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Abstract-Performance models have profound impact on 
hardware-software codesign, architectural explorations, and per
formance tuning of scientific applications. Developing algebraic 
performance models is becoming an increasingly challenging 
task. In such situations, a statistical surrogate-based performance 
model, fitted to a small number of input-output points obtained 
from empirical evaluation on the target machine, provides a 
range of benefits. Accurate surrogates can emulate the output of 
the expensive empirical evaluation at new inputs and therefore 
can be used to test and/or aid search, compiler, and autotuning 
algorithms. We present an iterative parallel algorithm that builds 
surrogate performance models for scientific kernels and work
loads on single-core and multicore and muItinode architectures. 
We tailor to our unique parallel environment an active learning 
heuristic popular in the literature on the sequential design of 
computer experiments in order to identify the code variants whose 
evaluations have the best potential to improve the surrogate. 
We use the proposed approach in a number of case studies to 
illustrate its effectiveness. 

I. INTRODUCTION 

Automatic performance tuning is a response to the ever
growing complexity of high-performance computing (HPC) 
architectures and difficulties of manual tuning of scientific 
applications. Autotuning consists of identifying relevant code 
optimization techniques, assigning a range of parameter values 
using hardware expertise and application-specific knowledge, 
and then either exhaustively evaluating or searching this pa
rameter space to find high-performing parameter configura
tions for the given machine. 

The primary goal of performance models in autotuning has 
been to avoid running the corresponding code configuration 
on the target machine by predicting performance metrics of a 
given parameter configuration [1]. Such models are attractive, 
for example, for the design and development of search algo
rithms. Models can help prune large-scale search spaces [2], 
and their ease of evaluation allows for rigorous experimental 
comparisons among different search algorithms. Autotuning 
without models is costly because it requires running many 
different code variants on the target machine. Models also 
provide low setup cost for search algorithm developers who 
are typically not experts in autotuning. Moreover, accurate 
performance models allow researchers to perform large-scale 
experiments without requiring access to HPC systems except 
during the final phase of experimental analysis [1]. However, 
developing performance models is increasingly difficult be
cause of the complexity of the HPC architectures and scientific 
codes r21. r31. 
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Analytical performance models, which use closed-form 
mathematical expressions for predicting performance metrics, 
have enjoyed significant success in the compiler optimization 
community for accelerating serial codes [2]. However, this 
approach is limited by the quality and extrapolatory power 
of the mathematical model, which often fails to capture 
complex interactions between the code, runtime systems, and 
architecture. Moreover, developing a complex mathematical 
model requires a wide range of expertise in the target system 
architecture, programming models, and scientific applications. 
Consequently, analytical models are less well suited for highly 
specialized kernels and libraries for scientific applications that 
require portability, scalability, and performance [4], [5], [6]. 

When analytical performance models become too restric
tive for a given scientific workload and HPC architecture, em
pirical performance modeling is an effective alternative [6], [7]. 
In this approach, a small set of parameter configurations (code 
variants) is evaluated on the target machine to measure the 
required performance metrics, and a predictive model is built 
by using statistical approaches. We refer to these approximate 
models as surrogate models. Our focus in this paper is on 
empirical-based modeling, where we predict the outputs of new 
configurations on a single machine, a task that we distinguish 
from performance modeling tasks aimed at predicting outputs 
of a single configuration on new architectures. 

Surrogate models for HPC workloads and kernels on CPU
based architectures have been based primarily on machine 
learning approaches [8], [9], [10]. Similar models for scientific 
kernels on multicore architectures have also been examined [3], 
[4], [11]. Artificial neural networks have been used to model 
power draw, execution time, and energy usage [5]. Boosted 
regression trees were adopted in [6] for obtaining online 
surrogate models (via sequential optimization procedure) for 
a GPU implementation of a spatial image filtering kernel. In 
all these works, the focus is on the deployment of various 
algorithms for performance prediction. In a cluster computing 
environment, a naIve way to build any of these surrogate 
models is to sample a large number of configurations uniformly 
at random, evaluate these in parallel, and fit a model. Although 
such an asynchronous, embarrassingly parallel approach may 
seem like a holy grail in terms of work scalability, it can result 
in poor resource utilization due to poor model quality relative 
to the work required. 

