
  

 

Abstract— Current EEG based brain computer interface 

(BCI) systems have achieved successful control in up to 3 

dimensions; however the current paradigm may be unnatural 

for many rehabilitative and recreational applications.  

Therefore there is a great need to find motor imagination (MI) 

tasks that are realistic for output device control. In this paper 

we present our results on classifying hand gesture MI tasks, 

including right hand flexion, extension, supination and 

pronation using a novel EEG inverse imaging approach. By 

using both temporal and spatial specificity in the source 

domain we were able to separate MI tasks with up to 95% 

accuracy for binary classification of any two tasks compared to 

a maximum of only 79% in the sensor domain.  

I. INTRODUCTION 

Recent investigations of brain-computer interface (BCI) 

technology have shown great promise for the rehabilitation 

of patients suffering from various neurological impairments. 

BCIs using electroencephalographic (EEG) signals are 

founded on identifying the spatio-temporal dynamics of 

oscillatory activity originating in the sensorimotor cortex. 

Motor imagery (MI) tasks, in which movement of a 

particular body part is simply imagined, can induce changes 

in these oscillations and have been used to successfully 

control non-invasive BCI systems in up to 3 dimensions [1, 

2]. During motor imagery (MI) tasks, rhythmic activity will 

either increase or decrease in different brain regions; these 

phenomena are terms event-related synchronization (ERS) 

and event-related desynchronization (ERD) respectively.  

Using this event-related activity and the somatotopic 

organization of the motor homunculus, BCIs are able to 

decode the type of MI task being performed. Nevertheless, 

signals are significantly distorted as they pass through the 

skull, dura and meningeal layers from the cortex to the scalp, 

increasing the difficulty in separating these tasks with 

reliable results [3]. Thus, this smearing of cortical signals 

has limited BCI technology to being able to use MI tasks in 

which the corresponding somatotopic regions are far apart, 

such as imagination the right and left hands, feet and tongue. 

These MI tasks have been used to control a BCI with partial 

success; however, they are very unnatural and not realistic to 

most applications. 
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Consequently, there is a great need to drive the MI tasks 

used in these non-invasive BCIs towards user-centered 

applications such that realistic goals can be realized [4, 5]. 

The aforementioned MI tasks are irrelevant to many 

rehabilitative and recreational uses of BCIs and other tasks 

must be investigated that better represent the functionality of 

the application. It is this need that motivates the present 

study to examine EEG traces of hand gesture MI tasks.  

Very few studies have explored hand gesture MI tasks and 

all have reported their highest binary classification 

accuracies at between 70% and 80% for any two tasks [6, 7, 

8]. Furthermore, all of these studies have performed their 

analyses using only the EEG sensor recordings which may 

significantly limit the amount of information that can be 

interpreted. Source analysis using equivalent dipole 

modeling and cortical current density (CCD) reconstructions 

has been shown to provide an alternative method for 

classifying MI tasks with impressive results and should be 

investigated for this application as well [9, 10, 11, 12]. 

In the present study, we investigated the ability to 
successfully discriminate between four MI tasks of the right 
hand, flexion, extension, supination and pronation. The 
minimum-norm estimate was used to convert from sensor 
space into source space to find unique features of each task 
that may be used in a non-invasive BCI. 

II. METHODS 

A. Experimental Setup and Data Acquisition 

Data from three subjects were analyzed in the present 
study. These subjects were seated in front of a computer 
screen and instructed to continuously perform right hand 
motor imagery of flexion, extension, supination or pronation. 
Each run was composed of either flexion and extension trials 
or supination and pronation trials with theses pairings 
intended to emphasize the back and forth motion of the 
coupled tasks. Trials were randomized within a run for each 
experimental session. Trials were structured as follows: a 
“rest” icon appeared on a computer for 3 seconds, followed 
by 3 seconds of a target indicating the MI task to perform, 
and finally a “go” cue for 4 seconds upon which the subject 
performed the specified MI task. 64-channel EEG signals 
were acquired using a SynAmpsRT amplifier (Neuroscan 
Compumedics) at a sampling frequency of 1000Hz. 
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Fig. 1. Event-related activation map for subject one of the extension 
MI task in sensor space (top left) and its source space transformation 
(top right). Only those source waveforms within a designated ROI 
(bottom right) were used for obtaining time-frequency 
representations (bottom left) to be used for classification (M EEG 
channels, P total source dipoles, Q ROI source dipoles). This was 
performed for all MI task data sets. 

