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The Need for Dynamic Density

Aviation operations have exhibited steady
long-term growth over the past several decades, and
the aviation community expects this trend to
continue. In addition to increasing traffic volume,
many regions of the airspace will experience more
dynamic traffic flows as more and more user
preferences are accommodated. As a result, sector
air traffic operations will become even more
dynamic than they are today.

In the present air traffic control system, traffic
management personnel use the Enhanced Traffic
Management System (ETMS) 'monitor alert'
parameter as a strategic planning tool to identify
and predict sector traffic complexity so that
strategic and tactical air traffic decisions such as
flow modifications, staff planning, sector redesigns
can be planned. The monitor alert parameter is
based solely on aircraft count. When the number of
aircraft is expected to reach a predetermined
threshold for a particular sector, monitor alert
delivers a red alert (i.e., high workload warning).
While the number of aircraft can certainly
contribute to the complexity of sector operations, it
is not the only indicator, and thus does not always
accurately represent the taskload experienced by the
air traffic controller.

For several years, the Federal Aviation
Administration (FAA) has supported the
development of a better method to measure and
predict sector complexity, referred to as Dynamic
Density (DD), to provide a more encompassing,
useful tool for today's air traffic control
environment. Aside from serving present air traffic
facility functions, such a metric also has
applications for advanced air traffic control
concepts, including dynamic resectorization,
airspace redesign, and free flight. These programs
depend on the ability to accurately measure and
predict sector-level traffic complexity.
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This paper reviews a multi-year, multi-
organizational research effort to develop and
validate several proposed DD metrics. It provides
an overview of the DD metrics under consideration,
the study approach to collect operational subjective
data, and the development and validation of a 'best'
DD metric.

Dynamic Density Definition

The term Dynamic Density is analogous to
complexity or difficulty of a traffic situation. It
originated in an RTCA Task Force 3 report {1],
where it was described as “the essential factors
affecting conflict rate in both en route and terminal
airspace.” DD can also be defined as ATC
taskload, which is the basis of controller subjective
workload. It is a "measure of control-related
workload that is a function of the number of aircraft
and the complexity of traffic patterns in a volume of
airspace” [2]. For the purposes of this paper and
the DD activities described herein, the term DD is
defined as the collective effect of all factors, or
variables, that contribute to the sector level air
traffic control complexity or difficulty at any given
time [3].

Complexity Variables

The factors that contribute to sector level
traffic complexity have been of interest to
researchers for a long time. Mogford, Guttman,
Morrow, and Kopardekar [4] identified and
reviewed air traffic complexity related literature
dating back to 1963. Most articles identified
aircraft count, sector geometry, traffic flows,
separation standards, aircraft performance
characteristics, and weather as the most common
factors that contribute to air traffic complexity or
difficulty. Kopardekar [5] conducted a review of
DD variables that different researchers and agencies
identified as contributing factors to air traffic



control complexity, and uncovered a common
thread of primary variables. They consisted of
traffic density, traffic flow characteristics, and
separation standards. For the DD research
described in this paper, the variables considered for
analysis depended on what each participating
organization's vision was of factors that affect
traffic complexity. The specific variables are
described in the following sections.

Research Partners

The FAA developed a Research Management
Plan (RMP) to identify all parties interested in
conducting the DD research and produce a cohesive
plan for doing so [6]. The RMP is a living
document that provides a means for organizations
to effectively use resources and eliminate
duplication of effort. The DD research described in
this paper was lead by ACB-330 of the William J.
Hughes Technical Center (WIJHTC). The research
partners included Titan Systems, NASA Ames
Research Center, Metron Aviation, and Mitre
CAASD.

Methodology

Despite the fact that researchers have proposed
many complexity variables and algorithms over the
years, the validity of such metrics has not been
examined using a large amount of operational data.
In the DD study reported here, the researchers
investigated the performance of four different DD
metrics. These included metrics developed by the
WIHTC and Titan Systems, two developed by
" NASA, and one originally developed by
Wyndemere, but now represented by Metron
Aviation.

