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Abstract 
When the air traffic demand is expected to 

exceed the available airport’s capacity for a short 
period of time, Ground Stop (GS) operations are 
implemented by Federal Aviation Administration 
(FAA) Traffic Flow Management (TFM). The GS 
requires departing aircraft meeting specific criteria to 
remain on the ground to achieve reduced demands at 
the constrained destination airport until the end of the 
GS.  This paper provides a high-level overview of the 
statistical distributions as well as causal factors for 
the GSs at the major airports in the United States. 
The GS’s character, the weather impact on GSs, GS 
variations with delays, and the interaction between 
GSs and Ground Delay Programs (GDPs) at Newark 
Liberty International Airport (EWR) are investigated. 
The machine learning methods are used to generate 
classification models that map the historical airport 
weather forecast, schedule traffic, and other airport 
conditions to implemented GS/GDP operations and 
the models are evaluated using the cross-validations. 
This modeling approach produced promising results 
as it yielded an 85% overall classification accuracy to 
distinguish the implemented GS days from the 
normal days without GS and GDP operations and a 
71% accuracy to differentiate the GS and GDP 
implemented days from the GDP only days. 

1. Introduction 
Air traffic congestion at the major commercial 

airports has been a serious problem in the National 
Airspace System (NAS), especially during inclement 
weather. FAA’s TFM manages air traffic flow to 
balance the air traffic arrival demand against airport 
capacity in cases of adverse weather or other 
circumstances while the latter is reduced. At the 
airports in the United States, when the air traffic 
demand is estimated to exceed the airport’s capacity 
for a short period of time, a GS, one of tactical TFM 
actions, may be enacted by FAA air traffic control.  

A GS is a procedure requiring aircraft that meet 
specific criteria to remain on the ground at their 
origin airports, to ensure that aircraft destined for the 
affected airport are not released until the operational 
situation allows [1]. Normally GSs are reactive to the 
current situation when traffic control is unable to 
safely accommodate additional aircraft in the system.  
They are most frequently used to preclude extended 
periods of airborne holding or to prevent the airports 
from reaching gridlock. GSs are considered to be one 
of the most restrictive Traffic Management Initiatives 
(TMIs) and they override all other TMIs that are used 
to manage air traffic flows in the National Airspace 
System (NAS).   

When the projected arrival traffic demand 
exceeds the airport capabilities for a long period of 
time, GDPs are implemented by TFM as strategic 
actions. A GDP is a procedure requesting delays of 
some flights at their departure airport in order to 
reconcile demand with capacity at their arrival 
airport. GDPs are usually a result of adverse weather 
conditions. Unlike GS, a GDP is more sophisticated 
and user-friendly; TFM issues not only GDP 
parameter, such as GDP start time, GDP duration, 
etc., but also an Expected Departure Clearance Time 
(EDCT) assigned for each affected flight. Therefore 
the airlines know the amount of delay for each 
aircraft and could manage its EDCT in their best 
interests. Without the information for the aircraft’s 
EDCT during GS operations, it is very hard for any 
airline to determine the departure times for GS 
affected flights. Furthermore, if the projected time 
during a GS is longer than that expected due to 
inaccurate prediction of demand and forecast, TFM 
may extend the GS duration, use multiple GSs or 
make a TMI transition from a GS into a GDP. These 
TMI’s interactions could cause some results less 
predictable and desirable [2].  

In recent years, a number of weather induced 
TMI studies have been emerged in the literatures 
[3-7].  In spite of that, to the best of the author’s 
knowledge, there have not been any published studies 
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seeking to analyze and predict whether a GS 
operation is necessary or not.  This study provides a 
high-level overview of the GS statistical 
distributions, cause factors, and the weather impacts 
on GSs at the major airports in the United States. The 
GS’s characters, GS variation with airport demands 
and delays, and the interactions of GSs and GDPs at 
Newark Liberty International Airport (EWR) were 
investigated. Machine learning classification 
algorithms were employed for providing predictions 
about whether a particular GS alone or GS and GDP 
combined may be applied to manage arrivals destined 
for EWR airport. 

The paper makes the use of Ensemble Bagging 
Decision Tree (BDT) classifications to predict GS or 
GS/GDP operations during bad weather. The strategy 
is to develop predictive BDT models utilizing 
historical GS, GDP, and weather forecast training 
data, and then to apply these models on test data to 
suggest whether a GS or GS/GDP should be planned. 
The prediction outlooks are then discussed.   

The data mining algorithm and cross validation 
approach is described in Section 2.  The National 
Traffic Management Log (NTML), the FAA Aviation 
System Performance Metrics (ASPM), and Rapid 
Updated Cycle (RUC) data sources are outlined in 
Section 3.  The historical analysis of GS operations is 
presented in Section 4, while the data mining 
predictions are described in Section 5.  Finally a 
summary of the results is submitted in Section 6. 

2. Approach and Modeling 
Methodology 

The Ensemble Bagging Decision Tree model 
(BDT) was used to predict the requirement of GS 
operations on both normal and GDP implemented 
days.  The supervised machine learning was applied 
on training data to generate the BDT models and the 
models were validated by the cross validation 
methods. 

