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The Need for Dynamic Density 
Aviation operations have exhibited steady 

long-term growth over the past several decades, and 
the aviation community expects this trend to 
continue. In addition to increasing traffic volume, 
many regions of the airspace will experience more 
dynamic trafic flows as more and more user 
preferences are accommodated. As a result, sector 
air traffic operations will become even more 
dynamic than they are today. 

management personnel use the Enhanced Traffic 
Management System (ETMS) ‘monitor alert’ 
parameter as a strategic planning tool to identify 
and predict sector traffic complexity so that 
strategic and tactical air traffic decisions such as 
flow modifications, staff planning, sector redesigns 
can be planned. The monitor alert parameter is 
based solely on aircraft count. When the number of 
aircraft is expected to reach a predetermined 
threshold for a particular sector, monitor alert 
delivers a red alert (i.e., high workload warning). 
While the number of aircraft can certainly 
contribute to the complexity of sector operations, it 
is not the only indicator, and thus does not always 
accurately represent the taskload experienced by the 
air traffic controller. 

For several years, the Federal Aviation 
Administration (FAA) has supported the 
development of a better method to measure and 
predict sector complexity, referred to as Dynamic 
Density (DD), to provide a more encompassing, 
useful tool for today’s air traffic control 
environment. Aside from serving present air traffic 
facility functions, such a metric also has 
applications for advanced air traffic control 
concepts, including dynamic resectorization, 
airspace redesign, and free flight. These programs 
depend on the ability to accurately measure and 
predict sector-level traffic complexity. 

In the present air traffic control system, traffic 

This paper reviews a multi-year, multi- 
organizational research effort to develop and 
validate several proposed DD metrics. It provides 
an overview of the DD metrics under consideration, 
the study approach to collect operational subjective 
data, and the development and validation of a ‘best’ 
DD metric. 

Dynamic Density Definition 
The term Dynamic Density is analogous to 

complexity or difficulty of a traffic situation. It 
originated in an RTCA Task Force 3 report [ 13, 
where it was described as “the essential factors 
affecting conflict rate in both en route and terminal 
airspace.” DD can also be defined as ATC 
taskload, which is the basis of controller subjective 
workload. It is a “measure of control-related 
workload that is a function of the number of aircraft 
and the complexity of traffic patterns in a volume of 
airspace” [2]. For the purposes of this paper and 
the DD activities described herein, the term DD is 
defined as the collective effect of all factors, or 
variables, that contribute to the sector level air 
traffic control complexity or difficulty at any given 
time [3]. 

Complexity Variables 
The factors that contribute to sector level 

traffic complexity have been of interest to 
researchers for a long time. Mogford, Guttman, 
Morrow, and Kopardekar [4] identified and 
reviewed air traffic complexity related literature 
dating back to 1963. Most articles identified 
aircraft count, sector geometry, traffic flows, 
separation standards, aircraft performance 
characteristics, and weather as the most common 
factors that contribute to air traffic complexity or 
difficulty. Kopardekar [5 ]  conducted a review of 
DD variables that different researchers and agencies 
identified as contributing factors to air traffic 
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control complexity, and uncovered a common 
thread of primary variables. They consisted of 
traffic density, traffic flow characteristics, and 
separation standards. For the DD research 
described in this paper, the variables considered for 
analysis depended on what each participating 
organization's vision was of factors that affect 
traffic complexity. The specific variables are 
described in the following sections. 

Research Partners 

Plan (RMP) to identify all parties interested in 
conducting the DD research and produce a cohesive 
plan for doing so [6]. The RMP is a living 
document that provides a means for organizations 
to effectively use resources and eliminate 
duplication of effort. The DD research described in 
this paper was lead by ACB-330 of the William J. 
Hughes Technical Center (WJHTC). The research 
partners included Titan Systems, NASA Ames 
Research Center, Metron Aviation, and Mitre 
CAASD. 

The FAA developed a Research Management 

Methodology 
Despite the fact that researchers have proposed 

many complexity variables and algorithms over the 
years, the validity of such metrics has not been 
examined using a large amount of operational data. 
In the DD study reported here, the researchers 
investigated the performance of four different DD 
metrics. These included metrics developed by the 
WJHTC and Titan Systems, two developed by 
NASA, and one originally developed by 
Wyndemere, but now represented by Metron 
Aviation. 

The DD research was divided into three 
phases. Phases I and 11 both aimed at developing, 
refining, and executing a study to collect a large 
sample of subjective complexity rating data from 
controllers and supervisors at multiple Air Route 
Traffic Control Centers (ARTCCs) across the 
country. Phase III was the data analysis portion of 
the research effort, which involved the coding of 
the proposed metric variables into an en route 
decision support tool, the generation of DD output, 
and the comparison of the DD output to the 

complexity ratings, both in instantaneous and 
predictive modes. 