The DD research was divided into three
phases. Phases I and II both aimed at developing,
refining, and executing a study to collect a large
sample of subjective complexity rating data from
controllers and supervisors at multiple Air Route
Traffic Control Centers (ARTCCs) across the
country. Phase III was the data analysis portion of
the research effort, which involved the coding of
the proposed metric variables into an en route
decision support tool, the generation of DD output,
and the comparison of the DD output to the
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complexity ratings, both in instantaneous and
predictive modes.

Phase I

Phase I served as a pilot study for the multi-
Center data collection planned for Phase II. The
intent of Phase I was to refine the experimental
approach for gathering complexity ratings from
controller and supervisor participants. Phase I was
performed at Denver Center (ZDV) in October
1999.

Phase 11

Phase II consisted of a large-scale operational
data collection at four ARTCCs: Atlanta Center
(ZTL), Cleveland Center (ZOB), ZDV, and Fort
Worth Center (ZFW). The DD researchers
collected a total of 72 thirty-minute samples of
traffic data from a total of 36 high and low sectors.

Using Systematic Air Traffic Operations
Initiative replays, they collected complexity ratings
every two minutes for each of the traffic samples
from a total of 72 controllers and supervisors,
resulting in over 6400 ratings.

Phase 111

Phase III was performed to primarily answer
the following questions:

e Can a DD metric(s) accurately capture
complexity?

Is a DD metric(s) reliable/persistent for
predicting complexity starting 2 hours

out?

In order to do this, the first activity in Phase HI
was to extract the proposed DD variables from the
ETMS data. The ETMS data was used as the input
for calculating DD variables because it is currently
used for predicting the monitor alert parameter.
The researchers selected the Collaborative Routing
Coordination Toolset (CRCT) developed by
MITRE CAASD to produce the DD output. They
selected this tool because of its ability to ingest
ETMS data, and because it contained a trajectory
modeler, essential to the computation of many of
the metric variables.



After coding the metrics, MITRE CAASD
programmers extracted ETMS data corresponding
to the traffic sample dates and times during which
complexity ratings were collected and ran it through
the metrics in CRCT to produce DD output values.
They then gave the data to the research partners to
address the following objectives:

Objective 1. Determine how accurately the DD
metrics represent the subjective complexity
ratings. Specifically,
e Develop a DD model (weights for
different variables)
e Compare different DD metrics
e Select a ‘best-fit” DD metric
e Test DD model for accuracy

Objective 2. Determine how stable the
predictions are over time for the selected
metric. Specifically, examine DD metric
prediction performance starting from 2 hours
prior to traffic sample intervals.

Figure 1 depicts the distinction between the
instantaneous and predicted DD.

Figure 1. Instantaneous and Predicted DD

Data Analysis Approach

The researchers divided the 72 30-minute
traffic samples into two groups. The first group of
60 traffic samples was used to develop the DD
model (i.e., establish weights). The second group
of 12 traffic samples was used to test the DD
model. .

For each of the 72 traffic samples, the
researchers performed two types of DD
calculations. The first consisted of instantaneous
DD calculations (for objective 1 of accuracy
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testing) and the second consisted of predicted DD
calculations (for objective 2 of reliability
assessment).

The instantaneous DD calculations were
performed at 2-minute intervals (corresponding to
the same two-minute intervals at which complexity
ratings were provided) for each of the 30-minute
traffic samples. The predicted DD calculations
were performed at 2-minute intervals up to 120
minutes prior to actual traffic sample times.

Using the first group of 60 traffic samples, DD
models were constructed for the four candidate
metrics: WIHTC and Titan metric, two NASA
metrics, and one Wyndemere/Metron metric.
Additionally, a unified model comprised of all
variables from all four metrics was also developed.

The researchers used a regression method to
develop the DD metric(s). Results from other
methods will not be reported here, but the
researchers are continuing efforts to use non-linear
regression, neural nets, and other methods to
improve the DD models. Only results of initial
regression analysis are reported in this article.

Description Of DD Metrics

A brief description of DD metric variables is
provided here. For further details and calculation
methods, readers are encouraged to refer to
Kopardekar [5].