Ensemble Bagging Decision Tree 
Ensemble methods adopt multiple machine 

learning decision tree models to obtain a better 
predictive performance than that any of its 
individual constituent members can produce. 
Bagging stands for bootstrap aggregation. Bootstrap 

aggregation is a machine learning ensemble meta-
algorithm designed to improve the stability and 
accuracy of machine learning algorithms used in 
statistical classification and regression [8]. In 
classification scenarios, the random resampling 
procedure in bagging induces some classification 
margin over the dataset. Additionally, when bagging 
is performed in different feature subspaces, the 
resulting classification margins are likely to be 
diverse, which is essential for an ensemble to be 
accurate. The method takes into account of the 
diversity of classification margins in feature 
subspaces to enhance the behavior of bagging. First, 
it studies the average error rate of bagging, converts 
the task into an optimization problem for determining 
some weights for feature subspaces. Then, it assigns 
the weights to the subspaces via a randomized 
fashion in classifier construction. Experimental 
results demonstrate that the ensemble method is 
robust to classification noise and often generates 
superior predictions than any single classifier can do 
(see for example, [9-10]). In this study, the BDT 
classification model is implemented using the 
MATLAB TreeBagger function [11].  

Several features of bagged decision trees make 
TreeBagger a unique algorithm. Drawing the same 
number of samples out of all training observations 
with replacement is expected to have a 63.2% of 
unique observations for a large number of training 
data. So the process omits on average 36.8% of 
observations for each decision tree, called as "out-of-
bag" observations. These "out-of-bag" observations 
can then be used to estimate the feature importance 
by randomly permuting out-of-bag data across one 
input variable at a time and estimating the increase in 
the out-of-bag error due to this permutation. The 
larger the error increases, the more important the 
feature is. Thus, the feature importance can be 
obtained in the process of training, which is an 
attractive character of the TreeBagger.  

Model Validation Methods 
The machine learning models are constructed 

from an initial random state and ending with a trained 
state using training data sets and are tested or 
validated using a different data set. There are a 
number of validation approaches available. Among 
them, the very popular cross-validation approach has 
been frequently used by researchers. 
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In cross-validation, a series of BDT models are 
constructed each time by dropping a different part of 
the data from the training set and applying the 
resulting model to the dropped data to predict the 
target. The merged series of predictions for dropped 
or test data are checked for accuracy against the 
observations. In one version of the cross-validation 
approach, called group cross-validation approach, 
data are divided into N groups. A total of N models 
are then constructed one by one using N-1 data 
groups for model training, and the remaining group is 
used for testing. At the end of this procedure, all 
predictions assembled from the dropped cases are 
compared with the observed targets to compute 
validation of model error for the cross-validation 
result. The ten-fold cross-validation is used in this 
study. 

Performance Measures 
A number of methods are available to evaluate 

the performance of binary classifiers. For a classifier 
with any given discrimination threshold, the number 
of cases correctly and incorrectly classified can be 
computed. This gives a confusion matrix with four 
numbers as shown in Table 1. YY is the number of 
true positives, i.e., how many cases are estimated by 
classifier as “Yes” events, which actually are “Yes” 
events. Similarly we can define NN as the number of 
true negatives, NY as the number of false positives 
and YN as the number of false negatives.  Using the 
statistics generated in Table 1, some frequently 
adapted classifier performance evaluation methods 
are described briefly below. More information about 
these methods can be found, for example, in Refs. 
[12-13]. 

Table 1. Confusion Matrix for Dichotomous 
(“Yes”/”No”) Events 

 Actual Observation 
Yes No 

Classifier 
Prediction 

Yes YY YN 
No NY NN 

The Overall Accuracy Rate (OAR) is defined as 
OAR= (YY+NN) / (YY+YN+NY+NN). It has a range 
of 0 to 1. “1” is the best classification performance 
score. The probability of detection (POD), also called 
as precision, is the proportion of “Yes” observed 
events that were correctly predicted, POD=YY / 
(YY+NY). The probability of false alarm (PFA), also 

called as false alarm ratio, is the proportion of “No” 
observed events that were not correctly estimated as 
“Yes” predicted events, PFA = YN / (YY + YN). Its 
values also range from 0 to 1. If YN= 0, then the 
score goes to 0, the best one can expect. The Critical 
Success Index (CSI) is the proportion of true 
positives that were either estimated or observed. CSI 
= YY / (YY + YN + NY). Its values range from 0 to 1 
with a value of 1 indicating a perfect classification 
performance score. The PFA can be controlled by 
deliberately under-predicting the event; such a 
strategy risks increasing the number of missed 
events, which is not considered in the PFA. For this 
reason, the POD and the PFA should both be 
considered for a better understanding of the 
performance of the forecast. 

The OAR, POD, PFA, and CSI classifier 
performance measures are used in this research. 

