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Abstract  
Expected increases in air traffic demand have 

stimulated the development of automated tools 
intended to assist the air traffic controller in 
accurately and precisely spacing aircraft landing at 
congested airports.  Such tools require an accurate 
landing-speed prediction to increase throughput while 
decreasing the need for controller’ interventions for 
avoiding separation violations. There are many 
practical challenges to developing an accurate 
landing-speed model that has acceptable prediction 
errors. This paper focuses on a near-term 
implementation, using readily available information, 
to model the final approach speed profile from the 
top-of-descent phase of flight to the landing runway.  

The developed models accurately predicted the 
landing speed, for the MD-80 aircraft type operations 
at the Dallas/Fort Worth airport, 95% of times with 
error margins of 12.6% for the low-and-no gust and 
12% for high gust conditions, respectively. Also, the 
models reduced the uncertainties of the landing speed 
predictions by at least 9.5% for both gust conditions 
from the current state-of-the-art predictions. 

Introduction 
The Federal Aviation Administration (FAA)’s 

plan to modernize the National Airspace System 
(NAS) in order to increase its capacity by 2025 is 
known as Next-Generation Air Transportation 
System (NextGen) [1]. One of the goals of NextGen 
is to accommodate the expected traffic-demand 
increase in the already congested terminal airspace. 
In the near term, this goal calls for tools to predict 
separation violations in order to plan conflict 
resolution strategies. Overall, there are two categories 
of tools for the final approach: tools that maximize 
throughput, such as the Traffic Management Advisor 
(TMA) [2] or the Terminal Area Precision 
Scheduling and Spacing System (TAPSS) [3], and 
those that predict separation violations such as the 
Automated Terminal Proximity Alert (ATPA) [4] or 
the Tactical Separation-Assisted Flight Environment 
(TSAFE) [5].  Both categories of tools, however, 

require accurate landing-speed estimates to provide 
accurate space between successive arriving aircraft 
because all the tools rely on predictions of the flight-
path of the aircraft. The air traffic controllers’ 
practices and procedures dictate aircraft speed 
throughout most of the airspace, but the flight crew 
(and aircraft procedures) decides the speed on 
approach in preparation for landing. Therefore, 
accurate landing-speed predictions are required for 
tools intended for use on final approach. Uncertainty 
in landing speed is manifested as either an increase in 
separation violations (i.e. a safety risk) or as 
increased separation buffers, a reduction in 
throughput.  

There exist many different approaches to 
establish the landing speed of an aircraft to be used in 
the decision support tools. However, most of the 
options would require an upgrade to avionics 
equipment aboard the aircraft, increasing the airline’s 
expenses, or verbal reports from the flight crew on 
landing speed, increasing the workload for both the 
flight crew and the controllers. Thus, to fulfill the 
goal of this work for near-term implementation with 
no additional equipment required, the focus of this 
research is to develop an accurate landing-speed 
model based on information that is readily available 
in today’s air traffic control system.  

In a previous study, the multivariable regression 
technique based on the response surface equation 
(RSE) is used to develop a statistical model of 
aircraft approach speed [6]. While the model yields 
an acceptable level of accuracy, the high number of 
variables it requires as inputs is unavailable at most 
airports. With the reduced number of input 
parameters, the RSE technique fails to provide an 
acceptable prediction model. To address this 
limitation, the alternative of the non-linear regression 
of the Neural Network modeling approach is used. 
The regression model is restricted to input variables 
that are more likely to be available (airlines internal 
data are usually difficult to obtain). The regression 
technique employed data for descent and approach 
phases of flight, as well as environmental and airport 
characteristics data.  
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Background 
The forecasted increase in the traffic demand 

