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Abstract— Tuberculosis (TB) is a major health threat in many
regions of the world, while diagnosing tuberculosis still remains
a challenge. Mortality rates of patients with undiagnosed TB
are high. Modern diagnostic techniques are often too slow or too
expensive for highly-populated developing countries that bear
the brunt of the disease. In an effort to reduce the burden of
the disease, this paper presents an automated approach for de-
tecting TB on conventional posteroanterior chest radiographs.
The idea is to provide developing countries, which have limited
access to radiological services and radiological expertise, with
an inexpensive detection system that allows screening of large
parts of the population in rural areas. In this paper, we present
results produced by our TB screening system. We combine a
lung shape model, a segmentation mask, and a simple intensity
model to achieve a better segmentation mask for the lung.
With the improved masks, we achieve an area under the ROC
curve of more than 83%, measured on data compiled within a
tuberculosis control program.

I. INTRODUCTION

Tuberculosis (TB) is the second leading cause of death

from an infectious disease worldwide, after HIV [1], killing

at least 1.2 million people in 2010. With about one-third of

the world’s population infected with TB, and an estimated

nine million new cases occurring every year, TB is a major

global health problem. TB is caused by the bacillus My-

cobacterium tuberculosis. It typically affects the lungs but

can also affect sites outside the lungs. It spreads through the

air when people with active TB cough, sneeze, or otherwise

expel infectious bacteria. While mortality rates are high when

left untreated, drug treatment with antibiotics drastically

improves the chances of survival. Unfortunately, diagnosing

TB is still a major challenge nowadays, as diagnostic tests

are often too expensive or too slow.

Radiographs are an important part of any medical evalua-

tion for TB [2], among microbiological smears, cultures, and

skin tests. A reliable screening system for TB detection on

radiographs is therefore a big step toward more powerful TB

diagnostics. Generally speaking, TB-related abnormalities in

chest x-rays are diffuse, and discriminating between normal

anatomical structures and abnormal patterns is a hard prob-

lem. Manifestations of TB in chest x-rays are, for example,

effusions, nodules, and miliary patterns [3].

In collaboration with AMPATH (The Academic Model

Providing Access to Healthcare), which is a partnership

between Moi University School of Medicine in Kenya and

Indiana University, we plan to screen parts of Kenya’s

population for TB. Due to the large population and the

lack of adequate radiological services in rural Kenya, an
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automated and computer-aided screening system is essential.

Ideally, the system should allow medical personnel with little

or no radiological background to screen large numbers of

patients, so that at-risk individuals can be referred for further

evaluation and treatment.

This paper extends our previous work [4]. Now, we

evaluate our system on real-world data. We also use a

more sophisticated lung segmentation by combining multiple

segmentation masks. Using image processing techniques, we

describe how we differentiate between normal and patho-

logic chest x-rays, allowing us to screen for the presence

of tuberculosis and other lung diseases. We structure the

paper as follows: Section II briefly summarizes related work.

Section III describes the data sets we use for our experiments.

Then, Section IV describes our approach, including lung seg-

mentation, feature computation, and classification. Finally,

Section V presents our results, followed by the conclusions.

II. RELATED WORK

Despite the increasing number of publications dealing

with computer-aided diagnosis (CAD), only a few systems

have been published for TB detection in chest x-rays [5],

[6], [7], [8], [9]. In a recent survey, van Ginneken et al.

state that forty-five years after the initial work on computer-

aided diagnosis in chest radiology, there are still no systems

that can accurately read chest radiographs [10], [11], [12].

There is little doubt that more research is needed to meet

practical performance requirements. For example, Hogeweg

et al. combined a textural abnormality detection system

with a clavicle detection system to suppress false positive

responses [6]. Note that the clavicle region is a notoriously

difficult region for TB detection because the clavicles can ob-

scure manifestations of TB in the apex of the lung. Freedman

et al. showed in a recent study that an automatic suppression

of ribs and clavicles in chest x-rays can significantly increase

a radiologist’s performance for nodule detection [13]. A

cavity in the upper lung zones is a strong indicator that

TB has developed into a highly infectious state [7]. Shen et

al. therefore developed a hybrid knowledge-based Bayesian

approach to detect cavities in these regions automatically [7].

Xu et al. approach the same problem with a model-based

template matching approach and with image enhancement

based on the Hessian matrix [8].

For lung segmentation, several different approaches have

been proposed [14]. For example, van Ginneken et al. com-

pared various techniques for lung segmentation, including

active shapes, rule-based methods, pixel classification, and

various combinations thereof [15], [16]. Their result was that

pixel classification provided very good performance on their
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Fig. 1. X-rays from the JSRT database with segmentations for lung, heart,
and clavicles (left) and from the MC database (right).

test data. Another approach by Dawoud involves an iterative

segmentation method that combines intensity information

with shape priors [17].

III. DATA

We use two data sets of frontal chest x-rays for our

experiments: a set compiled by the Japanese Society of

Radiological Technology (JSRT) and a set from our local

Department of Health and Human Services, Montgomery

County, Maryland (MC).