 

 

B.  Data Processing 

EEG recordings were downsampled to 100 Hz, detrended, 

and band pass filtered between 5 Hz and 30 Hz using a zero-

phase FIR filter. Noisy trials that contained strong artifacts 

(i.e. jaw clenching, electrode disconnections) were removed 

by visual inspection. A surface laplacian was then applied to 

the remaining trials to enhance focal activity surrounding 

each electrode. Given that the entire trial did not contain 

information relevant to the MI task, only the data from one 

second before the task started to one second after the task 

ended was kept for further analysis. 

Trials were separated into four different data sets based on 
which of the four MI task was being performed. Each data set 
was decomposed using independent component analysis 
(ICA) to reveal temporally independent source activation 
patterns. Only the independent component (IC) which was 
located over the left (contralateral to right hand MI task) 
motor cortex and had strong power in the mu band (8-12 Hz) 
was kept while the remaining IC’s were discarded. For all 
subjects, only one component fit these requirements, 
eliminating ambiguous choices.  

A.   Minimum-Norm Estimate 

ICA is known to extract temporal sources within an EEG 

dataset while providing a corresponding spatial map; 

however, ICA does not explicitly solve the EEG inverse 

problem. In order to achieve both temporal and spatial 

precision of the brain dynamics responsible for each task, 

EEG data at each time point was mapped onto a cortical 

model using the L2 minimum-norm estimate (MNE). The 

MNE is a linear operator that estimates the source activity, 

 , when provided with the forward head model,  , and the 

multi-array EEG data,  . This can be done using Eq. 1, 

where   is a regularization parameter and   is the identity 

matrix [13].  

                      Eq. 1 

MNE’s, especially using the L2 norm, often produce 

diffuse solutions, but given the large cortical representation 

of the hand, we can also assume dispersed activation 

patterns in response to the presented MI tasks [14].  

Furthermore, other non-linear inverse algorithms are 

computationally expensive and more sensitive to noise and 

accurate head modeling [15]. Without subject-specific cortex 

models the MNE provided more reasonable results for 

localizing right hand activity. The boundary element method 

(BEM) was used to generate a realistic head model of a 

standard brain for inverse computations. The inverse 

solution was projected onto a cortical mesh composed of 

discrete dipoles with fixed orientation normal to the surface. 

As depicted in Figure 1, the MNE transforms our data from 

M x N electrode potential values to P x N CCD values where 

M is the number of EEG sensors, N is the number of time 

points, and P is the number of dipoles in the forward model. 

D.   Feature Extraction and Selection 

Since all MI tasks involve imagining the right hand, source 

dipoles in a region of interest (ROI) on the left motor cortex 

were isolated for analysis. This effect is displayed in Figure 

1 whereby the P x N source data is reduced to Q x N ROI 

data, where Q is the number of dipoles in the designated 

ROI. In this analysis the ROI was defined using general 

somatotopic knowledge where the hand region of the left 

motor cortex was estimated. All data was mapped onto the 

same cortex model, which allowed us to identify dipoles 

within the ROI prior to analysis. Each dipole corresponds to 

a row (time series) in the inverse-mapped P x N data matrix. 

With the ROI pre-defined, the row numbers of interest were 

already known, making it simple to extract out these time 

series for further analysis. The C3 electrode waveform was 

chosen for sensor analysis, as it is known to lie above the 

cortical region representing right hand control.  

All selected dipole and sensor waveforms were extracted 

and convolved with a Morlet wavelet with a central 

frequency,   , of 1Hz and a Gaussian envelope with a full-

width half-maximum (FWHM) of 3 sec to obtain a time-

frequency representation (TFR) of the activity. Wavelets 

have the advantage over the Fourier transform by being able 

to adjust their width in time to capture similar numbers of 

cycles of varying oscillatory components. To achieve this 

effect, temporal scales were applied to the mother wavelet 

(wavelet constructed at   ) in the form of 
 

  
 where   is the 

frequency of interest in 1Hz intervals between 5 and 30 Hz. 

The TFR’s were then divided into 2Hz frequency bins and 

250ms time windows for each trial and used as features for 

classification. The most discriminable features between two 

data sets were selected based on the mahalanobis distance 

(MD), a statistical measure of dissimilarity between two 

groups of data based on their respective feature means and 

covariances. The single most discriminable feature was first 

determined by finding the largest MD of any one feature. 