3. Data Used in the Study 
This section describes FAA National Traffic 

Management Log (NTML), the FAA Aviation 
System Performance Metrics (ASPM), and Rapid 
Updated Cycle (RUC) weather forecast analysis data. 
The FAA NTML provides a single system for 
automated coordination, logging, and communication 
of Traffic Management Initiatives (TMIs), such as 
GS and GDP events, throughout the National 
Airspace System. The ASPM source provides airport 
specific information such as arrival delays, schedule 
arrival, and arrival demand for the major US airports. 
The RUC was a National Oceanic and Atmospheric 
Administration (NOAA) operational weather 
prediction system which generated high-frequency 
numerical weather forecast until May, 2012 [14]. All 
data over the years 2007 through 2009 were derived 
from these data sources.  

GS and GDP Event Data 
More than 8000 GS operation data at the major 

US airports were collected for the years 2007-2009 
from the NTML database. The data were used for a 
high-level statistical study on GS airport distributions 
and causal factors. 

Among these US airports, EWR airport has one 
of the highest GS and GDP event rates over the years 
2007-2009. During these three years, GSs and GDPs 
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were implemented at EWR approximately 56% and 
54% of the days, respectively. On these impacted 
days, the actual durations were about 1.5 hours and 9 
hours on average for GS and GDP, respectively. 

The EWR GS and GDP data were collected for 
each hour and for each day for the years 2007-2009. 
The hourly or daily data were partitioned into four 
sets based on whether the GS and GDP operations 
during a particular hour or day were carried out or 
not at EWR. The four groups are labeled as follows: 
GS/GDP for the one in which both GS and GDP 
carried out; GS/Non-GDP for the one with GS only; 
GDP/Non-GS for that GDP implemented without 
GS; and Non-GS/Non-GDP as the one without both 
for the hour or day investigated. Both hourly and 
daily data were used in GS statistical studies. Only 
the daily data were used to generate and test the 
classification model for predicting the GS operations.  

ASPM Data 
Observed airport hourly delays, schedule arrival, 

arrival demand, airport arrival rates (AAR), and 
terminal weather data were collected from the ASPM 
database. AAR is a dynamic parameter specifying the 
number of arrival aircraft that an airport, in 
conjunction with terminal airspace, can accept under 
specific conditions throughout any consecutive hour. 
Actual hourly airport surface weather observation 
reports (METAR) including wind, ceiling, visibility, 
and meteorological condition flags are predominantly 
used by air traffic controller in air traffic 
management and by meteorologists in the weather 
forecast modeling. ASPM data were preprocessed to 
convert character records to numerical values with 
missing data being filtered out. The processed ASPM 
data were used in the statistical analysis and also as 
inputs for generating and validating the machine 
learning GS models. 

RUC Weather Data 
The RUC weather data were designed to provide 

accurate numerical forecast guidance about severe 
weather and hazards for aviation users for the next 
several hour time period. RUC assimilates recent 
weather observations aloft and at the surface to 
provide hourly updates of current conditions and 
short-range forecasts using a sophisticated mesoscale 
model. The RUC model uses optimum interpolation 

analyses and incorporates the surface analysis within 
3-D analysis to produce 3-D grids which cover a 
geographical domain over much of North America, 
including the entire contiguous United States and 40 
levels in vertical. The RUC grid, used for the 
modeling, has 40-km horizontal resolution with 151 x 
113 grid points on surface.  

  RUC weather forecasts in 6-hour look-ahead 
time periods over the years 2007 through 2009 were 
collected from the NOAA servers. Each forecast has 
151X113 grid points; there are 315 weather 
parameters per grid point. The data were 
preprocessed to select the grid point that is the closest 
to EWR. Wind and storm moving speeds and 
directions were calculated utilizing their RUC U and 
V components. Only ten weather parameters were 
chosen based on the EWR GS weather causal factors 
(wind and thunderstorm) and the feature importance 
analysis (see Section 2) using the TreeBagger [15]. 

Table 2 lists the 10 RUC surface weather 
parameters and the numbers associated with them. 
These picked parameters carry very important 
weather information for air traffic control. These 
variables can be categorized as follows: pressure 
(#1), wind and max wind (#2 to #5), visibility (#6), 
storm (#7 to #8), and lifted indexes (#9 to #10) which 
offer energy information on the intensities of severe 
weather. 

Table 2. RUC Forecast Parameters 

# RUC Forecast Parameters 
1 Surface Pressure Tendency (PTEND) [Pa/s] 
2 10 m above ground Wind Speed (WSGRD) 

[m/s] 
3 max wind Pressure (MWPRES) [Pa] 
4 max wind Speed (MWS) [m/s] 
5 Surface Gust Wind Speed (GUST) [m/s] 
6 Surface Visibility (VIS) [m] 
7 Surface Storm Relative Helicity (HLCY) 

[m^2/s^2] 
8 Surface Storm Motion Speed (SSMS) [m/s] 
9 Surface Lifted Index (LFTX)[K] 
10 Surface Best Lifted Index to 500 mb (BLI) 

[K] 
 



 

 7A2-5 

4. Statistics of Ground Stops 
More than 8000 GS events for all US airports 

from the year 2007 through 2009 were collected from 
NTML. This data was used to generate the 
distributions reflecting the GS activities at the US 
airports. Section 4.1 describes the activity levels as 
well as the underlying factors that normally drive the 
events. In the remainder of this section, historical GS 
analysis at EWR airport is presented in terms of the 
time series distribution, demand and delay analysis, 
and the usage in conjunction with GDP programs.  

