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Abstract 
With U.S. air traffic predicted to triple over the 

next fifteen years, new technologies and procedures 
are being considered to cope with this growth.  As 
such, it may be of use to quickly and easily evaluate 
any new technologies or procedures against a set of 
benchmarks, including best case and worst case.  In 
this paper, theoretical upper and lower capacity 
bounds are formulated along with a performance 
index equation to allow for the quantitative 
comparison and evaluation of different terminal area 
capacity-increasing enhancements.  These 
benchmarks are then used with a conventional 
stochastic queueing model (M/D/1) and a selected 
capacity improvement in order to demonstrate how 
an example change impacts the terminal airspace 
capacity as compared to the theoretical worst case 
and best case.  These mathematical tools may hold 
value in quantifying proposed technologies and 
procedures intended to improve efficiency and to 
absorb the predicted increase in air transportation, 
prior to any actual implementation. 

Introduction 
According the Joint Planning and Development 

Office, by 2025 U.S. air traffic is predicted to 
increase two to three times, with the traditional air 
traffic control system expected to be unable to 
manage this growth [1].  The Next Generation Air 
Transportation System (NextGen) proposes active 
networking technology that updates itself with real-
time shared information and tailors itself to the 
individual needs of all U.S. aircraft, allowing for 
adaptability by enabling aircraft to immediately 
adjust to ever-changing factors such as: weather, 
traffic congestion, aircraft position via GPS, flight 
trajectory patterns, and security issues [1].  With an 
influx of new technologies, it may be of use to 
evaluate these against formalized benchmarks, to 
include upper and lower bounds.  In this paper, 
theoretical upper and lower capacity bounds are 
developed along with a performance index formula to 
allow for the quantitative comparison and evaluation 

of different changes to terminal capacity-increasing 
enhancements.   

This paper first provides a summary of both the 
problem and the literature to date, as well as a short 
introduction to the field of queueing theory.  A 
queueing theory-based model is then proposed to 
describe the final approach phase at an airport along 
with formulations for calculating the theoretical 
benchmarks.  Next, a set of equations to measure 
performance as compared to best-case and worst-case 
benchmarks is created.  A case study is then used to 
demonstrate the application of the model and the 
proposed mathematical formulations in order to 
demonstrate the significance of the impact made to 
the terminal airspace capacity as given by 
comparison to the theoretical worst- and best-case 
bounds.  Analysis conducted on the results using the 
model and bounds to quantitatively describe the 
impact of changes in various parameters. 

The tools proposed here may hold value in 
preemptively quantifying proposed NextGen (or 
other) procedures or technologies that are intended to 
improve efficiency and mitigate the predicted 
increases in air transportation. 

Background 
Airport capacity is a critical contributor to the 

overall National Airspace System (NAS) capacity.  It 
can be defined in various ways: it can be measured 
by the number of arriving aircraft, departing aircraft, 
total aircraft, passengers, specific aircraft types or 
sizes, etc.   It may also be defined using some 
measure of time; that is, some measure under 
consideration taken over a specified unit of time (e.g., 
takeoffs per hour), time of day (usually, the peak 
times), or time of year (i.e., seasonal).  Whatever 
measure is used, an airport’s capacity depends on a 
variety of considerations.  Ginsburg [2] lists five 
general areas affecting airport capacity: the size of 
the aircraft, approach and departure paths, safety, 
weather, and other.  Aircraft size determines takeoff 
distances, braking distances, approach speeds, 
turning radii, ramp space, and ultimately runway 
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selection and usage.  Approach and departure paths 
can limit the use of the multiple runways available at 
larger airports.  In addition, the geographical location 
of an airport can further restrict the approach and 
departure paths, including those due to emissions 
(i.e., noise or pollution) considerations.  Safety can 
also impact efficiency, especially in the terminal area 
since landing and take-off are traditionally 
considered to be the portions of operations having the 
greatest safety risk.  Atmospheric conditions can 
have an impact both on terminal operations and on 
aircraft performance.  These items can include icing, 
visibility, winds (including crosswind 
considerations), pressure, temperature, humidity, 
convective action, etc.  Finally, general areas having 
an impact can include congestion, delays, accidents, 
unexpected acts (intentional damage to aircraft or 
communication, navigation, and surveillance 
systems; worker strikes; etc.), passenger 
emergencies, human error, unusual weather, 
hardware or software failures, etc.  Any strategy for 
dealing with these can have an impact on the airport’s 
capacity and associated delays.  Ginsburg categorizes 
these strategies as: arrival/departure sequencing, 
multiple runways, runway configuration, buffers 
(blocks of time between arrivals and departures to 
prevent the violation of safety rules and regulations), 
and delay recovery.  