Faced with computationally expensive evaluations, a cus
tomary approach for developing surrogate models consists of 
sequential evaluation of parameter configurations. At each iter-



ation, a model is fitted to all previously seen evaluations and is 
then used to decide which parameter configuration to evaluate 
next. In performance modeling, the sequential approach has 
been used to build surrogate models for resource allocation on 
networked utilities [12]. That work used a Plackett-Burman 
design [13], whose general applicability is limited because its 
Iinear-regression-based models are not appropriate for nonlin
ear response functions. Note that the sequential approach has 
been studied in the fields of statistics, applied mathematics, 
and machine learning, where it falls under the umbrella of 
design of experiments [14], simulation optimization [15], and 
active learning [16], respectively. Such an approach cannot take 
advantage of massively parallel environments. 

The main difficulty of deploying active learning in parallel 
environments is the a posteriori importance: Given a model 
and a set of unevaluated parameter configurations, the active 
learning approach can query the model to select a subset 
(rather than a singleton) of the most-informative parameter 
configurations for parallel evaluation. However, as soon as 
a parameter configuration in the subset gets evaluated, the 
other configurations in the subset can become significantly less 
informative. Consequently, evaluating such configurations will 
likely not result in improving prediction accuracy and may 
therefore represent wasted evaluations. 

In this paper we propose an iterative parallel algorithm 
that builds surrogate models for performance modeling. The 
novelty of the proposed approach consists of evaluating the 
parameter configurations in a sequence of batches to make use 
of multi core and multinode cluster computing environments in 
order to reduce the overall time required to obtain high-quality, 
fitted surrogate models. We address the a posteriori importance 
issue by tailoring the active learning to select a configuration 
based on surrogate model predictions of other configurations 
to be evaluated in the same batch. 

Active learning as a data acquisition scheme in surrogate 
modeling is still in its infancy. The closest related work [17] is 
from the design of experiments literature, where active learning 
is used to model the multiple outputs from a computational 
fluid dynamics simulator. This approach uses a nonlinear, 
treed Gaussian process (GP) modeling approach and takes 
into account asynchronous and batch mode evaluations. The 
approach we adopt uses dynamic regression trees, which have 
recently been shown to be more effective than treed GPs [18]. 

From the performance-modeling perspective, the main con
tributions of the paper are as follows. Previous work on 
surrogate models focused primarily on the adoption of machine 
learning approaches. To our knowledge, this is the first work 
on the design of a data acquisition strategy for building per
formance models with the objective of efficiently using HPC 
systems and minimizing the number of expensive evaluations 
on the target machine. Furthermore, most existing work in 
surrogate modeling deals with single-node architectures. In 
this paper, we show that our surrogate models can predict 
performances on massively parallel, leadership-class machines. 

II. DYNAMIC TREES 

Dynamic trees [18] can be seen as regression trees com
bined with Bayesian inference. The former is a classical 

nonlinear regression approach that recursively partitions a mul
tidimensional input space into a number of hyper-rectangles 
such that inputs with similar output values fall within the same 
hyper-rectangle. This partitioning scheme gives rise to a set of 
if-then-else rules that can be represented as a tree. Bayesian re
gression trees [19] are specified by a prior distribution on how 
the input space can be recursively partitioned and a likelihood 
comprising a product of simple, independent regression models 
applied in each partition. Together, these define a posterior 
distribution on the output space. Samples from the posterior 
distribution may then be obtained by simulation schemes such 
as Markov Chain Monte Carlo. 