WJTHC/Titan Metric

AD1  Aircraft density 1 - number of
aircraft/occupied volume of airspace

AD2  Aircraft density 2 - number of
aircraft/sector volume

CRI  Convergence recognition index — measure
of the difficulty of detecting converging
aircraft with shallow angles

SCI  Separation criticality index - proximity of
conflicting aircraft with respect to their
separation minima

DOFI Degrees of freedom index — based on
maneuver options in a conflict situation

CTIl Coordination taskload index 1 - based on

aircraft distance from the sector boundary
prior to hand-off '



CTI2 Coordination taskload index 2 - different
formula based on the same principle as

CTI1
SV Sector volume

ACSQ Square of aircraft count

In addition to above quantitative variables, the
WITHC/Titan metric also involved categorical
variables such as facility type, and high and low
sector type.

NASA Metric 1

The NASA-1 metric consisted of 16 variables.
For details of the calculations, readers are
encouraged to refer to Chatterji [7].

Cl1 Number of aircraft

C2 Number of climbing aircraft

C3 Number of cruising aircraft

C4 Number of descending aircraft

C5 Horizontal proximity metric 1

C6 Vertical proximity metric 1

C7 Horizontal proximity measure 2

C8 Vertical proximity measure 2

Cc9 Horizontal proximity measure 3

C10  Vertical proximity measure 3

Cl11  Time-to-go to conflict measure 1

C12  Time-to-go to conflict measure 2

C13  Time-to-go to conflict measure 3

Cl4  Variance of speed

C15  Ratio of standard deviation of speed to
average speed

C16  Conflict resolution difficulty based on
crossing angle

NASA Metric 2

The NASA-2 metric consisted of 8 variables.
Laudeman, Shelden, Branstrom, and Brasil [8] and
Sridhar, Sheth, and Grabbe describe these variables
in detail [9]. The metric consisted of:

N Traffic Density

NH  Number of aircraft with Heading Change
greater than 15°

NS Number of aircraft with Speed Change
greater than 10 knots or 0.02 Mach

NA  Number of aircraft with Altitude Change

greater than 750 feet
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S5 Number of aircraft with 3-D Euclidean
distance between 0-5 nautical miles

excluding violations

S10  Number of aircraft with 3-D Euclidean
distance between 5-10 nautical miles

excluding violations

S25  Number of aircraft with lateral distance
between 0-25 nautical miles and vertical
separation less than 2000/1000 feet

above/below 29000 ft

Number of aircraft with lateral distance
between 25-40 nautical miles and vertical
separation less than 2000/1000 feet
above/below 29000 ft

Number of aircraft with lateral distance
between 40-70 nautical miles and vertical
separation less than 2000/1000 feet
above/below 29000 ft

540

S70

Wyndemere/Metron Metric

The Wyndemere/Metron metric consisted of
10 variables. For further details, refer to
Wyndemere [10].

WACT Aircraft Count within a sector

WDEN  Aircraft count divided by the usable
volume of sector airspace.

WCLAP  Number of aircraft with predicted

separation less than a threshold value
(e.g., 8 miles) at a particular time.
WCONVANG The angle of converge between
aircraft in a conflict situation
WCONFLICTNBRS Count of number of other
aircraft in close proximity to a potential
conflict situation (e.g., within 10 miles
laterally and 2000 feet vertically).
WCONFBOUND Count of predicted conflicts
within a threshold distance of a sector
boundary (e.g., 10 miles).
Count of number of altitude changes
above a threshold value with the sector.
WHEADVAR Count of number of bearing changes
above a threshold value with the sector.
WBPROX Count of number of aircraft within a
threshold distance of a sector boundary
(e.g., 10 miles).

WALC



WASP The squared difference between the
heading of each aircraft in a sector and
the direction of the major axis of the
sector, weighted by the sector aspect

ratio.

Results

DD Model Development

Using the first group of 60 traffic samples,
regression was performed. The results of the
regression can be summarized as follows (See
Tables 1 through 5):

All four DD metrics perform better than
currently used aircraft count to represent
complexity.

Different metrics perform better for
different facilities. DD performs the
best for ZDV and the worst for ZOB
implying that there are still some
complexity variables that may be
missing for ZOB.