beyond the current capacity of the NAS may, in turn, 
lead to an increase in air traffic controllers’ workload. 
This issue cannot be resolved by simply expanding 
the air traffic control (ATC) staff and facilities. The 
complexity of ATC, which central task is to ensure 
separation for all pairs of aircraft, grows 
quadratically with the number of aircraft [7]. 
Consequently, there is a need to create tools that can 
facilitate and strengthen the air traffic controllers’ 
decision process, while still meeting the safety 
requirement. This paper focuses on such tools for the 
terminal environment, specifically those that address 
separation between successive arrivals. The specific 
challenge of such separation assurance lies in 
pursuing two competing goals: to maintain runway 
arrival throughput, and to ensure there are no 
separation violations between any pair of aircraft. 
The latter goal is set because separation violations 
carry the risk wake vortex hazards if too little 
separation is prescribed [8]. The task of separating 
aircraft becomes increasingly complex in highly 
congested terminal airspace [9]. 

Among the requirements for a model that 
addresses this challenge is the capability to predict an 
aircraft landing speed. The role of knowing landing 
speed is as follows. As a pair of successive arriving 
aircraft approaches the landing runway, there is a 
natural process of compression of the distance 
between the pair when the leading aircraft is slowed 
ahead of the trailing aircraft [10]. To determine the 
approach-speed profile of the trailing aircraft, one 
must know the landing speed of the leading aircraft. 
Since the air traffic controller does not prescribe a 
landing speed, those data must either come from the 
aircraft or be estimated. Landing-speed estimation 
must be sufficiently accurate for effective use by the 
different ATC tools. Currently, to mitigate the impact 
of inaccurate landing-speed estimates and to account 
for uncertainty in trajectory predictions, air traffic 
controllers often add excess separation beyond the 
required standards between pairs of aircraft. This 
practice leads directly to loss of runway throughput. 

Motivation 
The main objective of this work is to build a 

landing-speed model based on variables readily 
available in today’s air traffic automation systems.  

To make this model useful, the required predictions 
of landing speed must be computed in real-time 
operations, efficiently and with sufficient accuracy.  

There are three options to consider when 
determining the landing speed of an aircraft: 

1. The flight crew communicates the 

intended landing speed to controllers 

electronically (e.g., via ADS-B message 

data).  

2. The controller requests the landing 

speed from the flight crew by voice 

communication and feeds it into an 

interactive tool.  

3. The landing speed of aircraft is 

predicted using a mathematical model. 
 

Of these three options, the first requires 
installations of costly avionics aboard the aircraft, 
while the second increases workload for the 
controllers and the flight crew. Also, these two 
options require changes to the ground equipment and 
to controllers’ procedures, significant undertakings 
that could face resistance from various parties 
involved. For these reasons, the third option is the 
approach of choice in this paper. It is geared toward 
near-term implementation, using readily available 
information to estimate the landing speed. 

The modeling methodology in this paper uses 
the neural network regression technique and can be 
found in section 2. The currently known and used 
methods of landing speed prediction are summarized 
in section 3. A set of recorded data is used to build a 
predictive landing speed model using the model in 
section and the results are analyzed in section 4. 
Finally, a summary of the findings and a future 
direction of the research are laid out in section 5. 

Modeling Methodology 
All data-driven modeling frameworks for 

building predictive models rely on the quality of the 
raw data and on the processing methods used. To be 
useful, raw data typically need thorough pre- 
processing steps. 

Data Selection and Processing 
The approach taken in this paper to predicting 

landing speeds is multi-variables nonlinear regression 
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that fits contributing inputs to the corresponding 
historical landing speeds as outputs. From among the 
different approaches to collect and process historical 
data, the following methodical three-step approach 
was chosen because it leverages previous work [11]. 
The three steps are: data collection, screening, and 
parameters selection decision. 

Data Collection step: The first step of a model 
development consists of identifying and collecting as 
many variables as possible to make sure no impactful 
variables are overlooked. Thus, for this landing-speed 
modeling, a model is built for a specific aircraft type 
at a given airport because each airport has its specific 
characteristics. The raw data are composed of all 
airline monitored flight parameters (e.g., fuel 
consumption, aircraft weight, etc.), radar recorded 
data (e.g., ground speed, etc.) and airport 
environmental conditions (e.g., wind, visibility, 
ceiling, etc.). 