Phase I 
Phase I served as a pilot study for the multi- 

Center data collection planned for Phase 11. The 
intent of Phase I was to refine the experimental 
approach for gathering complexity ratings from 
controller and supervisor participants. Phase I was 
performed at Denver Center (ZDV) in October 
1999. 

Phase 11 

data collection at four ARTCCs: Atlanta Center 
(ZTL), Cleveland Center (ZOB), ZDV, and Fort 
Worth Center (ZFW). The DD researchers 
collected a total of 72 thirty-minute samples of 
traffic data from a total of 36 high and low sectors. 

Using Systematic Air Traffic Operations 
Initiative replays, they collected complexity ratings 
every two minutes for each of the traffic samples 
from a total of 72 controllers and supervisors, 
resulting in over 6400 ratings. 

Phase I1 consisted of a large-scale operational 

Phase 111 

the following questions: 
Phase 111 was performed to primarily answer 

Can a DD metric(s) accurately capture 
complexity? 
Is a DD metric(s) reliable/persistent for 
predicting complexity starting 2 hours 
out? 

In order to do this, the first activity in Phase 111 
was to extract the proposed DD variables fiom the 
ETMS data. The ETMS data was used as the input 
for calculating DD variables because it is currently 
used for predicting the monitor alert parameter. 
The researchers selected the Collaborative Routing 
Coordination Toolset (CRCT) developed by 
MITRE CAASD to produce the DD output. They 
selected this tool because of its ability to ingest 
ETMS data, and because it contained a trajectory 
modeler, essential to the computation of many of 
the metric variables. 
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After coding the metrics, MITRE CAASD 
programmers extracted ETMS data corresponding 
to the traffic sample dates and times during which 
complexity ratings were collected and ran it through 
the metrics in CRCT to produce DD output values. 
They then gave the data to the research partners to 
address the following objectives: 

Obiective 1. Determine how accurately the DD 
metrics represent the subjective complexity 
ratings. Specifically, 
0 Develop a DD model (weights for 

different variables) 
0 Compare different DD metrics 
0 Select a 'best-fit' DD metric 
0 Test DD model for accuracy 

Obiective 2. Determine how stable the 
predictions are over time for the selected 
metric. Specifically, examine DD metric 
prediction performance starting from 2 hours 
prior to traffic sample intervals. 

Figure 1 depicts the distinction between the 
instantaneous and predicted DD. 

Figure 1. Instantaneous and Predicted DD 
Data Analysis Approach 
The researchers divided the 72 30-minute 

traffic samples into two groups. The first group of 
60 traffic samples was used to develop the DD 
model (i.e., establish weights). The second group 
of 12 traffic samples was used to test the DD 
model. 

researchers performed two types of DD 
calculations. The first consisted of instantaneous 
DD calculations (for objective 1 of accuracy 

For each of the 72 traffic samples, the 

testing) and the second consisted of predicted DD 
calculations (for objective 2 of reliability 
assessment). 

The instantaneous DD calculations were 
performed at 2-minute intervals (corresponding to 
the same two-minute intervals at which complexity 
ratings were provided) for each of the 30-minute 
traffic samples. The predicted DD calculations 
were performed at 2-minute intervals up to 120 
minutes prior to actual traffic sample times. 

models were constructed for the four candidate 
metrics: WJHTC and Titan metric, two NASA 
metrics, and one WyndemereMetron metric. 
Additionally, a unified model comprised of all 
variables from all four metrics was also developed. 

develop the DD metric(s). Results from other 
methods will not be reported here, but the 
researchers are continuing efforts to use non-linear 
regression, neural nets, and other methods to 
improve the DD models. Only results of initial 
regression analysis are reported in this article. 

Using the fust group of 60 traffic samples, DD 

The researchers used a regression method to 

Description Of DD Metrics 
A brief description of DD metric variables is 

provided here. For further details and calculation 
methods, readers are encouraged to refer to 
Kopardekar [5]. 