The JSRT data set comprises 247 chest x-rays, among

which 154 x-rays are abnormal and 93 x-rays are nor-

mal [18]. Each of the 154 abnormal x-rays features exactly

one pulmonary nodule. All x-ray images collected have a size

of 2048x2048 pixels and a gray-scale color depth of 12 bit.

To augment the JSRT data, Ginneken et al. created the SCR

database (Segmentation in Chest Radiographs) [15]. For each

image in the JSRT database, the SCR database contains the

corresponding manual segmentations for the lung field, the

heart, and the clavicles. The left-hand side of Figure 1 shows

a typical x-ray from the JSRT database, with segmentations

for the lung field, the heart, and the clavicles superimposed.

We use the JSRT data to train our lung model (see Section IV-

A).

The MC data set is a small representative subset of

a large x-ray repository collected over many years under

the Montgomery County’s Tuberculosis Control Program.

Compared to the JSRT data set, which only contains nodules,

the MC set contains a wide range of abnormalities most of

which are TB-related. Each abnormal x-ray of the MC data

set comes with a record that contains the reading of an expert

radiologist. The MC data set contains 138 x-rays, among

which 80 x-rays are normal and 58 x-rays are abnormal with

manifestations of TB. All images are in 12-bit grayscale and

their dimensions are either 1005x1223 or 1223x1005. The

right-hand side of Figure 1 shows an abnormal example x-ray

taken from the MC data set. According to its corresponding

record, this x-ray shows extensive bilateral infiltrates, with a

large cavity in the right upper lobe and a moderate pleural

effusion on the left.

IV. APPROACH

For a given input x-ray, we first extract the lung field for

which we then extract a set of features for classification.

These steps are now discussed in more detail.

Fig. 2. Average lung mask (left) and another example x-ray from the MC
data set (right).

Fig. 3. Four random outputs (energy representations) of the Log Gabor
filtering at largest scale and at orientations of 80

◦, 70
◦, 120

◦, 110
◦ degrees

(from left to right).

A. Lung Segmentation

We use an average of three different masks for lung

segmentation: the intensity mask, the lung model mask, and

the Log Gabor mask. The intensity mask is simply the

complement of an x-ray. The intensity mask thus highlights

the dark parts of an image, which are more likely to be part

of the lung. The lung model mask is a probabilistic lung

shape model that we compute using the JSRT data set. The

left-hand side of Figure 2 displays the lung shape model as

a gray-scale image. The pixel intensities in this image are

the probabilities of the pixels being part of the lung field.

We then use a bilinear alignment of the lung shape model to

map the model to a given input x-ray.

The more complex Log Gabor mask is based on Log

Gabor Wavelets. It is a true binary mask and presents a lung

segmentation in its own right. Log Gabor filters have been

introduced as an improvement over Gabor filters to obtain

a larger spectral information while maintaining maximum

spatial localization. Log Gabor filters can be constructed with

arbitrary bandwidth, and the bandwidth can be optimized to

produce a filter with minimal spatial extent [19]. In [20],

Field defines Log Gabor filter as:

G(w) = e
−

log( w

w0
)
2

2 log( k

w0
)
2

, (1)

where w0 is the filter’s center frequency. In our previous

paper, we demonstrated how, after some minor tuning of Log

Gabor Wavelets, we can extract ribs from a chest x-ray [4].

Here, we use Log Gabor wavelets especially for the lung

segmentation. In particular, we perform lung segmentation

in three steps: In the first step, we apply a filter bank of

2 scales and 18 orientations to the input x-ray. Thus, the

image is scanned from 0◦ to 180◦ in 10◦ steps. The right-

hand side of Figure 2 shows another x-ray from the MC

data set. Figure 3 shows outputs for various orientations from

the convolution of our filter bank with this input image. In

Figure 4, on the left-hand side, we see the sum of the energy

outputs of the Log Gabor filter bank for the x-ray on the

right-hand side of Figure 2. In the second step, after the

Log Gabor filtering, we perform morphological operations

4979



Fig. 4. Energy output of the Log Gabor filtering (left) and final Log Gabor
mask (right).

(closing) on the thresholded, inverted energy image. Finally,

in Step 3, we search for regions (connected components) in

the center of the image, as we know that the lung fields are

two large regions close to the center of a chest x-ray. The

right-hand side of Figure 4 shows the final Log Gabor mask

for the input image on the right-hand side of Figure 2.

The final, overall lung segmentation mask is now the

average of the intensity mask, the lung model mask, and

the Log Gabor mask. To obtain a binary mask, we apply a

threshold of 0.5; every pixel with an intensity higher than

0.5 is considered part of the lung.