Separations are required between aircraft to 
ensure safety.  These separations may depend on the 
aircrafts’ routes, weights, speeds, etc.  Efficient 
sequencing of the terminal aircraft can reduce the 
total separations and increase throughput.  Regardless 
of conditions, the controller is responsible for 
implementing the arrival or departure scheduling, as 
well as all communication and safety monitoring.  As 
a result, this is recognized as a very intensive job, 
while the high workload acts to limit the number of 
aircraft that the controller can take account of when 
sequencing.  With technologies and procedures being 
proposed to assist both pilots and controllers, while 
maintaining or increasing safety and increasing 
throughput, it is of interest to know how much of an 
improvement these new NAS components can 
provide before the costs of equipage and operator 
training are incurred by either the airlines or the 
Government. 

With the goal of any service system being to 
gain as much efficiency in service time while limiting 
queue sizes (i.e., waiting lines), number of balkers 

(customers that cannot get into a system to due 
capacity constraints), and minimizing costs, aviation 
researchers have often used queuing theory to 
determine how to best utilize limited NAS assets.  In 
this paper, queueing theory is used to model the 
approach portion of the terminal area, and then 
metrics are developed along with upper and lower 
bound formulations on these metrics to quantify 
performance improvements from any new procedure 
or technology.  Finally, the queueing model and the 
metrics are combining and applied with case study 
data to demonstrate the use of these models and 
metrics. 

Literature Review 
Airport capacity is a richly studied area and 

includes a great deal of contemporary research.  In 
the late 1970s, Newell [3] provided a well-written 
survey and critique of the literature on airport 
capacity.  This study focused on how an airport’s 
capacity depends numerous considerations including 
the sequencing of various types of operations (e.g., 
heavy or light aircraft, arriving or departing, etc.), 
runway geometry, flight conditions (i.e., visual flight 
rules or instrument flight rules), etc.  

Beasley et al. [4] consider the problem of 
scheduling aircraft landings at airports as defined by 
deciding a landing time for each plane such that each 
plane lands within a predetermined time window 
while maintaining separation criteria.  This was 
modeled using a mixed-integer zero–one formulation 
of the single runway case and extended to the 
multiple runway case.  The problem is solved using 
linear-programming-based tree search.  They then 
present a heuristic for the problem.  Finally, 
computational results for both are presented for a 
variety of test problems involving up to 50 planes and 
four runways. 

Janic [5] considers how large-scale disruptions 
of airline networks can cause deterioration of planned 
flight schedules, including delays, rerouting, and 
cancellation of flights.  The study presents a model 
for the assessment of the economic consequences of 
these disruptions on a hub-and-spoke network as 
expressed by the cost of delays and cancellations.  
The model is based in queueing theory, modeling the 
airline hub airport as a server and the flights as 
customers in the queueing system and using the case 
study of a large European airline. 
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Atkin et al. [6] makes use of the case of London 
Heathrow Airport.  One of the busiest airports in the 
world, it only has one runway for use by departing 
aircraft at any time.  With separations required 
between each pair of aircraft at take-off (depending 
on their routes, weights, and speeds) to ensure safety, 
efficient scheduling of the aircraft for take-off can 
reduce the total separations and increase throughput.  
Atkin et al. present models for evaluating a schedule 
and for determining the effects of the physical 
constraints imposed by the runway configuration and 
geometry.  With this, a hybrid metaheuristic is 
proposed that can take into account more aircraft than 
a human controller can manage in order to 
recommend schedules for use by the controllers. 