WJTHCflitan Metric 
AD 1 

AD2 

CRI 

SCI 

DOFI 

CTIl 

Aircraft density 1 - number of 
aircraWoccupied volume of airspace 
Aircraft density 2 - number of 
aircraWsector volume 
Convergence recognition index - measure 
of the difficulty of detecting converging 
aircraft with shallow angles 
Separation criticality index - proximity of 
conflicting aircraft with respect to their 
separation minima 
Degrees of freedom index - based on 
maneuver options in a conflict situation 
Coordination taskload index 1 - based on 
aircraft distance from the sector boundary 
prior to hand-off 
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CTI2 

sv 
ACSQ 

Coordination taskload index 2 - different 
formula based on the same principle as 
CTI 1 
Sector volume 
Square of aircraft count 

In addition to above quantitative variables, the 
WJTHCEitan metric also involved categorical 
variables such as facility type, and high and low 
sector type. 

NASA Metric I 

For details of the calculations, readers are 
encouraged to refer to Chatterji [7]. 

The NASA-1 metric consisted of 16 variables. 

c 1  
c 2  
c 3  
c 4  
c 5  
C6 
c 7  
C8 
c 9  
c10 
c11 
c12 
C13 
C 14 
C15 

C16 

Number of aircraft 
Number of climbing aircraft 
Number of cruising aircraft 
Number of descending aircraft 
Horizontal proximity metric 1 
Vertical proximity metric 1 
Horizontal proximity measure 2 
Vertical proximity measure 2 
Horizontal proximity measure 3 
Vertical proximity measure 3 
Time-to-go to conflict measure 1 
Time-to-go to conflict measure 2 
Time-to-go to conflict measure 3 
Variance of speed 
Ratio of standard deviation of speed to 
average speed 
Conflict resolution difficulty based on 
crossing angle 

NASA Metric 2 

Laudeman, Shelden, Branstrom, and Brad [8] and 
Sridhar, Sheth, and Grabbe describe these variables 
in detail [SI. The metric consisted of: 

N Traffic Density 

NH Number of aircraft with Heading Change 
greater than 15" 

NS Number of aircraft with Speed Change 
greater than 10 knots or 0.02 Mach 

NA Number of aircraft with Altitude Change 
greater than 750 feet 

The NASA-2 metric consisted of 8 variables. 

s5 

s10 

S25 

S40 

S70 

Number of aircraft with 3-D Euclidean 
distance between 0-5 nautical miles 
excluding violations 

Number of aircraft with 3-D Euclidean 
distance between 5- 10 nautical miles 
excluding violations 

Number of aircraft with lateral distance 
between 0-25 nautical miles and vertical 
separation less than 2000/1000 feet 
abovehelow 29000 ft 
Number of aircraft with lateral distance 
between 25-40 nautical miles and vertical 
separation less than 2000/1000 feet 
abovehelow 29000 f t  

Number of aircraft with lateral distance 
between 40-70 nautical miles and vertical 
separation less than 2000/1000 feet 
abovehelow 29000 ft  

WyndemereMetron Metric 

10 variables. For further details, refer to 
Wyndemere [ lo]. 

WACT 
W E N  

WCLAP 

The Wyndemerehfetron metric consisted of 

Aircraft Count within a sector 
Aircraft count divided by the usable 
volume of sector airspace. 
Number of aircraft with predicted 
separation less than a threshold value 
(e.g., 8 miles) at a particular time. 

WCONVANG The angle of converge between 
aircraft in a conflict situation 

WCONFLICTNBRS Count of number of other 
aircraft in close proximity to a potential 
conflict situation (e.g., within 10 miles 
laterally and 2000 feet vertically). 

WCONFBOUND Count of predicted conflicts 
within a threshold distance of a sector 
boundary (e.g., 10 miles). 

WALC Count of number of altitude changes 
above a threshold value with the sector. 

WHEADVAR Count of number of bearing changes 
above a threshold value with the sector. 

WBPROX Count of number of aircraft within a 
threshold distance of a sector boundary 
(e.g., 10 miles). 
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WASP The squared difference between the 
heading of each aircraft in a sector and 
the direction of the major axis of the 
sector, weighted by the sector aspect 
ratio. 

M&cs 

E 

Results 

pz S&C.L M C . H  GL S.H&L C.H S,H C,L S . L  

0 . ~ 0  0.m o m  0.480 0.619 0.411 0.m 0.432 o m  

DD Model Development 

regression was performed. The results of the 
regression can be summarized as follows (See 
Tables 1 through 5): 

Using the first group of 60 traffic samples, 

0 All four DD metrics perform better than 
currently used aircraft count to represent 
complexity. 
Different metrics perform better for 
different facilities. DD performs the 
best for ZDV and the worst for ZOB 
implying that there are still some 
complexity variables that may be 
missing for ZOB. 
WJTHC/Titan metric performs best for 
all facilities combined 
Unified DD metric (i.e., variables fiom 
all four proposed metrics) provides the 
best results in all conditions 

0 

0 

0 

Mmn 

rm'' 

Tables 1 through 5 indicate the R-values of the 
regression for ZDV, ZTL, ZFW, ZOB, and all 
facilities combined. 