 GS Analysis of the U.S. Airports 
A distribution of the GSs at U.S. airports over 

years 2007-2009 is given in Figure 1.  The top six 
impacted airports were Newark Liberty International 
Airport (EWR), LaGuardia Airport (LGA), Atlanta 
International Airport (ATL), Chicago O’Hare 
International Airport (ORD), Philadelphia 
International Airport (PHL), and John F. Kennedy 
International Airport (JFK). They accounted for 13%, 
9%, 8%, 7%, 7%, and 6% of all GSs respectively and 
the other airports (with less than 4% for each) took 
up the remaining 50% of the operations.   

 

Figure 1. GS Distribution at the U.S. Airports 

The causal factors, as recorded in the NTML 
database are shown in Figure 2.  As can be seen from 
this plot, “Weather” was the predominant stated 
cause (80%) for the GSs at all airports.  For the other 
“non-weather” causal factors, the presence of 
“Volume” related GSs at these airports was also 
noteworthy, since they account for more than 12% of 

all GSs.  In this figure, “Volume” is used to indicate 
the air traffic congestion at the arrival airports.  

 

Figure 2. Causal Factors for GSs at the U.S. 
Airports 

The diverse weather causes at the sub-category 
level for the U.S. airports through the years 2007-
2009 are shown in Figure 3. It demonstrates that the 
most serious weather component for GS operations 
was the “Thunderstorms” which accounted for 46% 
of weather impacted GSs. 

 

Figure 3. Weather Subcategory Causal Factors 
for GSs at the U.S. Airports 

The diverse weather causes for each of the top–
six U.S. airports over the years 2007-2009 are shown 
in Figure 4. The weather causal factors were different 
for different airports. For GSs at EWR airport, the top 
three causal factors were “Wind” with 41%, 
“Thunderstorms” with 26%, and “Low Ceilings/Fog” 
with 20% of the total number of GSs caused by 
weather.
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Figure 4. Weather Causal Factors for GSs at the 
Top 6 U.S. Airports 

Table 3. GS Durations (hours) for the Top 6 
Airports 

 
Airport 

Weather Non-Weather 
Average 
Planned 
Duration 

Average 
Actual 

Duration 

Average 
Planned 
Duration 

Average 
Actual 

Duration 
EWR 1:14 1:30 1:07 1:08 
LGA 1:12 1:37 1:04 1:01 
ATL 1:06 1:11 1:05 0:54 
ORD 1:09 1:20 1:01 1:15 
PHL 1:11 1:24 1:04 0.58 
JFK 1:18 1:49 1:09 1:10 

The GS start time and planned stop time were 
issued by TFM when a GS was implemented. The GS 
planned duration is defined as the difference between 
the GS planned stop and the GS start time. During a 
GS, these program parameters might need to be 
revised because of changing weather or operation 
conditions. GS revisions may lead to further GS stop 
time substitutions and the actual duration is the time 
duration between the actual GS stop time and the GS 
start time. Table 3 shows the average of planned and 
actual durations for the GSs caused by weather and 
non-weather at the top six airports. The averages of 
GS durations were all around one hour. For those 
GSs caused by weather for the six airports, the 
averages of actual durations were up to 30 minutes 
longer than that originally planned. The differences 
between averages of actual and planned durations for 
those GS caused by runway/equipment, volume, or 

other non-weather reasons were relatively small, 
around a few minutes.  

The remainder of this paper focused on the study 
of those GSs implemented at EWR airport where the 
highest GSs incidence of 13% took place, as shown 
in Figure 1. 

EWR GS Statistics 
Temporal usage statistics (e.g., monthly, daily 

and hourly) for GS operations at EWR are exhibited 
in Figure 5.  

 

Figure 5. Temporal Usage Statistics for GSs at 
EWR Airport 

 The data were divided in terms of weather (blue 
bars) and non-weather (red bars) events.  Starting 
with the monthly usage statistics, which appears in 
the upper-most image in Figure 5, it is noted that 
there tends to be more weather-related GS operations 
in the summer months (June through August), while 
“Non-weather” related GS operations are almost flat - 
no consistent pattern of monthly peaking. In terms of 
the weekly usage of GS operations at EWR (see the 
middle image in Figure 5), the number of operations 
was fairly constant with a noticeable decreased in the 
usage on Saturdays, which was to be expected since 
the arrival demand also tended to be lower on 
Saturdays.  Finally, the hourly patterns of the profiles 
(see the bottom image in Figure 5) are fairly 
apparent, i.e. the GS operations tended to peak 
between 10:00am and 8:00 pm local time (Eastern 
Daylight Time, EDT), which coincided with the more 
arrivals destined for the airport.   
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Using the TMI report time as the TMI issue 
time, the time difference between the TMI 
implemented start time and the TMI issue time may 
indicate how well the TMI action is planned. The 
time differences for the EWR GS events and GDP 
events without GS interactions from the year 2007 
through 2009 are shown in Figure 6(a) and (b) 
respectively. The fact that the GS at EWR frequently 
started at the issue time (see in Figure 6(a)) suggests 
that in general the GS was the reactive response when 
a sudden and unexpected imbalance of airport 
demand and capacity occurred. In contrast to GS, the 
EWR GDP issue time was earlier than GDP start time 
by two hours on average (see Figure 6(b)).  