Another decision support tool is proposed by 
Venkatakrishnan et al. [7].  They consider the 
benefits to air traffic control as provided by decision 
support systems by studying air traffic delays for 
landing aircraft at Boston’s Logan Airport.  They 
develop an empirical model for landing-time 
intervals between aircraft as defined by the factors 
that most significantly affect them: runway 
configuration and the aircraft weight category.  They 
also develop models of Boston's terminal airspace 
and apply sequencing algorithms meant to expedite 
the landing of incoming aircraft.  Their results 
indicate that better sequencing can reduce delays by 
30% in some instances, though at the expense of a 
possible increase in controller workload. 

Queueing Theory Background 
In the field of operations research, the two 

primary types of modeling techniques are 
prescriptive models (where the model prescribes a 
solution; e.g., linear programming) and descriptive 
models (where the model describes a situation to 
allow for analysis but does not provide a solution; 
e.g., queuing theory).  A queueing (i.e., waiting line) 
theory model consists of a calling population and the 
queuing system (see Figure 1). 

 

Figure 1. The Basic Queueing Process 

The calling population characteristics include its 
size (finite or infinite) and generation pattern (or 
arrival rate; generally interarrival rates are assumed 
to be exponential, i.e., following a Poisson 
distribution).  The queueing system is the portion of 
the model that deals with the queue and the service 
facility.  The queue can be finite or infinite; the 
service discipline may be first in first out, last in first 
out, or random; the service facility is defined by the 
number of servers, their arrangement (series or 
parallel), and the service pattern (generally assumed 
to be exponential); exits from the system occur due to 
completion of service, balking, or reneging (leaving 
the system after joining).  Model assumptions include 
(except for some specific variations): only one event 
can occur at a time, arrivals occur randomly and 
independently of other arrivals and according to a 
Poisson distribution, service times vary according to 
an exponential distribution, and that the system is 
past its transient period and has entered steady-state 
operation (i.e., it is independent of its initial state).  
Where arrivals follow an Poisson distribution, the 
probability of x arrivals in a specific time period is 
given by 

!
)(

x
exP

x λλ −⋅
=  for x = 0, 1, 2,… 

(1) 

where λ is the mean number of arrivals per time 
period.  Where service rates are exponential, the 
probability that the service time will be less than or 
equal to a time of length t is given by 
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where the service rate μ is the mean number of units 
that can be served per time period. 

Several parameters describe the system.  The 
state of the system n is equivalent to the number of 
customers in the waiting line plus the service facility.  
N is the maximum number of customers in the 
system.  The probability of being in state n (i.e., the 
probability of exactly n customers in the system) is 
Pn.  The length of the queueing system is given by L 
(the expected number of customers in the queueing 
system), while the length of the queue itself is given 
by Lq.  The expected time in the queueing system is 
represented by W (the expected waiting time in line is 
represented by Wq).  Little’s formula gives L = λW, 
Lq = λWq, and W = Wq + 1/μ, where 1/μ is the average 
amount of time a customer spends in a service 
facility. 