Dynamic trees specify a similar process for how trees 
evolve as new data arrive. At time t, after having seen data 
(x,y)

t 
== (Xl,Yl), ... ,(Xt,Yt) and inferred a tree 7t1(x,y)

t
, 

a simple set of stochastic rules defines which 7t+l may be 
considered when (Xt+l,Yt+l) arrives. In this process, the new 
7t+l must be identical to the old 7t except near the leaf node 
1](Xt+l) containing Xt+l. The process stochastically chooses 
from three local modifications based on support from Yt+l in 
the posterior distribution: keep 1](Xt+l) unchanged in 7t+l; 
grow a new split, making 1](Xt+l) a parent of two new leaves 
in 7t+l; or prune the tree to make the parent of 1](Xt+l) a 
leaf in 7t+l. A particle approach-essentially applying these 
rules independently to many similar trees grown stochastically 
on the same data-can reduce Monte Carlo error (via aver
aging) and lead to more accurate uncertainty quantification 
(by studying the spread of trees). Taking a sequential Monte 
Carlo, or "filtering," approach that appropriately couples the 
particles/trees can offer further statistical efficiency gains. 

Dynamic tree models have been shown to be competitive 
with several related nonparametric regression schemes in out
of-sample prediction exercises, both on batch data (with ran
dom data orderings) [18] and in online settings [20]. They have 
also proven useful for variable selection and input sensitivity 
analysis in contexts where the amount of data available tradi
tionally swamps other comparators, such as GP models [21]. 
Software is available through the R package dynaTree [22]. 

The greatest potential of dynamic trees may lie in se
quential design contexts, where the model fit is allowed to 
recommend the future inputs Xt+l (and corresponding outputs) 
on which it is trained. The original dynamic trees paper 
[18] suggested a heuristic called active learning-Cohn (ALC), 
which has been used to approximate maximum information 
designs in serial applications [23]. The ALC method involves 
choosing among new potential inputs x the one that gives 
the largest reduction in predictive variance averaged over the 
input space. For most response surface models (e.g., GPs), 
calculating this aggregated statistic requires numerical meth
ods. However, conditional on the tree structure, it is analytic 
for dynamic trees-representing a large computational savings. 
The resulting designs allocate a heavier concentration of points 
in areas where the response surface is changing rapidly and 
put correspondingly fewer points in areas of the input space 
that are easier to predict. 

Unfortunately, this methodology is tailored to one-at-a-time 
sequential design and model updating. That is, in a general 
iteration t, one recommends a new Xt+l based on an N -particle 
approximation {7;(i) }�1; obtains Yt+l; and updates the parti-



cle approximation to rT;�)d�l' Many computer experiments 
are a hybrid of batch and sequential (see, e.g., [17]), which 
means that this scheme requires modification for the types of 
experiments we have in mind. 

III. PAR ALLEL ACTIV E LE ARNING WITH DYNAMIC TREES 

The main obstacle that precludes direct adoption of any 
active learning scheme for parallel environments, whether 
based on dynamic trees or otherwise, is a posteriori impor
tance. An active learning method, say ALe, can easily suggest 
a batch of parameter configurations for parallel evaluation. 
However, most appropriate spatial models for computer ex
periments (e.g., dynamic trees) facilitate the learning of a 
correlation structure between all outputs. Therefore, once any 
configuration in the batch finishes evaluation and the model 
fit is updated, uncertainty may greatly be reduced for the 
other points in the batch, possibly destroying their utility in 
improving the fit in a subsequent update (once their evaluations 
have completed). 

In order to address this issue, the active learning algorithm 
should first identify the single best candidate location Xi, say 
by ALe, and then identify other potential candidates whose 
predictive uncertainties are likely to be substantially reduced 
when Xi gets selected for the parallel evaluation. This latter 
set should be avoided when selecting the second candidate 
for the batch, and so on. One way this can be achieved is 
by treating the active learning model's prediction for Xi as 
"correct" as soon as Xi is selected for evaluation. We suggest 
using the fitted surrogate model to predict the output Yi of 
Xi and update the model with (Xi, Yi). This approach will 
reduce the predictive variance of configurations that depend 
on (Xi, Yi), which may be all configurations for stationary GPs 
or just those sharing a leaf with Xi in the dynaTree particle 
approximation. Since the predicted values from the fitted 
surrogate model may not be accurate-in particular during the 
initial iterations or when the algorithm moves to a previously 
unseen part of the input space-when the configurations in the 
batch are evaluated, the model has to unlearn the (Xi, yd and 
relearn the value from the original evaluation (Xi, Yi). 