 

Figure 6. The Time Difference between Start Time 
and Issue Time for GSs (a) and GDPs (b) at EWR 

Airport 

The GS planned duration and actual duration 
versus the GS start time for all EWR GS operations 
from 2007 through 2009 are shown in Figure 7. The 
time distributions of GS planned and actual durations 
are list in Table 4. As expected, the GS planned 
duration was relative short, it was less than 2 hours 
98% of time (see Table 4), and not influenced by the 
start time (Figure 7(a)).   However, the actual 
durations often extended and occasionally (with a 4% 
of time, see Table 4) lasted for 3 to 6 hours 
(Figure 7(b)).   

 

Figure 7. EWR GS Planned (a) and Actual (b) 
Duration versus GS Start Time 

Table 4. EWR Planned and Actual GS Time 
Distributed Percentages 

GS Counts 
Percentage 

< 1 
Hour 

>=1 & 
< 2 Hour 

>=2 & 
<3 Hour 

>=3 
Hour 

Planned 
Duration 19% 79% 2% 0% 

Actual 
Duration 27% 61% 8% 4% 

GS Variations with Demands and Delays 
Conceptually, GS or GDP operations are used 

during the hours with imbalance of arrival demand 
and airport capacity. It may lead to higher delays for 
the airport arrivals.  To test this, the EWR demand 
and delay data from 2007-2009 were partitioned into 
four sets based on whether the GS and GDP were 
operated or not during the hour.  

The EWR hourly GS and GDP count 
percentages from local time 5 am to midnight over 
2007-2009 are listed in Table 5. During this time 
period, it can be seen that non-GS and non-GDP 
incidence accounted for 68% of time; followed by 
GDP only operations at 20% and GS with/without 
GDP actions each occupied only a small portion, i.e. 
6% of time. 

Table 5. EWR Hourly GS and GDP Count 
Percentages 

Hour 
Counts 

GS/ 
GDP 

GS/ 
Non-
GDP 

GDP/   
Non-
GS 

Non-GS/ 
Non-
GDP 

Percentage 6% 6% 20% 68% 
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The ratios of EWR arrival demand over the 
airport capacity, AAR, are presented in Figure 8 
where the histogram (a) presents the hourly ratio 
counts for the hours with both GS and GDP operated 
(GDP/GS), (b) or (c) for the hours with GDP only 
(GDP/Non-GS) or GS only (GS/Non-GDP) events, 
and (d) for the hours without both GDP and GS 
operations (Non-GDP/Non-GS). The ratio would be 
greater than one when the arrival demand exceeds the 
airport capacity. Figure 8 reveals that the ratio of 
EWR demand and AAR was much larger than 1 
during GDP operation hours, just above 1 during GS 
implemented hours, and surely, the ratio on the 
normal days without any GDP and GS hours was 
peaked at less than 1. The fact that the ratio for the 
GDP hours is larger than that for the GS hours 
suggests that the GSs were mostly required for 
resolving relatively small imbalances while GDPs 
were used to recover the arrival demands. 

 

Figure 8. The Ratio of Hourly Demand and AAR 
for EWR GS and GDP Events 

The hourly scheduled arrival delays in minutes 
are presented in Figure 9 where the histogram (a) is 
for GDP/GS hours, (b) or (c) for GDP/Non-GS or 
GS/Non-GDP hours, and (d) for Non-GDP/Non-GS 
hours. Figure 9 shows that as anticipated, the arrival 
delays during GDP hours were greater than that from 
GS only delays, and naturally, the corresponding 
delays without GDP and GS were the least among all.  

 

Figure 9. Effect of GSs and GDPs on EWR Hourly 
Schedule Arrival Delays 

The airborne delay minutes are presented in 
Figure 10 where the histogram (a) is for GDP/GS 
hours, (b) or (c) for GDP/Non-GS or GS/Non-GDP 
hours, and (d) for Non-GDP/Non-GS hours. 
Figure 10 reveals that the airborne delays during GS 
implemented hours were greater than the delays 
during GDP hours. And the airborne delays for non-
GDP/non-GS hours were similar to the GDP/non-GS 
hours.  The fact that the GS involved airborne delays 
were longer than that for other cases signifies that the 
implementation of the GS was affected by the 
airborne delays and was used to preclude extended 
period of airborne holding for the arrivals destined to 
the airport.  

 

Figure 10. Influence of GSs and GDPs on EWR 
Hourly Airborne Delays 

GS and GDP Interactions 
The EWR GDP time durations were about nine 

hours on average [5], so only one GDP could be 
implemented per day (from local time 2 AM to next 2 
AM) for the years 2007-2009. The GSs were much 
shorter; sometimes multiple GSs could be enacted on 
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the same day. The EWR daily GS/GDP 
implementation percentages for the years 2007-2009 
with 1096 days in total are listed in Table 6. It shows 
that there’s a 56% of days on which GSs were 
enacted; a 35% of days that both GS and GDP were 
implemented; a 25% of days that none of them 
required, and 21% and 19% of days for GS only and 
GDP only operations, respectively.  