WIJITHC/Titan metric performs best for
all facilities combined

Unified DD metric (i.e., variables from
all four proposed metrics) provides the
best results in all conditions

Tables 1 through 5 indicate the R-values of the
regression for ZDV, ZTL, ZFW, ZOB, and all
facilities combined.

Note: S refers to supervisor ratings, C refers to
controller ratings, L refers to low altitude sectors
and H refers to high altitude sectors.

Table 1. Regression Results (R Values) for ZDV

. S&C, C,
Metrics H&L . S&C. H H&L S,H&L | C,H S.L

A | o000 | oze ons | oss 0753 | om 0196
Count

Tech

0.740
Coenter

0809 0.748 0.745 0.744 0.787 0.787

NASA-1 0728 0802 0773 0719 0.750 0.784 0.784 0853

0.860

NASA-2 0520 0.514 0332 0.406 0511 0.603

All
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Table 2. Regression Results (R Values) for ZTL

S&C,

3 C
H&L

S&C, H H&L

S,H&L | CH S.H S,L

Al |00 | 010 0459 0426 | 0370 0175 0215
Count

Tech
0.326 0.509 0673 0.5%4 0.496 0336
Center

NASA-1 0.678 0.363 0.689 0.538 0.387 0.391

0.466 0.641 0.627

NASA-2 | 0325 0.161 0342 0311 0.347 0383 0.365 0.166 0212

All

Table 3. Regression Results (R Values) for ZFW

S&C, C,

Hal S&C, H H&L S,H&L

C,H

Aircraft
0.540 0. 0.509 0.480 0.619 0.415 0432
Count 4o ¢

Tech

0568
Center

0.521 0545 0.642 0.626 0.651

NASA-1 [ 0.458 0.597 0.511 0.495

0.556 0.572 0.592 0576 0.616

NASA-2 | 0393 0437 0439 0383 0477 0.446 0478

Al

Table 4. Regression Results (R Values) for ZOB

S&C,L S,H&L | C.H S,H

Aircraft
0310 .40 0230 ¥ 0.364
C i 0402 0268

NASA-1

Tech

2
Center 035

0488 0.467

0437 0448 0436 0429 0533

NASA-2 0332 0.298 0218 0297 0477 0.304 0.408

All




Table 5. Regression Results (R Values) For All

Since a unified metric performed the best

Facilities under all conditions, only results pertaining to the
T e < unified metric are reported from this point on. The
MO | nap | SAOL[SBOR ) oy |SRAL) OH | SH ) OL | SE regression results for the unified metric are
Mot | oa | owas | owu [ ows | osz | ows | osw | osm | ams presented in Table 6. The results depict the
= o oz | o significant variables and their corresponding
weights (beta values) and level of significance.
NASA-1 0.541 0493 0516 0.580 0468 0.544
Metron 0.483 0439 0.507 0.467 0511 0498 0536 0.431 0.468
NASA.2 0315 0.335 0.383 0283 0.353 0.361 0414 0306 0385
All
Table 6. Regression Equation Output
Unstandardized Standardized t Sig.
Coefficients Coefficients
B Std. Error Beta
(Constant) 1.699 207 8.188 .000
1=low sector, 2= high sector .695 .084 254 8.306 .000
ac_count_sqrd -4.406E-03 .001 -.263 -6.371 .000
TECH CENTER_AD2 683.138 75.150 242 9.090 .000
sector volume/aircraft -2.269E-04 .000 -.648 -16.182 .000
TECH CENTER_DOFI -1.057E-02 .003 -.056 -3.038 .002
sector volume 1.865E-05 .000 .643 14.170 .000
NASA-1_C1 1.161 229 215 5.073 .000
NASA-1_C4 .302 132 044 2.279 .023
NASA-1_C6 123 .055 .028 2.247 .025
NASA-1_C8 4.819E-02 .017 .040 2.799 .005
NASA-1_C9 6.075E-03 .002 .039 2.537 .011
NASA-1_C14 - 5.104E-03 .002 118 2.713 .007
NASA-1_C15 -1.907 .634 -.161 -3.008 .003
NASA-2_NH 128 .035 .047 3.672 .000
NASA-2_NA -5.408E-02 .020 -.072 -2.739 .006
NASA-2_S25 8.303E-02 .028 .045 2.962 .003
MET_ac_count .101 .023 .161 4.392 .000
MET_density -6.411E-03 .001 -.168 -7.943 .000
MET_conflict neighbors -.118 .020 -.260 -6.007 .000
MET_conflict near boundary 8.733E-02 .015 430 5.792 .000
MET_heading variation -1.867E-02 .006 -.039 -2.888 .004
MET_boundary proximity -.321 .078 -.112 -4.118 .000
MET_airspace structure 3.257E-02 .003 .215 10.506 .000
Model Testing only. Additionally, the R value for the first group