Screening step: This step centers the analysis on 
variables that directly impact the modeling task. It 
serves to detect the parameters that contribute the 
most to the landing-speed behavior. The screening is 
necessary to get rid of duplicates and redundancies in 
the input information for the model. Also, obvious 
parameters with no impact (e.g., departure airport, 
etc.) on the model are eliminated. Other variables 
with no or little perceivable effect on the overall 
model accuracy such as city-pair, route information 
such as domestic or foreign (i.e. landing weight may 
vary due to requirement of reserve fuel), are 
discarded. 

Parameters selection decision step: In this step, 
final parameters to be including in the model are 
decided based on the result of the screening as well 
as engineering judgment. Hence, it is important to 
have a good understanding of the system to be 
modeled. For instance, it is common practice by 
airlines to track both the planned and actual variables 
for many key parameters. However, in this work, 
only the actual values of the variables are used. The 
use of actual variables would allow achieving more 
realistic models because planned variables are 
typically based on the predicted actual variables 
augmented by a margin value to account for the 
uncertainty of flight parameters (e.g., fuel burn, time, 
etc.).  

Neural Network Mathematical Modeling 
The neural network (NN) is a mathematical 

modeling technique based on regression. Intended to 
mimic the cognitive and inferential functions of the 
human brain, a NN is capable of modeling highly 
non-linear behavior. In general NNs can be an 
alternative modeling methodology when linear 
modeling approaches perform poorly [12]. One of the 
easiest types of neural network to build and 
implement is the feed-forward back propagation 
(FFBP). Usually, FFBP is a good starting point for 
building a model because a feed-forward neural 
network can in theory fit any nonlinear relationship 
between inputs and target. However, its main 
disadvantages for this type of study is that it works 
like a black box for the end user, providing no 
qualitative insight on the impact or the variance of 
each input variable on the landing speed. 

Neural Network Background 
Architecturally a FFBP NN is composed of an 

input layer, hidden layers, and an output layer, as 
illustrated in Figure 1.  

 
Figure 1. Feed-Forward Neural Network 

While the hidden layer is the data processing 
center of the network, the output layer is the response 
to the simulation. A layer is composed of neurons. In 
a layer, each input element is connected to each 
neuron through a weight (w), and a bias (b) is added 
to the weighted input. 

Mathematically, the value of the hidden node is 
computed by composing the logistic function  

                         (1) 

With a linear function that fits the design 
variables Xi’s. The hidden node has the form 
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      (2) 

where: 

dj: intercept term for the jth hidden node 

cij: coefficient for the ith design variable 

Xi: value of the ith design variable 

Hj: value of the jth hidden node 

N: number of input variables 

 

The logistic sigmoid function S defined by 
equation (1) is used to “squish” the inputs so that its 
output is a value between 0 and 1. 

Typically, there are three main steps to building 
a neural network: training, validation and testing. 
Consequently, a dataset composed of an input set and 
corresponding target output are divided into those 
three groups. Usually there is a pre-processing step to 
get the data into a useful form. Then the training step 
consists of tuning the values of weights and biases of 
the network to optimize network performance [13]. 
The validation step consists of using the second 
(validation) set of the data to adjust the quality of the 
regression. Finally, the test set serves to check the 
network on a set different from the one used for its 
construction.   

Among the many existing NN training 
algorithms, the one by Levenberg-Marquardt [14] is 
the most commonly used for feed-forward networks 
when rapid training is desired. Based on the goal of 
this research, to model a regression of the input 
variables to predict the corresponding landing speed, 
the network is trained for function approximation as 
opposed to pattern recognition. A NN training 
requires a training set based on known inputs and 
corresponding target outputs. It is also customary for 
neural networks to undergo the training more than 
once (a technique known as retraining) to improve 
the quality of the fit. Then to stop the training 
process, the Mean Square Error (MSE) performance 
function defined in equation (3) is used as the 
stopping criteria. 