Table 6. EWR Daily GS and GDP Percentages 

Days 
GS/ 
GDP 

GS/ 
Non-
GDP 

GDP/ 
Non-
GS 

Non-GS/ 
Non-
GDP 

Percentage 35% 21% 19% 25% 
The EWR daily GS count percentages on those 

days with GDP (35% in Table 6) and without GDP 
(21% in Table 6) over 2007-2009 are listed in 
Table 7.  It displays that on GS/GDP and GS/Non-
GDP days, the percentages that multiple GS incidents 
occurred are 42% and 48% times, respectively. 
Meanwhile more than three GS activities were 
operated at 3% times regardless whether GDP 
happened or not. Counting all multiple GS cases 
together, they were carried out a 25% of days 
(35%*42%+21%*48%).   

Table 7. EWR GS Counts/Day Percentages 

GS Counts/Day 1 2 3 >3 
GDP Day (35%) 58% 29% 10% 3% 
Non-GDP (21%) 52% 31% 14% 3% 

Four typical GS implemented days during the 
summer of 2008 are shown in Figure 11. The time 
along the x axis shown in the figure ranges from 2 
AM to next 2 AM EDT. The red lines in the figure 
represent the GS events and the blue lines indicate 
the GDP events. The top two plots in Figure 11 
depict multiple GS activities on 8/18/2008 and 
8/19/2008 when no GDP occurred. On 8/18/2008, the 
first GS started (red line jumped from 0 to 1) at 13:34 
local time (EDT) and ended at 14:54 (dropped from1 
to 0); the second one started at 16:05 and ended at 
17:09 (see the top image in Figure 11). On 8/19/2008, 
three GSs (13:55-14:39, 15:20-16:55, and 17:50-
19:10) were implemented on the day (see second 
histogram from the top in Figure 11).  

The bottom two diagrams show the events 
happened on the two ordinary GS/GDP days one on 
6/18/2008 and the other on 7/17/2008. There were 
two GSs implemented on 6/18/2008 and three GSs on 
7/17/2008. From the plot for the incidence on 
6/18/08, the GDP started from 12:33 ended at 00:38 
on the next day. The two GSs (15:48-19:30 and 
21:01-22:30) were enforced during GDP hours. From 
the 7/17/2008 image, the GDP was started at 19:30 
and continued until 00:59 the next day. The three 
GSs (12:09-12:54, 15:09-16:19, and 17:30-19:45) 
were implemented before the GDP. 

 

Figure 11. Four Examples of the Multiple GS 
Implemented Days during the summer of the Year 

2008 

If multiple GSs arise together very closely, it can 
induce the degree of uncertainty on the operations of 
the affected aircraft. To study the impact of the 
multiple GSs, two variables are introduced in order to 
characterize the closeness of the GSs.  The first one is 
the sum duration for multiple GSs defined as the sum 
of GS durations. The second is the distributed 
duration denoted as the difference between the end 
time of the latest GS and the start time for the earliest 
GS. If the sum duration value is closed to distributed 
duration, the multiple GSs are not far apart. The 
multiple GSs distributed duration vs. the sum 
duration for GDP and Non-GDP days are shown in 
Figure 12 (a) and (b).  The distributed durations are 
clustered closely on GS/non-GDP days, whereas the 
plot is more dispersed on GS and GDP days.
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Figure 12. EWR GS Distributed Duration vs. Sum 
Duration for GS/Non-GDP Days (a) and GS/GDP 

Days (b) 

The enacted GSs before or during GDP events 
can have some influence on the GDP planned 
variables, such as the GDP issue time, start time and 
the GDP planned durations. Figure 13 shows the 
EWR GDP planned duration vs. GDP start time for 
GS days (a) and non-GS days (b) for the years 2007-
2009. The figure reveals that the GDP can start 
anytime during the GS/GDP days, however the GDP 
were only enacted no later than 2:30 pm local time 
during the GDP/Non-GS days. On those GS/GDP 
days, the GDPs starting after 2:30 pm accounted for 
17% of time. 

 

Figure 13. EWR GDP Planned Duration vs. GDP 
Start Time for the GS/GDP Days (a) and for the 

GDP/Non-GS Days (b) 

Figure 14 displays the time difference between 
the GS start time and GDP start time for GDP started 
after 2:30 pm local time (a) and before 2:30 pm (b) 
on the GDP/GS days at EWR during the years 2007-
2009. Figure 14(a) shows that the all GSs were 

started early and then transformed into a GDP on the 
GS/GDP days when GDP started after 2:30pm (for 
example, see 7/17/2008 in Figure 11). This happened 
on 6% of the days investigated (35%*17%). In cases 
where GDP events started before 2:30 pm (see 
Figure 14(b)), there was a roughly 25% of time in 
which the GSs took place at least half an hour earlier 
than the GDP. This appeared on about 7% of the days 
studied (35%*83%*25%). 