B. Classification

To measure normal and abnormal patterns in the seg-

mented lung field, we use a set of established shape- and

texture descriptors. We then use histograms to represent the

distribution of each descriptor across the lung field. The value

of each histogram bin is a feature, and all features together

form a feature vector that we input to our classifier. Through

empirical experiments, we found that using 32 bins for each

descriptor gives us good practical results. We therefore use

this number of bins for the experiments reported here. In

particular, we use the following features, which we describe

in more detail in [21]: intensity histograms, gradient magni-

tude histograms, a shape descriptor, a curvature descriptor,

the angle between the x-axis and the largest eigenvector, his-

tograms of oriented gradients, and local binary patterns [22].

To compute the eigenvalues of the Hessian matrix needed for

the shape and curvature descriptors, we use the multi-scale

approach by Frangi et al. in [23], [24]. With each descriptor

quantized into 32 histogram bins, our overall number of

features is thus 7 ∗ 32 = 224.

Using these features, we train a linear support vector

machine and classify a given input image into either normal

or abnormal. We also compute the distance of the input

pattern to the separating hyperplane of the SVM classifier

to obtain a confidence value. We can use this confidence

value to reject classifications that are borderline, which is

important for practical applications. We also use these values

for evaluation purposes, in particular to compute ROC curves

(see the next section).

V. RESULTS

We evaluate the overall performance of our system on

the MC data set. For each x-ray in the MC data set, we

compute the features listed in Section IV-B and concatenate

them into a single feature vector. We then apply a leave-one-

out evaluation scheme, using the SVM-classifier. According

1 Int. Mask

2 Model Mask

3 Log Gabor Mask

4 Int. Mask

   + Model Mask

5 Int. Mask

   + Log Gabor Mask

6 Model Mask

   + Log Gabor Mask

7 Int. Mask

   + Model Mask

   + Log Gabor Mask

Fig. 5. AUC values for different segmentation combinations.
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Fig. 6. ROC curve for the system with combined segmentation.

to the leave-one-out scheme, we classify each feature vector

(x-ray) in the MC data set with a classifier trained on the

remaining feature vectors (x-rays) of the MC data set. We

thus train as many classifiers as there are x-rays in the MC

data set (138 altogether). Furthermore, we perform leave-

one-out evaluations for all possible combinations of the

segmentation masks mentioned above. Figure 5 shows the

AUC (area under the ROC curve) for each combination. The

y-axis of Figure 5 shows the AUC value, while the x-axis

lists the different combinations. We see that both the intensity

mask and the model mask produce an AUC value higher than

75% (see the first two columns in Figure 5). Using only

the Log Gabor mask leads to a lower AUC (third column).

A combination of the intensity mask with the model mask

results in the lowest overall AUC value (Column 4). We

also see that the Log Gabor mask reduces the performance

when used in combination with either the intensity mask

or the model mask (Column 5 and 6). However, the best

performance is achieved by combining all masks together. In

this case the AUC value is 83.12% and the overall accuracy

of the system is almost 75%. Thus, the Log Gabor mask

contains information complementary to the other masks,

while the intensity mask and the model mask interfere with

each other. Figure 6 shows the ROC curve for our system

when we combine all segmentation masks. We see that

for very low false positive rates of less than 10% (high

specificity), we would miss about 50% of the true positive

cases (recall). While this number seems high it is consistent

with the few results that have been reported in the literature

for different data sets and for different methods. Most papers

evaluate only part of the detection problem, such as lung

segmentation or cavity detection [8], [7]. Judging by the ROC

curves, the performance of our system is comparable with

the performance of the system reported in [5], [25]. Only
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Hogeweg et al. recently reported a higher AUC value in [6].

They used a much larger training set for their experiments,

though. For a fair comparison of all systems, we would have

to evaluate each system on the same data set. Unfortunately,

neither the training sets in [5], [25], [6] nor our own MC

data set is publicly available.

VI. CONCLUSIONS

We are developing an automated system that screens chest

x-rays for manifestations of TB and other lung diseases. For

a given input chest x-ray, we first segment the lung field

using a combination of an intensity mask, a statistical lung

model mask, and a Log Gabor mask. We then extract a

set of features for shapes, curvatures, and textures from the

segmented lung field. Using the extracted features, we train

a support vector machine that distinguishes between normal

and abnormal x-rays. When evaluated on typical data from a

TB control program, our system provides an AUC of 83.12%.

This performance is comparable with other systems reported

in the literature.

A feature of our approach is that we combine different

masks to achieve a superior lung segmentation. It is also

remarkable that we can apply a lung model trained on a

Japanese data set to a very different data set (MC). We do not

evaluate our segmentations by comparing them pixel-wise

with a ground-truth segmentation, like most other researchers

have done. Instead, we evaluate the performance of our

segmentations directly on our MC data set, which we think

is more practical.

Future steps to improve the performance, and increase the

recall of our screening system, include improving the lung

segmentation even further and using additional data that we

are going to collect on-site in Kenya. For instance, we could

use a dynamic lung model alignment instead of a static one,

or combine even more segmentation masks. We will also

consider partitioning the extracted lung field into regions and

using local features for classification.
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