Kendall notation is used to depict a chosen 
model’s characteristics.  In the first portion of the six-
tuple a/b/c : d/e/f, a describes the arrival pattern 
(Markovian M, general G, degenerate D, Erlang Ek, 
etc.), b describes the service pattern (M, G, D, or Ek), 
and  c describes the number of servers in parallel.  In 
the second portion, d describes the service discipline 
(first come, first served FCFS, last come, last served 
LCLS, rotation, random SIRO, priority PRI, or any 
other GD), e describes the storage capacity (the 
maximum number of customers allowed in the 
system; N describes a limited capacity), and f 
describes the calling population (size is finite or 
infinite).  (Note that the default for the second portion 
is FCFS/∞/∞; if this describes the model, it is often 
not included in its Kendall notation.)  For example, 
M/M/1 : FCFS/N/∞ (or M/M/1/N) is the Kendall 
notation for a single server, finite waiting line 
queueing system with Poisson arrivals and 
exponential service. 

When queueing models are based on the birth-
and-death process (in the context of queueing theory 
the term birth refers to an input or arrival and the 
term death refers to a departure or a completed 
service), the system can be represented by a rate 
diagram.  Set up as a Markov chain, a rate diagram is 
a conceptual model that describes the possible states 
of the model and the transitions from one state to 

another.  The rate in = rate out principle can then be 
used to generate balance equations.  Finally, since we 
have N + 2 equations (given by the balance 
equations) and N + 1 unknowns (given by the 
possible states of the rate diagram) the balance 
equations can be solved.  These solutions, along with 
Little’s formula, are then used to provide closed 
formulations of all parameters of interest.  Additional 
background and further details are provided by 
Hillier and Lieberman [8]. 

Queueing Theory-Based Model 
M/M/1 models are often used to model airport 

capacity.  A prototypical example by Hillier and 
Lieberman [8] considers the entire queueing system 
to include holding aircraft (the holding pattern is the 
queue), approaching aircraft as arriving customers 
which are cleared one at a time on the approach (i.e., 
only one aircraft is on approach, landing, then taxiing 
clear at any time – once that aircraft is clear of the 
runway, a holding aircraft can commence its 
approach), the runway as the server, a given arrival 
rate, and a service rate related to the time required for 
the aircraft to clear the runway.  The goal of the 
example is to determine the average number of 
aircraft holding and average time in holding, with 
further study related to the effects of increasing the 
arrival rate and increasing the number of runways. 

In this paper, a queueing model with a non-
exponential distribution is used as an extension to the 
example by Hillier and Lieberman.  An M/G/1-based 
model (specifically an M/D/1 model) is used to 
enable mimicking the separation provided by the air 
traffic controller.   Once an aircraft has traveled a 
distance equivalent to the allowable separation 
interval (and well before reaching the runway, 
landing, and taxiing clear), the next aircraft is 
allowed out of the queue and into the service area 
(the approach).  While both models consider that only 
landings are taking place on a given runway (i.e., no 
interfering takeoffs) and the queue is the holding 
pattern, the M/G/1 model here differs from that in 
Hillier and Lieberman [8] and other studies by 
considering the service mechanism to be degenerate 
(i.e., deterministic) and allowing for multiple aircraft 
on approach since an aircraft is considered serviced 
and leaves the queueing system once it is a safe 
distance ahead of the following aircraft. 
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As long as the mean 1/μ and the variance σ2 of 
the service-time distribution are known, the M/G/1 
queueing formulations provide closed-form solutions 
to all parameters of interest.  The M/G/1 queueing 
formulation used for this terminal area model consists 
of the following familiar queuing theory equations:  
The probability of being in state zero (i.e., no aircraft 
in the system) P0 is 

1,10 <−= ρρP   (3) 

where the traffic intensity (also known as the 
utilization factor) ρ is defined as 

μ
λρ
⋅

=
s

  
(4) 

and s is the number of servers (set to one here).  
Queue lengths and waiting times are given by 

ρ+= qLL  (5) 
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(8) 

If it is of interest to consider differing arrival 
rates, the effective arrival rate λe is then calculated 
using 

∑
∞

=

⋅=
0n

nne Pλλ . 
(9) 

Queueing theory provides a rigorous and 
accepted probabilistic methodology to measure the 
performance of waiting line systems and is often 
applied to transportation systems.  Note that if 

constant arrivals and service were considered, a more 
appropriate model would be that of a flow shop 
thoroughly detailed by Pinedo [9].  It should also be 
noted that the queueing model proposed here is 
simply a tool selected to allow a comparison to be 
made in order to demonstrate this paper’s capacity 
model, benchmarks, and performance metrics.  Other 
queueing models can be used, as can deterministic 
models, other stochastic models, or simulation 
software (e.g., Arena, Simulink, etc.). 