 

Figure 14. The Difference of GS Start and GDP 
Start Time for EWR GS/GDP Days with GDP 
Start Time after 2:30pm (a) and At or Before 

2:30pm (b) 

Figure 15 shows the time differences between 
the GDP start and issue times on the GDP/GS days 
with the GDP starting (a) after 2:30 pm local time 
and (b) at or before 2:30 pm at EWR during the years 
2007-2009. The time difference of two hours on 
average between the GDP issued and the GDP 
implemented time on GDP/Non-GS days (see 
Figure 6(b)) indicates that the GDP events were well 
planned without the GS appearance. In contrast to 
GDP/Non-GS days, on GS/GDP days, the GDP issue 
time were not much earlier than the GDP start time, 
especially for the case shown in Figure 15 (a). The 
noticeable zero peaks in Figure 15(a) and (b) suggest 
that the GDPs were implemented at the same time as 
the GDP issue time when TFM made the transition 
from a GS into a GDP. 
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Figure 15. The Time Difference between GDP 
Start Time and Issue Time for GDP/GS Days with 

GDP Start Time>2:30pm (a) <=2:30pm (b) 

As a summary, the following observations of the 
EWR GSs over the years 2007-2009 were made from 
the statistical analysis presented in this section: 

GSs were enacted reactively to an unexpected 
imbalance of airport demand and capacity and used 
to preclude extended airborne holdings. 

12% of the actual GS durations were longer than 
2 hours and 4% of them were between 3 and 6 hours.  

The multiple GSs were enacted in 25% of the 
days.  

35% of the days in the three years had GSs and a 
GDP implemented on same days. About 13% of 
them, TFM made a TMI transition from a GS into a 
GDP event.  

These observations demonstrate that the GS is 
an important TFM action for reducing the imbalance 
of airport demand and capacity. However the 
findings that the actual GS durations frequently 
extended from the planned ones, along with the facts 
that multiple GSs often necessary, and some 
transformed into GDPs occasionally, made the 
predictability of GS operations difficult at EWR 
airport. In order to better estimate and manage the 
requirement for the GS handling, the BDT model 
trainings and validations are presented in the 
remainder of this study in an attempt to forecast the 
GS operations based on the past experience. The 
methods may have potential in helping the TFM 
specialists to identify the better operations to control 

the air traffic destined to the constrained EWR 
airport.  

5. Classification Results 
This section contains the classification results 

obtained using the Ensemble Bagging Decision Tree 
models to (1) predict the usage of GS operations on 
the Non-GDP days, to (2) forecast the GDP usage on 
the Non-GS days, to (3) distinguish the same day 
usage of both GS and GDP operations from the 
normal days (Non-GS/Non-GDP), and to (4) assess 
the usage of GS operations on the GDP days. In all 
four cases, supervised machine learning was used to 
train the BDT binary classification models, and the 
model validation was accomplished with ten-fold 
cross validation. 

In this analysis, the “prediction start time” is 
taken as the hour one hour earlier than the start time 
of GS or GDP whichever came first. For example, 
12:00 pm was used as the prediction start hour on 
8/18/2008 (see in Figure 11, the earliest GS began at 
13:34). On the normal days (Non-GS/Non-GDP), 
11:00 am EDT, just before the start of heavy air 
traffic at EWR, was used as the prediction start hour. 
The BDT models were trained and tested by using the 
ASPM EWR airport conditions, ASPM EWR 
terminal METAR weather data, 6-hour look-ahead 
EWR schedule arrival, as well as EWR 6-hour RUC 
forecast data at the prediction start hour as inputs. 
Note in contrast to that GS issue time was the same 
as the GS start time on average; the prediction start 
time is always selected at the hour earlier than the GS 
start by at least an hour. 

Prediction of GS Days 
The ability to predict the GS requirement days 

may have potential to aid TFM in preparing for the 
situations. In order to estimate if GSs were required 
or not on a given non-GDP day, the non-GDP days 
were grouped into two classes labeled as “Yes” and 
“No” respectively. The “Yes” class includes those 
when at least one GS was required, while the class 
“No” is for the days without any GS or GDP events.   
Using the binary indicator responses of the GS usage 
as targets, the BDT classification models were first 
developed and trained, and subsequently applied to 
the test data for prediction purposes.    
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The prediction result at the prediction start hour 
for EWR airport is shown in Table 8. Out of the 387 
non-GDP days, 167 days had at least one GS enacted. 
The prediction accuracy of the BDT binary classifier, 
which is given by OAR, is the proportion of correct 
results, (123+206)/(387) = 0.85.  Out of a total of 167 
observed GS days, the number of correctly predicted 
days was 123.  The precision is then given by 
123/167= 0.74 (see POD in Table 8). Out of a total of 
137 predicted GS days, the number of false predicted 
day was 14. The false alarm ratio is then given by 
14/137=0.10 (see PFA in Table 8). Out of a total of 
181 (123+14+44) observed and predicted GS days 
the correctly predicted days were 123. The Critical 
Success Index (CSI) is then given by 123/181=0.68. 
Overall, by comparing and verifying with the 
observation data, the BDT model seems to perform 
well on predicting the required GS operations.  A 
review of the GS implemented at these conditions 
may help to improve the predictability of the GS 
operations. 