Algorithm 1 (ab-dynaTree, where "a" and "b" stand 
for active learning and batch mode, respectively) summarizes 
the new iterative active learning algorithm. The symbols U, 
-, and I . I denote set union, difference, and cardinality 
operators, respectively. The algorithm takes a set Xp of un
evaluated configurations and a maximum number of code
variant evaluations nmax as input. The two parameters of 
the algorithm are the subsample size ns and batch size nb, 
with nb ::; ns. The initialization phase (lines 1-4) consists 
of sampling ns configurations at random from Xp, obtaining 
a set of corresponding outputs, and using them as a training 
set to build a dynamic tree model M. At each iteration, a 
configuration Xi that maximizes the ALe statistic is selected 
from the subsample set Xs and added to the batch set Xb. 
The a posteriori importance issue within the same batch is 
addressed by using two models M and Mimp' The imputed 
model Mimp is used to predict the output of Xi, and Mimp 
is then updated using the predicted value Yi (lines 11-12). As 
soon as the batch evaluation is over, the relearning phase is 
realized by copying the current active learning model M to 
Mimp (line 16). We can also use the training points (Xout, 

Algorithm 1 ab-dynaTree. 
Input: pool of configurations Xp, max evaluations nmax, 

batch size nb ::; IXpl, subsample size ns 2: nb 

Xout +- sample min {ns, nmax} distinct configurations 
from Xp 

2 Yout +- Evaluate_Parallel(Xout) 
3 M +- dynaTree (Xout, Yout); Mimp +- M 
4 Xp +- Xp - Xout; Xs +- Xp; Xb +- 0 
5 for i +- ns + 1 to nmax do 

/* begin optional biased sampling */ 
6 if IXbl = 0 then 
7 Yp +- predict(M, Xp) 
8 Xs +- biased_sampling(ns, Xp, Yp) 
9 end if 

/* end optional biased sampling */ 
10 Xi +- X E Xs that maximizes ALe statistic for Mimp 
11 Yi +- predict(Mimp, Xi) 
12 update Mimp with (xi,yd 
13 Xb +- Xb U Xi; Xs +- Xs - Xi 
14 if IXbl = nb then 
15 Yb +- Evaluate_Parallel(Xb) 
16 update M with (Xb,Yb); Mimp +- M 
17 Xout +- Xout U Xb; Yout +- Yout U Yb 
18 Xp +- Xp - Xb; Xb +- 0 
19 end if 
20 end for 

Output: Xout, Yout, M 

Yout) obtained from active learning as a training set to build 
surrogate models using other regression approaches. 

Before selecting the candidate configurations for a given 
batch, one can optionally select a subsample set according to 
a user-defined criterion (lines 6-9). Given a limited number 
of evaluations as a budget, and depending on the complexity 
of the unknown response function (for example, the number 
of disjoint local minima), there is a tradeoff between the 
number of training points and the prediction accuracy. In 
performance modeling for autotuning, one typically desires 
surrogates with higher prediction accuracy for configurations 
with good performance, rather than for configurations with 
poor performance. For this purpose, in the results described 
in the next section we take advantage of the optional pro
cedure in Algorithm 1 to bias the sampling toward high
quality parameter configurations. At each iteration, instead 
of considering the entire pool of unevaluated configurations 
Xp for the ALe statistic computation, the algorithm first 
predicts the performance metric of each configuration in the 
pool, assigns a weight to each configuration that is inversely 
proportional to its performance metric, and selects a subset Xs 
by weighted sampling. The poor-quality configurations (e.g., 
those with longer run times or higher power consumption) are 
thus queried less frequently even if they are deemed to improve 
the overall prediction accuracy. 

IV. EXPERIMENTAL RESULTS 

We now examine the effectiveness of ab-dynaTree in 
developing surrogate models of empirical performance data. 



Our goal is to detennine whether active learning provides sig
nificant benefits over random search in parallel environments 
and whether the active learning approach is inherently tied to 
the dynaTree surrogate model. 