The second feature selected was that in which, when added 

to the space spanned by the first, resulted in the largest MD 
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Table 1. Average Fisher LDA results from three subjects 
comparing sensor (C3) and source (ROI) data for the different MI 

tasks (E – Extension, F – Flexion, S – Supination, P – Pronation). 

 Sensor (%) Source (%) 

F/E 75.70 3.42 95.82 4.01 

F/S 74.92 0.58 87.73 12.15 

F/P 77.65 8.96 91.85 5.97 

E/S 78.96 4.58 95.73 5.90 

E/P 78.80 6.61 86.42 12.47 

S/P 72.00 0.74 88.48 10.16 

 

 
Fig 2. Average source-based binary classification accuracy plotted 

against cortical mesh resolution. The coarsest mesh is 15mm and the 
finest mesh is 6mm. In all cases, the source based analysis using the 

cortical mesh produced better results than sensor analysis. 

 

of any two features. This process was repeated until the 20 

most discriminable features were found between the two 

data sets and used for classification.  

Fisher Linear Discriminant Analysis (LDA) was then 
applied to the source-estimated and sensor-recorded signals 
for the four MI tasks. This analysis involved binary 
classification between all combinations of two different 
tasks. A 10-fold cross-validation approach was used to test 
the reliability of the results using 90% of the trials for 
training and the remaining 10% for testing. 

III. RESULTS 

For all subjects, an IC representing each of the four MI 

tasks was found over the left motor cortex exhibiting strong 

mu band activity. This result lends confidence that the 

subjects are in fact performing a MI task involving the right 

hand. This is important to ensure that we are not attempting 

to discriminate between a right hand MI task and that of a 

different body part or between two completely arbitrary 

tasks. For all binary combinations of the four MI tasks, the 

proposed source space method resulted in increased 

classification accuracies over sensor space. The largest 

average increase was seen in flexion vs. extension at 

+20.11% and the lowest average increase was seen in 

extension vs. pronation at +7.62%. Among all binary 

classifications in all three subjects (6 cases per subject, 18 

cases total), only twice did the source method result in a 

lower accuracy than the sensor method. These two cases 

were extension vs pronation for both subject 1 and subject 2; 

however, these decreased accuracies were only -1.00% and -

2.50% respectively. 

IV. DISCUSSION 

Much of the previous BCI research has examined the 

origin and utility of MI tasks of different limbs to activate 

distinct spatial regions of the cortex; however, little work 

has been done to investigate the usability of different 

functional MI tasks from the same body part. In sensor 

space, we found that each functional MI tasks activated a 

similar diffuse region over the sensorimotor cortex. The 

thousands of dipoles that make up the cortical mesh provide 

a greatly increased spatial sampling of the brain compared to 

our 64 channel EEG montage. By incorporating not only this 

increased sampling but also, anatomical constraints, inverse 

mapping allows subtle differences between MI tasks in 

sensor space to become much more apparent in source 

space. It is with this principle that our source based method 

provides increased classification accuracies. 

To determine the influence of the mesh geometry, we 

repeated our analysis using varying mesh resolutions for one 

of the subjects. The average classification accuracies of the 

six binary combinations of MI tasks are displayed for the 

different mesh resolutions in Figure 2. In these models the 

resolution indicates the distance between neighboring nodes 

in the BEM model and thus 15mm indicates the coarsest 

mesh and 6mm, the finest. The average accuracy fluctuates 

between 81.1% and 91.7% indicating that the mesh does in 

fact play a role in the effectiveness of our proposed method; 

however, even the coarsest mesh produces better results than 

sensor analysis. We conclude that as long as the classifier is 

trained and tested with a consistent model, the method does 

not show significant degenerative effects. 

V.     CONCLUSION 

In the present study, we have evaluated the performance 

of using CCD reconstructions to discriminate neural traces 

of different right hand gesture MI tasks. The proposed 

source imaging based technique employs both temporal and 

spatial task specificity of cortical behavior in order to 

characterize the brain processes involved with right hand 

flexion, extension, supination and pronation MI. Our source 

based method resulted in increased binary classification 

accuracies between all combinations of tasks for three 

subjects over sensor based data. 
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