               (3) 

where: 

MSE: Mean Square Error, the average squared 
error between the network outputs and target outputs 

e� : ith error between the network outputs and 
target outputs 

t�: ith target or actual output 

a�: ith network predicted output  

Model Evaluation 
After the model is built, it needs to be evaluated 

to assess its effectiveness. The model evaluation 
consists of determining the predicted landing speed 
errors for the neural network model and the baseline 
(i.e. recommended target landing speed). To make 
this comparison the following two metrics are 
defined: 

ErrorVtarget: defined as the absolute difference 
between the actual landing speed and the baseline 
speed (VTarget): 

 

    (4) 

ErrorModel: defined as the absolute difference 
between the actual landing speed and the landing 
speed predicted by the neural network model: 

 

    (5) 

With: 

VActual: Actual speed or true speed is defined as 
the sum ground speed (obtained from the terminal 
radar approach control facilities (TRACON) radar 
data) and the reported wind at the airport (from 
METAR), 

VTarget: Target speed or flight manual-
recommended landing speed is defined as the flight 
manual-recommended approach speed based on 
aircraft type and aircraft weight. This speed is used as 
the baseline landing speed for comparison. 

VModel: Landing speed of the model is defined as 
the neural network model predicted landing speed. 
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Flight Operating Manual – Baseline 
There exists a flight-operating manual for each 

aircraft type. In this work, the flight operating manual 
recommendation for landing-speed prediction based 
on the landing-aircraft weight represents the baseline.  

To assess the quality of the proposed landing-
speed model, its predictions are compared to the 
state-of-the art prediction or baseline (i.e. the flight-
operating manual recommendations). 

The example of an aircraft type used here is the 
MD80, also known to as the Super 80, one of the 
most common narrow-body air-transport aircraft. For 
this aircraft type, the flight operating manual has two 
recommendations: one for low-and-no-gust condition 
defined as gust wind below 10 knots, and another for 
high-gust condition for gust wind greater than 10 
knots. 

Landing with Low-and-no-Gust Condition 
In the low-and-no-gust condition on the final 

approach, pilots are recommended to target an 
approach speed of:  

                        (6)  

Where: 

: Final approach target speed (knots - 
indicated airspeed (IAS))

: Reference speed (knots IAS) 

The reference speed is provided in the flight 
manual as a function of aircraft weight and aircraft 
type. 

Landing with High-Gust Condition 
In the high-gust condition, the operations 

manual recommends that on the final approach the 
pilot target the speed of: 

     (7) 

Where: 

: Final approach target speed (knots IAS) 

: Reference speed (knots IAS) 

: Steady wind defined as the headwind 
component of the reported winds 

: Gust wind defined as the headwind 
differential between the reported winds and the 
reported gusts 

With the restriction that the total wind additive 
to the Vref should not exceed 20 knots.  

Proof of Concept and Results 

Background on the Choice of Data Used
Previous studies [10, 15] suggested that airport-

specific parameters (airport elevation, runway length, 
etc.) contribute to the final approach performance of 
a flight. Also, each aircraft type (e.g., B737-800 or 
MD80) has specific performance parameters that 
would directly impact its landing speed. To account 
for all these variations that may affect the fidelity of 
any landing-speed model, an airport-specific and 
aircraft-specific landing model is created using 
historical data. 

Data Processing: Variables Used in the Study 
As a proof of the concept, the proposed neural 

network is applied to the MD80 aircraft type 
operations at the Dallas/Fort Worth International 
Airport (DFW). DFW was chosen as a test case for 
the availability of data and because the SP80 is the 
highest number of a single aircraft type in service at 
this airport.  