To analyze the quality of evaluations performed by 
ab-dynaTree, we build models using three regression al
gorithms for the given problem. First we use the dynaTree 
algorithm (dT) with 10 repetitions, as recommended by the 
package authors, taking the prediction at each x as the mean of 
the 10 predictions. We compare this algorithm with two others: 
random forest (rf) [24], a state-of-the-art and robust tree
based regression approach, and neural networks (nn), which 
has been shown to be effective for surrogate modeling [5]. 
For each algorithm, we consider two variants: ai, in which 
the points obtained from ab-dynaTree are used for training 
the model, and rs, in which points are selected at random. The 
inclusion of rf and nn allows us to assess whether the obtained 
training points can also benefit other learning algorithms. 
The parameter values of all these regression algorithms have 
an impact on the prediction accuracy. To avoid bias due to 
parameter tuning, we use the default parameter values (as in 
[22]) for dT and rf. Since our exploratory studies showed that 
the prediction accuracy of nn variants is poor, we use the tuned 
parameter values as suggested in [5]. We note that the results 
are biased toward nn variants because of this parameter tuning. 

As a measure of prediction accuracy, we use root-mean
squared error (RMSE). We repeat each variant 10 times to 
reduce the impact of randomness throughout, and we consider 
the prediction accuracy of a variant as RMSE averaged over 
10 repetitions. We also use a t-test to check whether the 
observed differences in the prediction accuracy of the variants 
are significant. 

A. Modeling run times on serial codes 

The first set of experiments was carried out on dedicated 
nodes of Fusion, a 320-node cluster at Argonne National 
Laboratory, comprising 2.6 GHz Intel Xeon processors with 
36 GB of RAM, under the stock Linux kernel v2.6.I8. 

We build surrogate models for problems from SPAPT 
[25], a collection of portable search problems in automatic 
perfonnance tuning. Each problem in SPAPT is defined by a 
kernel, input size, set of tunable parameters, feasible set of 
possible parameter values, and default/initial configuration of 
these parameters. The kernels in SPAPT include elementary 
dense linear algebra, dense linear algebra solver, stencil code, 
and elementary statistical computing kernels. 

The tuning parameter space includes loop unrolling E 
[1, ... ,30], cache tiling E {I, 2, 4, 8, 16, 32, 64, 128, 256, 
512, 1024, 2048} (treated as {l, ... ,I2}), and register tiling E 
{I, ... ,32}. SPAPT problems also include binary parameters; 
however, here we set these to their nominal value (false) and 
consider only those parameters that can take several (integer) 
values, since these are primarily responsible for the size of 
search spaces in SPAPT. The resulting number of parameters 
ranges between 8 and 38, and the size of the search spaces 
range between 5.31 x 1010 and 1.24 x 1053. 

Given a problem, our goal is to build a surrogate model that 
can predict the mean run time of a parameter configuration x. 

TABLE l. RMSE AVERAGED OVER 10 REPLICATIONS ON THE 725% 
TEST SET FOR 2,500 (1,500 FOR BG/Q) TRAINING POINTS. 

Problem dT(al) 

A. SPAPT Run Times 
adi 0.021 
atax 0.045 
bicgkernel 0.021 
correlation 0.060 
covariance 0.055 
dgemv3 0.057 
gemver 0.100 
hessian 0.045 
jacobi 0.029 
lu 0.037 
nun 0.064 
mvt 0.032 
seidel 0.076 
stencil3d 0.080 
B. Power 
lu(cpu) 0.017 
lu(dimm) 0.016 
mm(cpu) 0.024 
mm(dimm) 0.034 
stencil(cpu) 0.015 
stencil(dimm) 0.041 
c. BO/Q 
cg(mftops) 0.000 
cg(time) 0.000 
dot(mflops) 0.003 
dot(time) 0.001 
matvec(mftops) 0.001 
rnatvec(time) 0.001 
waxpy(mftops) 0.001 
waxpy(time) 0.000 

dT(rs) nn(al) 

0.025 0.034 
0.057 0.064 
0.024 0.038 
0.066 0.212 
0.064 0.104 
0.069 0.100 
0.l20 0.155 
0.054 0.059 
0.045 0.058 
0.060 0.072 
0.079 0.078 
0.036 0.044 
0.097 0.092 
0.100 0.100 

