by Upper Alpha and Theta
ERD results in average distances of 0.41 and 0.37, meaning that
in this case accuracy of novice/expert classification was 59% and
63%. Lastly, clustering the participant performance on Task 3 first
by Upper Alpha then Theta ERD results in average distances of 0.41
and 0.37, respectively, meaning that class levels of our participants
were accurately identified 59% of the time with Upper Alpha ERD
and 63% of the time with Theta ERD.

Now, considering only those trials where we recorded a correct
response from the participant, the random cluster assignment of
the participants remains 0.5 and perfect assignment 0. In this
case, prediction distances using Upper Alpha and Theta ERD
and considering Task 1 are 0.44 and 0.37, respectively, meaning
classification accuracies of 56% and 63%. For Task 2, the average
distances are 0.44 for Upper Alpha and 0.26 for Theta, resulting in
56% and 74% accuracies. Finally, for Task 3, the average prediction
distance using Upper Alpha ERD is 0.33, and using Theta ERD
0.37, resulting in 67% and 63% prediction accuracy.

Granted, assigning class levels 0 and 1 to the novice group and 2,
3, and 4 to the expert group is somewhat arbitrary, assuming only
that the language constructs used in the tasks will be most familiar
to class levels 3 and above. Adding level 2, or both levels 2 and
3, to the novice group yields similar prediction accuracies, which
may be improved by more sophisticated exploratory techniques.

V. FUTURE DIRECTIONS AND CONCLUSION

Besides the expertise measures seen here, one obvious direction
for near-term future work is a study to examine the role of academic
performance (GPA) in the development of expert performance. In
general, we see implications for computer science education, where
insight into the perceived complexity of concepts, as evidenced by
cognitive load, would aid educators in evaluating the effectiveness
of concept learning, tailoring concepts to particular expertise levels,
and in presenting sequences of complex concepts.

Our study also opens the door to further testing in other areas
of computer science. The methodology which we have applied to
how a programmer perceives a programming task could be tested on
studies examining expert and novice user approaches to interactions
with general interfaces, like development environments, similar to
extant exploratory studies [9], [16], [10].

To the best of our knowledge, ours is the first study using direct
measures of cognitive load to quantify expertise from programming
task performance, showing that cognitive demands differ across
expertise levels. This is an important contribution to a growing body
of EEG-based cognitive load studies whose successes imply that
direct, objective measures of human performance with interactive
tasks hold potential for augmenting future HCI studies.
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