S&C.L S&C.H 2, S.H&L C.H S.H C,L S.L 

0730 0742 07447 0713 0755 om 0753 om1 om 

N A :  S refers to supervisor ratings, C refers to 
controller ratings, L refers to low altitude sectors 
and H refers to high altitude sectors. 

Table 2. Regression Results (R Values) for ZTL 

INASA-2 I 0321, I 0161 I 0342 I 0.311 I 0.347 I 0383 I 0.361 I 0.166 I 0112 I 

1 
Table 3. Regression Results (R Values) for ZFW 

I :& I 0.563 I 0.521 I 0.545 I 0.139 I 0.612 0.626 I 0.651 I 0.494 I 

I 
Table 4. Regression Results (R Values) for ZOB 

2.C.4-5 



Table 5. Regression Results (R Values) For All 
Facilities 

Meaica 1 IS&C,LIS&C,HI kL IS,H&LI C.H I S,H 1 C,L 1 S,L 

Melmm 

NASA-2 

0.483 0.439 0.501 0467 0.511 0.49% 0.516 0.431 0.468 

0.315 0.335 0.383 028) 0.353 0.361 0.414 0.3% 0385 

Since a unified metric performed the best 
under all conditions, only results pertaining to the 
unified metric are reported from this point on. The 
regression results for the unified metric are 
presented in Table 6. The results depict the 
significant variables and their corresponding 
weights (beta values) and level of significance. 

Table 6. Regression Equation Output 

Model Testing only. Additionally, the R value for the first group 
of data is higher for the DD based model than the 
aircraft count based model. 

Note: CSRATING refers to controller and 
supervisor complexity ratings. 

Results for Instantaneous DD Predictions 
A performance assessment of the unified DD 

metric was conducted using the second group of 
data. The graph of the DD values, complexity 
ratings, and a model based on only aircraft count 
indicates that the DD model follows the complexity 
ratings better than the model based on aircraft count 
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Table 8. Performance Measures for DD Based 
and Aircraft Count Based Model 

Absolute 
Difference 
RMS 

Descriptive Statistics 

.O 4.7 1.233 .0779 

NIA NIA 1.5100 NIA 

CSRATNC 

00 modet ;i.. _ _  _ _ _  _ _  _ _ _  _ _  _ _  [_ 
2 0  &Cora11 count model 

I 3 5 7 B 11 13 15 17 

Frequency 
7 

17 
108 
243 
250 
185 
82 
2 

875 
205 

1080 

Alrcrafl Count 

Cumulative 

8 8 8 
1.8 1.8 2.7 

10.1 12.5 15.2 
22.5 27.8 43.0 
23.1 28.8 71.5 
17.1 21.1 82.7 
5.7 7.1 88.8 

2 2 100.0 

Percent Valld Percent Psrcsnt 

81 .o 100.0 
18.0 

100.0 

Figure 2. Performance of DD Model 

N-: Model 1: CS rating = 1.970 + 
0.165*Ac-count, R = 0.479, Model 2: CS rating = 
DD equation, R = 0.624. 

DD output and the actual complexity ratings. 
62.7% of the observations from the second data 
group are within 1 unit difference from the actual 
complexity ratings and 23.1% of the observations 
match the ratings exactly. Less than 10% of the 
differences are greater than 2 units. 

Table 7 depicts that the difference between the 

Table 7. Difference Between DD and Complexity 
Ratings 

Valid -4.00 
-3.00 
-2.00 
-1.00 
.oo 
1.00 
2.00 
3.00 
Total 

Mlsslnp Syslem 
Total 

Table 8 shows the comparison between the 
performance of the DD based model and the aircraft 
count based model for predicting complexity ratings 
for the second data group. The results indicate that 
the mean absolute difference, Root Mean Square 
(RMS) difference, and standard deviation of 
difference between the actual complexity ratings 
and model based predictions were smaller for the 
DD based model. This implies that the DD based 
model is better at predicting complexity than the 
model based only on the aircraft count. 