Capacity Model 
Two obvious ways to measure terminal area 

performance include aircraft per hour and passengers 
per hour.  Assumptions in the model proposed here 
include a flat earth (see Vincenty [10] for ellipsoid 
modeling); the approach indicated airspeed (IAS, or 
more typically, knots indicated airspeed KIAS) is 
always along the ground track (i.e., taken as parallel 
to the ground, not the glideslope or, more accurately, 
the aircraft’s pitch attitude); the approach speed is the 
same as the groundspeed; constant approach speed 
(there is no deceleration on approach as is often 
practiced by controllers and pilots); and any 
additional runways that are in operation for 
approaches are parallel (therefore, multiple 
approaches are modeled by linearly increasing the 
analytical results).  Most of these assumptions can be 
removed with some additional refinement (e.g., the 
airspeed assumptions) but are maintained here in the 
interest of making the mechanisms of the model the 
focus of this study.  All measures are in nautical 
miles (NM) and hours.  Also, the runway is not 
considered to be a bottleneck; i.e., the aircraft are 
considered to land, decelerate, and clear the runway 
at least as quickly as the service rate.  While the 
model is general for any airport (using the previous 
assumptions), the parameter data used must be 
reflective of the airport being studied. 

The service distribution mean 1/μ is obtained 
from the average approach speed and the average 
spacing by 

e

e

spacing
V

=μ  
(10)
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where Ve is the expected (i.e., average) approach 
speed and the expected aircraft spacing spacinge is 
given by 

spacinge = interval − lengthe (11)

where interval is the controller-determined spacing 
between aircraft (actually, between aircraft centers of 
mass) and lengthe is the expected length of the 
aircraft on approach to a particular runway (lengthe 
can be set equal to zero for low resolution systems or 
relatively large spacing, both of which are the case in 
the NAS at the time of this paper) [11].  For example, 
aircraft approaching at 120 knots and allowing for 3 
NM spacing (using lengthe = 0) results in 40 aircraft 
serviced per hour. 

The concept of expectation can be found in most 
general statistics texts.  This definition of average 
from the area of probability is commonly referred to 
as mathematical expectation E and defined as 

nn PxPxPxE ⋅++⋅+⋅= K2211  (12)

where the xs represent some amount of interest (e.g., 
speed V) and the Ps represent the associated 
probability of obtaining those amounts.  

If the parameter of interest is measured in 
passengers per hour, the service rate μ is given by 

e

ee

spacing
PAXV ⋅

=μ  
(13)

where PAXe is the expected number of passengers per 
aircraft.  Using the example above, if each of those 
aircraft averaged 100 passengers, the landing rate 
would be 4,000 passengers per hour. 

Since the service rates are modeled as being 
deterministic, the variance σ2 of the service-time 
distribution is σ2 = 0. 

The arrival rate λ describes the number of 
aircraft per hour.  This value would be selected to be 
appropriate to the particular airport being studied and 
must adhere to the constraint that 

μλ < . (14)

The airport’s aircraft capacity ACAP is the same 
as the airport’s service rate μ and can be calculated in 
the same manner as equation (10): 

e

e

spacing
VACAP = . 

(15)

This is similar for the airport’s passenger 
capacity PCAP which is calculated in the same way 
as equation (13): 

e

ee

spacing
PAXVPCAP ⋅

=  
(16)

Using this model, it can be seen that terminal 
area capacity is primarily affected by aircraft spacing 
(less spacing allows more aircraft) and approach 
speed (faster approach allows more aircraft).  (In the 
case of capacity being measured in terms of the 
number of passengers per hour, aircraft passenger 
capacity is also a factor.) 