0.022 0.119 
0.021 0.083 
0.031 0.023 
0.051 0.074 
0.016 0.014 
0.048 0.039 

0.000 0.005 
0.001 0.002 
0.003 0.007 
0.001 0.003 
0.001 0.004 
0.001 0.002 
0.001 0.003 
0.001 0.002 

nn(rs) 

0.031 
0.072 
0.043 
0.199 
0.114 
0.137 
0.180 
0.070 
0.057 
0.084 
0.079 
0.053 
0.098 
0.122 

0.116 
0.096 
0.024 

0.095 
0.014 
0.050 

0.010 
0.003 
0.012 
0.004 
0.006 
0.003 
0.007 
0.004 

rf(al) rf(rs) 

0.022 0.025 
0.056 0.069 
0.032 0.038 
0.053 0.057 
0.059 0.072 
0.065 0.077 
0.103 0.132 
0.070 0.094 
0.044 0.053 
0.050 0.067 
0.061 0.075 
0.044 0.053 
0.080 0.095 
0.084 0.105 

0.018 0.029 
0.034 0.055 
0.036 0.045 
0.057 0.076 
0.019 0.023 
0.040 0.052 

0.015 0.024 
0.007 0.016 
0.014 0.018 
0.005 0.011 
0.013 0.024 
0.007 0.014 
0.013 0.030 
0.007 0.015 

Note: I he value IS typeset," lIaltes (bold) when a vanant IS SIgnIficantly worse (better) 
than dT(al) according to a t-test with significance (alpha) level 0.05. 

The mean is computed over 35 code runs. For ab-dynaTree, 
we set the subsample size as ns=100 and batch size as nb=50. 
We generated 100,000 unevaluated configurations for Xp and 
set the maximum evaluations nmax= 5,000. 

To allow cross-comparison of prediction accuracy between 
the problems, we scale the run time values for each problem: 
each Yi is divided by Yi , where Yi is the maximum run 
time from Yout. For the

m
;�tive learni;g

X 
variants, we consider 

the first 2,500 points from (Xout,Yout) as the training set to 
build the surrogate model. We derive two test sets from the 
remaining 2,500 points: (i) the subset of points 725o/c from the 
training set whose mean run times are within the I�wer 25% 
quantile of the empirical distribution for the 5,000 run times in 
Yout; and (ii) a set 7100% of 1,000 randomly generated points. 
For the random sampling variants, we use the same test sets 
725% and 71 00% but a different training set, with the 2,500 
points for training being randomly chosen from (Xout, Yout) -
725%' Since the training points of random sampling variants 
are not uniformly random, their perceived effectiveness may 
be artificially higher than one could expect in reality. 

Table I-A shows RMSEs averaged over 10 replications for 
2,500 training points and tested on 725%' The results show 
that, except for bicgkernel, dT(al) obtains lower average RMSE 
than does dT(rs). The trend is similar on the nn variants. We 
can also observe that the dT variants completely dominate the 
nn variants despite the latter using tuned parameter values. 
The key advantage of dT(al) comes from it requiring rela
tively fewer evaluations to achieve a smaller RMSE. This is 
illustrated in Fig. 1, which shows the RMSE as a function of 
the number of training points. The results show that dT(al) 
achieves a lower RMSE than does dT(al) with relatively fewer 
training points. We found that nn variants are sensitive to 
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Fig. I. RMSE for the first six SPAPT problems on the test set 725%' 
The dotted lines represent the RMSE for each replication and the bold lines 
represent the mean RMSE over the 10 replications. 

the randomness which can be attributed to an underlying 
optimization solver's convergence issue. In Fig. 2, we compare 
the number of evaluations required by the variants to reach the 
RMSE obtained by dT(rs) (with 2,500 evaluations). On 5 out 
of 10 problems, dT(al) reaches the RMSE of dT(rs) within 
1,000 training points. Only for bicgkernel and mvt is there no 
significant difference in the number of training points. 