Results for Instantaneous DD Predictions

A performance assessment of the unified DD
metric was conducted using the second group of
data. The graph of the DD values, complexity
ratings, and a model based on only aircraft count
indicates that the DD model follows the complexity
ratings better than the model based on aircraft count
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of data is higher for the DD based model than the
aircraft count based model.

Note: CSRATING refers to controller and
supervisor complexity ratings.



Meoan

Arcraft count model

Alrcraft Count

Figure 2. Performance of DD Model

Note: Model 1: CS rating = 1.970 +
0.165*Ac_count, R = 0.479, Model 2: CS rating =
DD equation, R = 0.624.

Table 7 depicts that the difference between the
DD output and the actual complexity ratings.
62.7% of the observations from the second data
group are within 1 unit difference from the actual
complexity ratings and 23.1% of the observations
match the ratings exactly. Less than 10% of the
differences are greater than 2 units.

Table 7. Difference Between DD and Complexity
Ratings

Cumulative
Percent Percent
8
1.8
10.1
225
231
1741
5.7

Valid Percent
.8

1.8

12.8

278

28.6

211

T

Frequency
7
17
109
243
250
1856
82
2
875
205
1080

Valid -4.00
-3.00
-2.00
-1.00
.00
1.00
2.00
3.00
Total
System

27
15.2
43.0
71.8
92.7
90.8
2 100.0

81.0

190.0
100.0

2
100.0
Missing
Total

Table 8 shows the comparison between the
performance of the DD based model and the aircraft
count based model for predicting complexity ratings
for the second data group. The results indicate that
the mean absolute difference, Root Mean Square
(RMS) difference, and standard deviation of
difference between the actual complexity ratings
and model based predictions were smaller for the
DD based model. This implies that the DD based
model is better at predicting complexity than the
model based only on the aircraft count.
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Table 8. Performance Measures for DD Based -
and Aircraft Count Based Model

Descriptive Statistics

Minimum [ Maximum | Mean _[Std. Deviation
CSRAN 1.0 7.0 3.685 1.4084
(O based m 1.00 500 | 3.2545 90603
ADbSG
Difference 00 4.05 9939 71154
RMS NA N/A 1.2200 hN/A
Aircraft count
based modet 213 494 | 3.0885 62208
Absolute
Difference 0 4.7 1.233 8779
RMS N/A N/A 1.5100 | N/A

Figure 3 shows that the mean absolute
difference (between complexity predicted by DD
based model and complexity ratings for the second
data group) was the lowest when the complexity
ratings were closer to 3. The mean absolute
difference increased as the complexity ratings were
either at the higher or lower end (1, 6, or 7). This
could be because the first data group contained a
higher percentage of 2, 3, 4, and 5 complexity
ratings and a fewer percentage of 6 and 7 ratings.

4

39

1=controller, 2=supe

Mean absolute difference

CSRATING

Figure 3. Mean Absolute Difference for
Different Complexity Ratings

Results of DD Prediction Model

The DD researchers were interested in
determining if DD representing complexity could
be predicted ahead of time. Therefore, they
developed another DD equation on the first group
of data. The purpose of this equation was to predict
DD up to 120 minutes ahead of an actual instance.
If the DD predictions were relatively accurate with
larger look-ahead times, they could provide
valuable insight and assist in planning traffic flow



changes, sector level staffing needs, dynamic
resectorization, and other operational decisions.