Benchmark 
Theoretical upper and lower bound formulations 

provide the two extremes to be used as benchmarks 
for evaluation purposes.  The benchmarks developed 
here are modeled deterministically and do not use 
queueing theory. 

The minimum number of aircraft on approach in 
a terminal area each time period ACAPmin is trivially 
zero and hence the theoretically lower bound and 
given by 

0min =ACAP . (17)

This is analogous in the passenger capacity 
scenario with the minimum number of passengers 
serviced each time period PCAPmin given by 

0min =PCAP . (18)
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The maximum number of aircraft would be 
obtained by aircraft touching nose to tail and doing so 
at a high approach groundspeed.  While aircraft 
touching in flight would appear to be unrealistic, it is 
valuable in providing a theoretical upper bound.  
Also, previous capacity improvement proposals have 
included the concept of aircraft flying approaches in 
formation.  Nose-to-tail spacing along the aircraft 
longitudinal axis (but not the lateral) is fairly 
commonplace in military formation flying using 
what’s known as parade position, which provides 
aircraft separation using horizontal stagger and 
altitude step-down (step-up for helicopters) [12].  
Also, limitations of formation operations in the NAS 
and potential solutions are detailed by Harrison [13].  
From equations (11) and (15) the maximum number 
of aircraft on approach in a terminal area each time 
period ACAPmax, the theoretical upper bound, is 

x
length

VACAP
x

x ∀
⎭
⎬
⎫

⎩
⎨
⎧

= maxmax  
(19)

with 

}{: aircraftallxx ∈ . 

ACAPmax is determined by the aircraft having the 
highest speed-to-size ratio on a given approach at a 
given airport. 

This is analogous in the passenger capacity 
scenario, with the maximum number of passengers 
serviced each time period PCAPmax given by 

x
length

PAXVPCAP
x

xx ∀
⎭
⎬
⎫

⎩
⎨
⎧ ⋅

= maxmax  
(20)

again, with 

}{: aircraftallxx ∈ . 

This value is determined by the aircraft having the 
highest speed-and-passenger-count product to size 
ratio on a given approach at a given airport.   

While it would seem that equations (19) and 
(20) should more accurately incorporate the floor 

function (the floor function of x assigns the largest 
integer ≤ x, e.g., ⎣1.3⎦ = 1) of this makes sense (since 
a count of aircraft and people cannot practically be 
fractional), since this is actually a rate, it will not be 
rounded so that any subsequent calculations are not 
affected. 

Equation (20) also demonstrates one possible 
measure of an individual aircraft’s efficiency. 

Performance Metrics 
The primary mathematical evaluation tool 

developed for quantitative analysis is an extension of 
development by McGovern and Gupta [14].  As 
shown in Formula (21) and subsequently referred to 
as the efficacy index EI, it is the ratio of the 
difference between a calculated measure x and its 
worst-case measure xmin to the measure’s sample 
range (i.e., the difference between the best-case 
measure xmax and the worst-case measure as given by: 
max(Xy) − min(Xz) : y, z ∈{1, 2,…, |X|} from the 
area of statistical quality control).  It is expressed as a 
percentage and described by 

minmax

min )(100
xx
xxEI x −

−⋅
=  

(21) 

This generates a value between zero and 100%, 
indicating the percentage of optimum for any given 
measure and any given combinatorial optimization 
methodology being evaluated.  For example, the 
efficacy index formula for an airport’s aircraft 
capacity would read 

minmax

min )(100
ACAPACAP
ACAPACAPEI ACAP −

−⋅
=  

(22) 

For the study of multiple data sets, probability 
theory presents us with the concept of a sample 
mean.  The sample mean of a method’s efficacy 
index can be calculated using 

y
xx

xx
EI

y

i

i
x ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−⋅

= ∑
=1 minmax

min )(100
 

(23) 
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where y is the sample size (the number of data sets).  
While Formula (21) provides individual data set size 
efficacy indices – especially useful in demonstrating 
worst and best case as well as trends with instance 
size – Formula (23) allows a single numerical value 
that provides a quantitative measure of the location of 
the data center in a sample. 