B. Modeling power consumption of serial code kernels 

In this section, we focus on modeling the power consump
tion of serial code kernels. We obtained the component-level 
(CPU and DIMM) power consumption data used in [5] for 
mm, stencil, and lu computations. The data was collected on an 
Intel Xeon E5530 workstation with two quad-core processors, 
where each core has 32 KB Ll cache and 256 KB L2 cache; 
see [5] for further details. 

The mm, stencil, and lu kernels have 7, 5, and 11 parameters 
and search space sizes of 6.5 x 105, 5.6 x lOlD, and 8.3 x lOlD 

configurations, respectively. The parameters are tiles, unroll, 
input size, and clock frequency. The data set comprises 8,285, 
4,900, and 9,700 randomly sampled configurations for mm, 
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Fig. 2. Number of evaluations required to reach the RMSE of dT(rs) (with 
2,500 evaluations) for SPAPT problems on the test set 725%' 

stencil, and lu, respectively. We stored these configurations and 
their corresponding outputs in a lookup table and simulated the 
batch mode for ab-dynaTree, where the randomly sampled 
configurations were given as the configuration pool. 

The results are shown in Fig. 3. We observe that the 
al variants obtain lower RMSE when compared with the 
rs variants, suggesting that the active learning approach is 
beneficial. The results from Table I-B show that dT(al) obtains 
significantly lower RMSE than do other variants except for 
stencil, where nn variants obtain slightly lower RMSE than 
does dT(al). The computational savings are shown in Fig. 4, 
where we can see that dT(al) requires fewer than 1,000 training 
points to reach the RMSE of dT(rs). The correlation between 
observed and predicted values of dT(al) is shown in Fig. 5. 

C. Modeling run time and FLOPS of MPI code 

In this section, we study miniFE, a mini application that 
comprises the most significant performance characteristics of 
an implicit finite element method using a conjugate-gradient 
(cg) solver; see [26] for details. We used the following 
parameters: number of nodes E {8, 16, 32, 64, . . .  , 4096} , 
number of processes per node E {2, 4, 8, 16, 32, 64}, % of 
artificial load imbalance E {5, 10, 20, 30, . . .  , 90}, overlapping 
communication and computation indicator E {O, I}, and size 
of the box domain (10 values from 100 to 500 considered at 
equal intervals). The total number of configurations is 12,000. 
The experiments were carried out on Mira, a lOPF IBM Blue 
Gene/Q at the Argonne Leadership Computing Facility. It 
has 49,152 nodes organized in 48 cabinets, where each node 
comprises 16 cores of 1.6 GHz PowerPC A2 and 16 GB of 
DDR3 memory. 

We run ab-dynaTree only once with the objective of 
building a model for the run times of the cg kernel with the 
maximum number of evaluations of 2,500. For each evaluation, 
in addition to the run time, we record the FLOPS taken by 
cg and the run time and FLOPS taken by the dot product 
(dot), matrix-vector product (matvec), and vector-scalar prod
uct (waxpy) kernels within cg. We use the same evaluations 
for modeling both the FLOPS and run time metrics. 
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Fig. 3. RMSE for lu, mm, and stencil CPU and DIMM power on the test set 
725%' The dotted lines represent the RMSE for each replication and the bold 
lines represent the mean RMSE over 10 replications. 

2500 

2000 

1500 

1000 

I 
• dT(al) 

l I1l! dT(rs) 
500 I � • nn(al) 

0 nn(rs) 
0 • rf(al) 

I:l! rf(rs) 
S E s E s E 0.. E 0.. E 0.. E � � � 
.2 � E � '(3 � 

.2 E E c '(3 E 2 c 
Ul Q) -

Ul 

Fig. 4. Number of evaluations required to reach the RMSE of dT(rs) (with 
2,500 evaluations) for predicting CPU and DIMM power of lu, mm, and stencil 
on the test set 725%' 

For the validation experiments, the al variants use the first 

lu(cpu) 
C> 

"'0) Ol '  ",0 
(ij 
>00 -0 . OlO 
ti 
:.01'-Ol ' �O a. 