Step 1: Data collection 
The raw dataset used for this study contained 

over 300 variables. These data consisted of airport 
topological (e.g., runway length and configuration), 
environmental information (e.g., visibility, wind 
condition, ceiling), flight-specific parameters (e.g., 
city pair flown, fuel burn rate, landing weight, etc.), 
and aircraft-specific parameters (e.g., empty gross 
weight, aircraft maximum payload, etc.). For the 
remainder of this paper the collected data are 
considered as the true value or actual value. 
Therefore these variables are assumed known 
exactly. 

Step 2: Screening 
The term screening is used in this paper to mean 

identification of the predictive values of the 
parameters. Screening is done here in two steps: 
elimination of irrelevancies and elimination of 
duplicate information to the model. Variables 
identified at the outset as irrelevant are automatically 
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eliminated (e.g., aircraft tail number, city of 
departure, etc.). The elimination of redundancies is 
based on the statistical correlation between pairs of 
variables. If two or more variables provide the same 
information, only one of them is used for the 
modeling. For example, as shown in Figure 2, the 
variables pax (number of passengers) and LF_pax 
(Load Factor for passengers) have a correlation 
coefficient of 1. For modeling purposes these two 
variables provide the same information, so the use of 
one of them is sufficient. Consequently, after 
dropping the linear dependent parameters, LF_pax, 
FBR (Fuel Burn Rate), and ESAD_nm (Equivalent 
Still Air Distance) are among the retained variables 
for modeling, while FGFH (Flight Gallons/Flight 
Hours) and GCD_sm (Great Circle Distance (statute 
mile)) are dropped. 

 
Figure 2. Example of Correlated Variables Matrix 

Step 3: Selection decision  
The result of the screening and physical 

relevance steps, based on the principle of using the 
minimum number of variables possible, yields a 
reduced set of thirteen parameters as the most 
relevant to aircraft landing speed. Then, In order to 
broaden the modeling approach to other major US 
airports, variables that are deemed difficult to obtain 
(i.e. airline proprietary data) are eliminated from the 
consideration. Finally, the result of the data 
processing is a reduced set of parameter of five 

variables shown in Table 1.  These data are typically 
available to individuals through normal acquisition 
means (e.g., Federal Aviation Administration (FAA) 
websites). 

Table 1. Variables Used for Modeling 

Parameter Description 
Head wind Head Wind
Gust wind Gust Wind
Ceiling_ft Forecast Ceiling
Vis_ft Forecast Visibility
Act_Land_Wgt Actual Landing Weight

Only the selected five variables are used as 
inputs variables to build the neural network model, 
where the output is the landing speed.  

Neural Network Modeling  
Because the baseline landing speed prediction is 

divided according to the landing gust condition, the 
data are divided into two groups as well: low-and-no-
gust in and high-gust conditions.  

Then, the five inputs variables shown in Table 1 
are used as inputs to build a feed-forward neural 
network for each gust condition using the Matlab 
software. The neural network schematic illustrated in 
Figure 3 has three hidden layers and one output layer. 

 
Figure 3. Neural Network Illustration 

The dataset is randomly divided into three 
groups as follows: 70% used for training, 20% for 
validation, and the remaining 10% for testing. The 
rational for this percentage split of the dataset is to 
allow a large enough training set size, given the 
limited number of data point available. Then, the 
training process consists of tuning the weights and 
biases until the validation dataset converges as 
illustrated in Figure 4 for the high gust condition. 
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Figure 4. MSE Plot for High Gust Condition 

In the example shown in Figure 4 for high gust 
case, converge occurs after the sixth iteration. 

Neural Network Models Evaluation  
After the models are built, and the landing 

speeds predicted, the quality of the predictions is 
evaluated.  

Figure 5 and Figure 6 represent the graph of 
actual landing speed as a function of the predicted 
landing speed for the low-and-no gust and high gust 
respectively. If the models were perfect predictors of 
the actual recorded landing speeds, all the red stars 
would have fallen on the blue lines (also called the 
45-degree line).  