Case Study 
Any actual study needs to use empirical data that 

matches a particular airport including fleet mix and 
aircraft characteristics.  Here, a sample case study is 
provided to demonstrate the application of some of 
these formulae and to generate some characteristic 
results.  Analysis is conducted using the model and 
bounds to quantitatively depict the impact of changes 
in various parameters. 

This case study makes use of data from an actual 
airport – George Bush Intercontinental Airport 
(KIAH) in Houston, Texas – from a previously 
conducted study [15].  Items used from this study are 
shown in Table 1 and include aircraft types, 
frequencies (based on the fleet mix at that airport), 
and approach airspeed distributions (collected 
through the use of multiple pilots flying multiple 
approaches in Level D simulators).  The aircraft types 
are masked here to avoid the possibility of making 
any inferences about individual airframes or 
manufacturers, but include 11 aircraft types (which, 
in turn, are used to represent 38 different types in the 
original study, from a total fleet mix of 47 at KIAH) 
from seven manufacturers.  The fictitious capacity 
improvement in this case study will simply consist of 
some procedure or technology that is being 
considered that would have the aircraft fly faster on 
the entirety of the approach.  This 
procedure/technology would take the aircraft from 
each of their current approach airspeed modes (i.e., 
the speed each type flies the most often) to its highest 
airspeed seen on approach.  For example, the current 
procedures/technologies would have aircraft A fly at 
137.42 KIAS, while the new procedure/technology 
would have that same aircraft fly the approach at 
148.60 KIAS (as such, the Vmin speeds in Table 1 are 
not used here and are included only as supplementary 
information).  

Table 1. KIAH Representative Aircraft and 
Associated Approach Data 

A/C Type Frequency Vmin Mode V Vmax 
A 54 129.30 137.42 148.60
B 8 103.60 104.40 121.80
C 11 137.80 139.02 157.30
D 305 133.70 138.91 152.60
E 300 134.60 146.45 154.40
F 70 132.50 136.84 148.90
G 41 137.20 142.02 149.40
H 759 91.41 117.80 141.80
I 87 104.33 121.40 148.80
J 40 91.41 117.80 141.80
K 94 109.30 126.52 145.20
 

Each aircraft’s associated length (length in NM) 
is listed in Table 2.  Using this data and the highest 
speeds as found in Table 1, each possible ACAPmax 
value can be calculated (see Table 2) using equation 
(20).  ACAPmin is zero from equation (18). 

Table 2. Capacity Bounds using KIAH Data 

A/C Type length (NM) ACAPmax 
A 0.0203 7,325.18
B 0.0122 9,950.31
C 0.0252 6,238.11
D 0.0197 7,753.50
E 0.0213 7,244.71
F 0.0256 5,827.62
G 0.0399 3,744.10
H 0.0142 9,970.14
I 0.0192 7,756.19
J 0.0243 5,828.09
K 0.0107 13,629.52

 

Table 2 indicates that aircraft type K provides 
the largest ACAPmax for the case study.  Even though 
it is one of the slower aircraft, its small size 
compensates significantly for its slightly lower speed 
in this case.  For this example, the maximum 
theoretical aircraft capacity is equal to 13,629.52 
aircraft per hour. 