<0 
0 

0:7 0.8 0.9 
observed val�es 

mm cpu 
C> 

",0) 
Ol '  ",0 

(ij 
>00 

-00 Ol 
."§f'.. -0 . 
OlO 
0:: 

<0 
0 

o. 
Observed' value� 
stencil( cpu 

I.{) 
0) 

"'0 Ol '" 
(iii.{) >00 -00 Ol 
ti '-1.{) a;r--: 
0::0 

I.{) <0 
0 

Observed values 

1: 

lu(dimm) 
C> r-�----------------" 

O,Q 0,8 1,0 
Observed values 

stencil(dimm) 
C>r---------�------� 

-0, , , 
Observed values 

Fig. 5. Correlation plot for the CPU and DIMM power of lu, mm, and stencil 
on 7100%' The vertical, dotted line represents the 25% quantile, 

1,500 configurations obtained from ab-dynaTree, The results 
are shown in Fig, 6, Fig, 7, and Table I-D, The differences 
in mean RMSE between dT(a1) and dT(rs) are small (in the 
range of 0,001 to 0,003) and the t-test shows that, out of the 
8 problems, only on 4 problems does dT(al) obtain an RMSE 
significantly lower than that of dT(rs), On the remaining four 
problems, we do not have significant evidence to say that one 
is better than the other. However, the differences between the 
al and rs variants of nn and rf are larger and clearly show 
that adoption of ab-dynaTree results in reducing RMSE, The 
overall low RMSE values and illustrative scatter plots of eg 
and dot in Fig, 8 show that the training points, though obtained 
with the goal of modeling run times of eg, are highly effective 
for obtaining surrogate models for the other 7 metrics. 

D. Experiments on batch size 

We now study the impact of batch size on the RMSE. 
We used the same experimental setup as in Sections IV-A 
and IV-B. Each iteration of ab-dynaTree does nb parallel 
evaluations. We consider nb E {I, 50,100, 200} and set the 
subsarnple size to max{100, 2nd. The training points obtained 
from ab-dynaTree are given to dT(a1) and each (nb) version 
starts with an initial sample of size 100. We assume each 
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Fig. 6. RMSE for predicting run times and FLOPS of miniFE kernels on 
the test set 725%' The dotted lines represent the RMSE for each replication 
and the bold lines represent the mean RMSE over the to replications. 

evaluation takes the same time unit. Consequently, the number 
of iterations corresponds to the wall clock time. 

The results in Fig. 9 show that an increase in the batch 
size from 1 to 50 decreases the number of iterations required 
(to obtain most RMSE levels) by approximately l.5 orders 
of magnitude. Further increases in the batch size (to 100 and 
200) reduce the number of iterations but the relative differences 
become smaller. These observations indicate that the adoption 
of larger batch sizes is beneficial but the computational savings 
obtained diminish as the batch size increases. 
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V. SUMM ARY AND OUTLOOK 

We have proposed an algorithm that adaptively selects 
inputs for parallel evaluation in order to build surrogate models 
over the input space. We augmented a popular active learning 
scheme for the sequential design of experiments to ensure 
that a batch of inputs, taken collectively, will lead to updates 
that are better than one-at-a-time schemes used in serial 
environments. Our experiments show that our batch-parallel 
scheme is effective at building surrogates for run time, power 
consumption, and FLOPS on a variety of architectures. For the 
surrogate model types tested, including our preferred dynamic 
tree model, our active learning approach yields designs that 
produce better surrogates than do ones based on random 
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Fig. 9. Average RMSE for different batch sizes on the test set 0.5%' 

sampling. Naturally, the significance of this benefit, especially 
as pertains to the benefit of one surrogate model over others, 
depends on the output characteristics over the input space. 

We envision several extensions that can improve the 
power of ab-dynaTree for practical autotuning, including: 
i) asynchronous updates for ab-dynaTree; ii) multi-objective 
surrogate modeling (e.g., for run time, power consumption, 
and FLOPS) with a single run of ab-dynaTree; and iii) 
capturing/modeling metrics at a finer granularity to exploit 
additional structure for whole application modeling and tuning. 
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