The DD equation with look-ahead time as an
added variable, the original DD equation, the
aircraft count based model, and the complexity
ratings were compared for accuracy. Figure 4
shows that the model based on DD with look-ahead
time included closely follows the complexity
ratings (i.e., CSRating). The original DD model
used for instantaneous DD performs the worst and
further validates that the look-ahead time must be
part of the predictions. This indicates that the DD
predictions are dependent on the look-ahead time.
This makes sense, as more information is available
about flights and weather as the prediction horizon
narrows down.

1%

CSRATING

DD modsl
—

DD w flookahead model
————

Mean

Alrcraft count model

Predicted Count

Figure 4. Predicted DD

Note: CS rating = 2.481 + 0.110*Pred_count, R =
~ 0.411, CS rating = DD equation + look-ahead, R =
0.633

Figure 5 displays how stable the predicted DD
values were across look-ahead time for the second
data group. The DD with look-ahead time based
model provides fairly stable predictions.
Interestingly, the model based on aircraft count also
performs fairly well. However, the raw predicted
aircraft count varies considerably with look-ahead
time.

Predicted count
* Predicted DD

3 @ 135w fookahead model

Mean

® Avrcraft count model

Lookahead times

Figure 5. Stability of Predicted DD

Tables 9 and 10 show the performance
comparisons of DD with look-ahead time based
model, the instantaneous DD based model, and the
model based on aircraft count only. The mean
absolute difference, standard deviation of absolute
difference, and the RMS error are all smaller for
DD based model with look-ahead time. Hence, the
DD based model with look-ahead time seems to
better predict the DD up to 120 minutes ahead of an
instance.

Table 9. Performance of Predicted DD

Descriptive Statistics
Minimum ] Maximum Mean Std. Deviation

PREBGCOUN 0 29 7.42 5.167
CSRATING 1.00 8.17 37934 1.22984
DD with lookahead 1.25 516 3.3545 72670
Instantaneous DD .18 16.94 4.3581 2.03400
DD based on predicted
AC count onty 248 5.67 3.2973 56841
Absolute difference for
DD with lookahead 00 284
Absolute difference for
) " DD model 00 14.81 1.4410 1.38430
Absolute difference for
model based on .01 292 1.0474 89193
prodicted AC count
RMS for DD with
tookahead model Nia N2 Nfa
RMS for Instantaneous )
0D model Nra N/a 1.9900 | N/a
RMS for model based on

ctod AC count Nra Nfa 1.2500 | Nra




Table 10. Performance Of Predicted DD Across
Different Look-Ahead Times

The DD with look-ahead time model (i.e.,
prediction intervals built into equation) performs
better than a model based on instantaneous DD
only. DD appears to be more stable over time than
predicted number of aircraft and DD appears to be
more accurate over time than predicted number of
aircraft.

Overall Conclusions

e The DD metrics have promise, most
notably as a unified metric with
contributing variables from the FAA
WIJHTC/Titan Systems, NASA, and
Wyndemere/Metron metrics.

e The DD metrics perform better than
aircraft count which is the basis of the
presently used complexity gauge.

e The models can be further developed
and tested with techniques such as
neural networks, genetic algorithms, and
non-linear regression.

e The current study used ETMS as the raw
source of traffic data. However, using
more frequently updated data, such as
System Analysis and Recording, Center
TRACON Automation System, or a
combination of the above could further
increase the accuracy of aircraft
positions.

e The researchers recommend using the
DD metric in the simulation
environment and plan to continue fine
tuning the variables and their weights.
Subsequently, an operational prototype
could be deployed at a test site for
hands-on evaluations.
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abeoluts
difference for shaolute ms for
absoiute modet difference for model e for dd
Cifference for | based on ddw rms for based on w
Instantaneous | predicted ac | lookshead instantanecus | predicied | jookahoad
&d model count modet & modet 2c count model
[Tookahoad 00| Ex 708 56 131 X} (K]}
time. 200 1.08 1.01 82 124 138 107
400 133 1.00 88 1.2 185 1.04
800 183 1.03 85 125 217 111
800 1868 1.08 6 124 261 1.1
100 184 1.08 k-] 128 223 1M
120 162 112 .50 128 228 | 107
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