The actual ACAP value (prior to any procedure 
or technology changes) at KIAH is determined in 
Table 3 by using Ves equal to the Table 1 mode V 
values and then weighting each aircraft’s calculated μ 
(now using the actual 3 NM separation and setting 
the aircraft lengths to zero) using equation (15).  This 
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is done by multiplying each aircraft’s calculated μ 
(used interchangeably with ACAP) by its frequency 
(given in Table 1) divided by the total number of 
aircraft (1769 in this example).  Summing these 
values gives an initial actual ACAP of 42.97 aircraft 
per hour.  Using equation (22), an EIACAP of less than 
one percent (0.32%) is calculated, indicating the 
significant spacing between aircraft relative to the 
aircrafts’ sizes. 

Table 3. Baseline Service Rate Values for 
Individual Aircraft 

A/C Type μ Weighted μ 
A 45.81 1.40
B 34.80 0.16
C 46.34 0.29
D 46.30 7.98
E 48.82 8.28
F 45.61 1.80
G 47.34 1.10
H 39.27 16.85
I 40.47 1.99
J 39.27 0.89
K 42.17 2.24

 

Assuming the addition of a technology or 
procedure that safely increases the aircraft approach 
speeds (all else in this example, including interval 
between aircraft, remains unchanged), and using the 
maximum approach speeds to provide representative 
empirical data, the new ACAP value can be 
determined.  Using the same procedure described for 
Table 3, the calculations in Table 4 give a modified 
procedure/technology actual ACAP of 49.00, 
indicating a capacity increase of an additional six 
aircraft per hour. However, using equation (22) an 
EIACAP of 0.36% is calculated; just a 0.04% 
improvement over the original EIACAP, even though 
the relative improvement between ACAP values (i.e., 
from 42.97 to 49.00) is over 14%. 

Table 4. Modified Service Rate Values for 
Individual Aircraft 

A/C Type μ Weighted μ 
A 49.53 1.51
B 40.60 0.18
C 52.43 0.33
D 50.87 8.77
E 51.47 8.73
F 49.63 1.96
G 49.80 1.15
H 47.27 20.28
I 49.60 2.44
J 47.27 1.07
K 48.40 2.57

 

Next, the M/D/1 model can be used to compare 
the system before and after the procedure/technology 
changes.  Using a fixed arrival rate of λ = 35 aircraft 
per hour and formulae (3) through (8), Table 5 shows 
that the number of aircraft waiting for approach 
clearance (i.e., slowing, holding, vectored for 
spacing, etc.) drops almost in half (per the Lq value), 
while slight decreases in waiting times (Wq) are also 
seen. 

Table 5. Summary of Before and After Results 

Parameters Baseline Modified 
ACAP (also μ) 42.97 49.00
ρ 0.81 0.71
L 2.60 1.61
Lq 1.79 0.89
W 0.07 0.05
Wq 0.05 0.03
P0 18.56% 28.57%
EIACAP 0.32% 0.36%

 

This case study hypothetical procedure/ 
technology adds a full six aircraft per hour, per 
runway to the airport capacity, while simultaneously 
decreasing the number of aircraft being delayed for 
approach clearance as well as the amount of time 
those aircraft spend waiting; however, the 
improvement is not as impressive when compared to 
the upper and lower theoretical bounds. 
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Finally, other studies could evaluate various 
combinations of varying approach speeds, aircraft 
sizes, fleet mixes, spacing between aircraft, passenger 
loads, arrival rates, etc.  Also, any results using these 
parameters could then be subsequently validated 
using simulation. 

Summary 
Airport capacity-improving procedures and 

technologies may need to be evaluated prior to 
implementing any changes in the national airspace 
system.  In this paper, terminal area upper and lower 
capacity bounds were developed along with 
formulations for measuring and for benchmarking 
capacity improvements for the purpose of quantifying 
improvements due to the proposed technologies/ 
procedures prior to their acquisition and 
implementation.  In order to demonstrate these 
formulations, the terminal area was represented using 
an M/D/1 model from the field of queueing theory.  A 
case study was then developed, demonstrating a 
fictional proposed improvement and the numerical 
results.  These mathematical tools may hold value in 
measuring potential improvements to the NAS as part 
of a cost-benefit analysis or in other studies. 
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