Table 8. Prediction of the EWR GS Days 

EWR GS Day 
Predictions 

Actual Observation 
Yes No Sum 

BDT 
Prediction 

Yes 123 14 137 
No 44 206 250 

Sum 167 220 387 
OAR:85%, POD:74%, PFA:10%,CSI:0.68 

5.2 Prediction of GDP Days 
In parallel with the prediction of the GS days, 

the prediction of GDP operations during non-GS days 
was also performed using BDT models. To determine 
if a GDP was required or not on a given non-GS day, 
the non-GS days were grouped into two classes 
labeled as “Yes” and “No” respectively. The “Yes” 
class was used to indicate that a GDP was required 
on a particular day, while the class “No” to indicate 
none of GDP was required on a given day.  

The prediction on if a GDP is required or not at 
the prediction start hour for the EWR airport is 
shown in Table 9. Out of the 367 non-GS days, 147 
days had GDP implemented. The accuracy of the 
BDT model prediction, OAR, is 0.86. The precision 
(POD) is 0.80. The false alarm ratio (PFA) is 0.15. 
And the CSI is 0.70. The BDT model performance at 

identifying GDP implemented days is at least as good 
as the BDT model for prediction of GS days. 

Table 9. Prediction of the EWR GDP Days 

EWR GDP Day 
Predictions 

Actual Observation 
Yes No Sum 

BDT 
Prediction 

Yes 117 21 138 
No 30 199 229 

Sum 147 220 367 
OAR:86%, POD:80%, PFA:15%,CSI:0.70 

Prediction of GS and GDP days 
For distinguishing the GS and GDP days from 

the normal (Non-GDP/Non-GS) days, the data were 
grouped into the two the same way as before, i.e., the 
“Yes” class was to indicate that both GS and GDP 
were required on a particular day, while the class 
“No” to indicate none of GDP or GS were required 
on a given day. The results are shown in Table 10. 
The accuracy of the BDT classifier, OAR, is 0.85.  
The precision (POD) and false alarm (PFA) is 0.88 
and 0.15, respectively. The Critical Success Index 
(CSI) is 0.76. 

Table 10. Prediction of EWR GS and GDP Days 

EWR GS/GDP Day 
Predictions 

Actual Observation 
Yes No Sum 

BDT 
Prediction 

Yes 246 43 289 
No 33 177 210 

Sum 279 220 387 
OAR:85%, POD:88%, PFA:15%,CSI:0.76 

Prediction of GSs on GDP days 
The ability to predict the days requiring GS 

operations on the GDP days may help TFM specialist 
to adjust the GDP parameters (such as the start time, 
affected flights, etc.) to increase the predictability of 
TFM actions. This is a difficult problem because the 
weather situations for using GDP or both GDP and 
GS were similar. As usual, the GDP days were 
labeled as either a “Yes”, for those having at least 
one GS operation on a GDP day, or a “No” 
otherwise. The classification results are shown in 
Table 11 with OAR=71%, POD=86%, PFA=0.26, 
and CSI=0.66.  
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Table 11. Prediction of GS implemented in GDP 
Days 

EWR GS  
Predictions for the 
GDP days 

Actual 
Observation 

Yes No Sum 
BDT 
Prediction 

Yes 239 82 321 
No 40 65 105 

Sum 279 147 426 
OAR:71%, POD:86%, PFA:26%,CSI:0.66 

The BDT AAR model predictions using 6-hour 
look-ahead RUC forecast performed reasonably well 
in this GS and/or GDP day prediction study. The 
overall prediction accuracies are about 85% with the 
precisions ranged from 74% to 88% and the false 
alarm ratio from 10% to 15% to distinguish GS, GDP 
or GS and GDP days from normal days. To 
discriminate GS and GDP days from the GDP days, 
the overall prediction accuracy, the precision, and the 
false alarm ratio are 71%, 86%, and 26%, 
respectively. 

6. Concluding Remarks 
This paper begins with providing an extensive 

analysis of the GSs implemented at EWR airport 
from 2007 through 2009 first.  The key findings 
relevant to the GS operations for the constrained 
EWR airport are as follows. The GSs were enacted 
reactively to a sudden imbalance of airport demand 
and capacity and used to preclude extended airborne 
holdings.  Sometimes, the actual GS durations were 
extended from the planned ones up to 3 hours or even 
longer. The GSs were enacted in 56% of the days 
investigated and multiple GSs were enacted in 25% 
of days. On 35% of days, GSs and a GDP were 
implemented on a same day. The GS was 
transformed into a GDP on 13% of the days in the 
three years. 

The paper subsequently presents machine-
learning methods for predicting the GS and/or GDP 
implemented days. These predictions are 
accomplished by using an Ensemble Bagging 
Decision Tree (BDT) and supervised machine 
learning is employed to train the BDT binary 
classification models.  The models are validated 
using data cross validation methods.  When 
predicting the occurrence of GS, GDP, and GS/GDP 

from the normal days, the model was able to achieve 
an overall accuracy rate about 85%.  In the study to 
distinguish the GS/GDP days from GDP/Non-GS 
days an overall accuracy rate of 71% was achieved. 

In summary, the predictions proposed here by 
the BDT model provide an approach to understanding 
and accounting for the uncertainty in demand and 
weather impacted capacity and how to learn from the 
past experience. The study provides information that 
may be useful in improving FAA TFM daily 
operations. 
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