The quality of a fit can be assessed using the 
goodness-of-fit metrics of the coefficients of 
determination R2 and the root mean square (RMS) 
error. For the above dataset, the R2 and RMS error 
turn out to be 0.43 and 3.5 for the low-and-no gust, 
and 0.56 and 3.5 for high gust conditions, 
respectively.  

Also, it can be inferred from Figure 5 and 
Figure 6 that there is sizable dispersion in the 
landing-speed prediction for the low-and-no-gust as 
well as the high gust conditions, despite the use of the 
same dataset for modeling and testing. This large 
dispersion is reflected in the lower R2 values (ideal 
value is 1.0).  

 
Figure 5. Actual vs. Predicted Plot for Low-and-

No Gust 

 
Figure 6. Actual vs. Predicted Plot for High Gust 

Despite the lower number of data points (e.g. 
426), the goodness-of-fit metrics show that overall 
the model for the high-gust condition is a better 
predictor than the model obtained for the low-and-no-
gust wind condition (e.g. 1373 data points). 

Results Discussion 
Based on the clustered nature of the data points 

shown on Figure 5 and Figure 6, intuition suggests 
that the actual and predicted landing speeds present 
normal distribution characteristics. Consequently, the 
models errors distributions are more likely to have 
normal distribution characteristics as well.  

As illustrated by the normal probability plot 
shown on Figure 7, the assumption of a normal 
distribution is reasonable for the low-and-no gust 
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condition because all the data point fall near the line. 
For the high gust condition, a similar trend is 
observed. Therefore normal distributions statistics 
can be used to compare the models to their 
corresponding baselines. Table 2 is the summary of 
the calculated statistical parameters.  

 
Figure 7. Normal Probability Plot for Low-and-No 

Gust Condition 

Table 2. Summary of Landing Speed Errors 
Statistics 

Statistical 
Parameters

Low-and-No Gust 
Error 

High Gust Error 

Model Baseline Model Baseline
Mean -0.1 4.2 -0.2 -6.9 
std Dev 4.2 4.9 4.0 4.4
Min -13.5 -14.5 -12.5 -19.2 
Median -0.1 4.3 -0.4 -7.3 
Max 14.2 19.6 13.4 7.6
25% -3.0 0.8 -3.0 -9.9 
75% 2.3 7.4 2.3 -4.2 

 

Table 2 indicates that the mean values of the 
percentage error of the models for both low-and-no-
gust and high-gust conditions are an order of 
magnitude smaller than those of the baseline values. 
Furthermore, the standard deviation values are 
smaller for the models (4.2 and 4.0 respectively) than 
for the baseline (4.9 and 4.4 respectively). These 
statistics demonstrate that the neural network 
landing-speed prediction models outperform the 
baseline predictions of the actual landing speed for 
both the low-and-no-gust and high-gust conditions. 

 

For both gust conditions, the error distributions 
for the models and for the baseline approximate a 
normal distribution as shown in Figure 8 (low-and-no 
gust case) and Figure 9 (high gust condition). A 
direct comparison between the distributions shows 
lower variance for the neural network models. For 
low-and-no gust condition the model error has a 
spread from the twenty-fifth percentile to seventy-
fifth percentile of 5.3% (-3% to 2.3%) while the 
baseline has a spread of 6.6% (0.8% to 7.4%). 
Similarly, for the high gust condition, the spread 
from the twenty-fifth percentile to seventy-fifth 
percentile of model error is 5.3% (-3% to 2.3%) and 
the baseline spread is 5.7% (-9.9% to -4.2).  

 
Figure 8. Error Distributions for Low-and-No 

Gust 

 
Figure 9. Error Distributions for High Gust 

Another indication of the error distributions is 
that for the low-and-no gust case condition while the 
peak of the model is 0, the baseline’s probability 
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density function (pdf) attains a maximum at 
approximately 5%, i.e. the baseline exhibits a 
systematic error, with the distribution shifted to the 
right. By contrast, for the high gust case the baseline 
error distribution is shifted to the left with a pdf 
maximum at approximately 8%.   