I I .. :"A...". I I I lnlllllllUlll I &ximum 1 Mean IStd. Deviation 
I 1.0 I 7.0 I 3.685 I 1.4084 

G m  I 1.00 I 5.00 I 3.2545 I .go603 I 

1 =controller, I=supe 

1 .oo 

2.00 

C S RAT ING 

Figure 3. Mean Absolute Difference for 
Different Complexity Ratings 

Results of DD Prediction Model 
The DD researchers were interested in . 

determining if DD representing complexity could 
be predicted ahead of time. Therefore, they 
developed another DD equation on the fmt group 
of data. The purpose of this equation was to predict 
DD up to 120 minutes ahead of an actual instance. 
If the DD predictions were relatively accurate with 
larger look-ahead times, they could provide 
valuable insight and assist in planning trafic flow 
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changes, sector level staffing needs, dynamic 
resectorization, and other operational decisions. 

added variable, the original DD equation, the 
aircraft count based model, and the complexity 
ratings were compared for accuracy. Figure 4 
shows that the model based on DD with look-ahead 
time included closely follows the complexity 
ratings (i.e., CSRating). The original DD model 
used for instantaneous DD performs the worst and 
further validates that the look-ahead time must be 
part of the predictions. This indicates that the DD 
predictions are dependent on the look-ahead time. 
This makes sense, as more information is available 
about flights and weather as the prediction horizon 
narrows down. 

The DD equation with look-ahead time as an 

10 

8 

6 .I) 

CSRATHG 

4 
DD moaei - 

2 DD w llDokaheed model 
C 

H o  Atcrell count rnoael 

- 
1 5 0 13 17 21 25 20 

3 7 11 15 19 23 27 

Predicted Count 

Figure 4. Predicted DD 
Note: CS rating = 2.481 + 0.1 lO*Pred-count, R = 
0.41 1 , CS rating = DD equation + look-ahead, R = 
0.633 

Figure 5 displays how stable the predicted DD 
values were across look-ahead time for the second 
data group. The DD with look-ahead time based 
model provides fairly stable predictions. 
Interestingly, the model based on aircraft count also 
performs fairly well. However, the raw predicted 
aircraft count varies considerably with look-ahead 
time. 

5 Fmdrted count 

4 Redkted W 

DO w W b h e a d  d e l  
E 3  

0 20 40 60 80 100 120 

10 30 50 70 80 110 

Lookahead timas 

Figure 5. Stability of Predicted DD 

Tables 9 and 10 show the performance 
comparisons of DD with look-ahead time based 
model, the instantaneous DD based model, and the 
model based on aircraft count only. The mean 
absolute difference, standard deviation of absolute 
difference, and the RMS error are all smaller for 
DD based model with look-ahead time. Hence, the 
DD based model with look-ahead time seems to 
better predict the DD up to 120 minutes ahead of an 
instance. 

Table 9. Performance of Predicted DD 

- - 
0 

1.00 
1.25 
.16 

2.46 

.00 

.OO 

.01 

IUS 

Ila 

Ik - 

- 
Marimurn 

29 
6.17 
5.16 

16.94 

5.67 

2.94 

14.61 

2.92 

yla 

wa 

Yla - 

- 
Mean - 

7.42 
3.7934 
3.3545 
4.3561 

3.2913 

1.4410 

1.0474 

1.9900 

1.250 - 

std Devistlon 
5.167 

,72670 
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Table 10. Performance Of Predicted DD Across 
Different Look-Ahead Times 

= 
ma 
(I0.C 

80.0 
1m 
120 

bmummmm Fdtdadac - 
1.33 l.m .a 
1.83 1.05 .85 
188 1 .M 88 
$.E4 1.08 .85 
1 .a 1.12 .m 

~ 

r n k M  
*( 

Lmwlad 
madd 

1.11 
1 n7 
1.04 
1.11 
1.11 
1.11 
1 n7 

- 

- 
The DD with look-ahead time model (i.e., 

prediction intervals built into equation) performs 
better than a model based on instantaneous DD 
only. DD appears to be more stable over time than 
predicted number of aircraft and DD appears to be 
more accurate over time than predicted number of 
aircraft. 

Overall Conclusions 
The DD metrics have promise, most 
notably as a unified metric with 
contributing variables from the FAA 
WJHTCRitan Systems, NASA, and 
Wyndemeremetron metrics. 
The DD metrics perform better than 
aircraft count which is the basis of the 
presently used complexity gauge. 
The models can be further developed 
and tested with techniques such as 
neural networks, genetic algorithms, and 
non-linear regression. 
The current study used ETMS as the raw 
source of traffic data. However, using 
more frequently updated data, such as 
System Analysis and Recording, Center 
TRACON Automation System, or a 
combination of the above could M e r  
increase the accuracy of aircraft 
positions. 
The researchers recommend using the 
DD metric in the simulation 
environment and plan to continue fine 
tuning the variables and their weights. 
Subsequently, an operational prototype 
could be deployed at a test site for 
hands-on evaluations. 
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