Results Interpretation 
A quantitative analysis of the low-and-no-gust 

condition suggests that the neural network modeling 
approach provides a better landing-speed predictor 
than the baseline. First, because the mean values of 
the neural network models’ error distributions are 
around 0%, it implies that they have superior 
accuracies than the baseline. Then, because the neural 
network models errors have a standard deviation of 
4.2 and 4.0 for low-and-no gust and high gust 
conditions respectively compared to 4.9 and 4.4 for 
the baseline.  

In essence, the error distributions of the neural 
network models represent a reduction of 18% and 
9.5% from the baseline error distributions standard 
deviation for the low-and-no gust and the high 
respectively. In other words, the neural network 
models reduce the landing speed errors by 18% and 
9.5% for the low-and-no gust and for the high gust 
respectively from the baseline landing speed 
prediction errors. In turn, these reductions in 
dispersion (standard deviation) can be directly 
translated in uncertainty reduction.  

 Based on the fact that the error distributions 
approximate normal distributions as illustrated on 
Figure 7, other interesting deductions can be made. 
For instance, since the standard deviation values are 
known, it can be said that the neural network models 
predict accurately 95% of the landing speed within an 
error margin of 12.6% and 12% (i.e. three sigma) for 
low-and-no gust and the high gust conditions 
respectively.  

Another observation from Figure 8 is that for the 
low-and-no-gust condition, the flight-operating 
manual tends to underestimate the landing speed; that 
is, it under-predicts the landing speed (see equation 
(4)).  In other words, at the low-and-no-gust 
condition, pilots overshoot (i.e. actual landing speed 
is higher than recommended) the landing speed 
compared to the flight manual recommendation.  By 
contrast, in the high-gust condition error distribution 
shown in Figure 9, the flight-operating manual 

overestimates the landing speed.  Thus, the predicted 
landing speed is over predicted compared to pilots’ 
achieved landing speed.   

Overall, for the normal landing-speed range, 
neural network modeling approach is capable of 
predicting the landing speed within a few knots for 
most data points.  

Concluding Remarks 

Summary 
The quality of fits of the neural network 

developed for the variables listed in Table 1 are 
assessed with coefficient of determination R2 of 0.43 
for the low-and-no-gust model and 0.56 for the high-
gust model. Based on the normal distribution nature 
of the error distributions, the neural network models 
are found to predict the landing speed in 95% of 
cases with an error margin of 12.6% for the low-and-
no gust condition, and with an error margin of 12% 
for high gust condition.  

The landing speed modeling technique presented 
in this paper is a promising research direction toward 
addressing the challenges in the prediction of final 
approach speed. The obtained predictions of landing 
speed achieve a higher accuracy (zero mean error) 
and higher precision (smaller variance) than do the 
current state-of-the art predictions of the flight 
operating procedure recommendations. Specifically, 
in the case of the narrow-body aircraft type used as 
test-bed, neural network models reduced the 
uncertainty of the landing speed prediction by 18% 
for the low-and-no gust and by 9.5% high gust 
conditions, respectively.  

Furthermore, the study indicates that pilots tend 
to overcompensate landing speed in the low-and-no-
gust condition and to under-shoot landing speed 
under high-gust conditions. These findings are very 
important in the modeling of pilots’ behavior to 
improve existing and future terminal area tools. 

Directions for Future Research 
Among the reasonable next steps of this research 

is the application of these modeling approaches to 
other airports and aircraft types. Though a new 
network needs to be trained for each aircraft type and 
airport configuration.  
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Finally, the proposed modeling approach can be 
improved by identifying parameters more relevant 
(other than those used here) and finding a way to 
quantify pilots’ decision-making processes for the 
landing procedure.  
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