
Automated Programmable Control and
Parameterization of Compiler Optimizations

Qing Yi (qingyi@cs.utsa.edu)

University of Texas at San Antonio

Abstract—We present a framework which effectively combines
programmable control by developers, advanced optimization
by compilers, and flexible parameterization of optimizations to
achieve portable high performance. We have extended ROSE, a
C/C++/Fortran source-to-source optimizing compiler, to automat-
ically analyze scientific applications and discover optimization
opportunities. Instead of directly generating optimized code,
our optimizer produces parameterized scripts in POET, an
interpreted program transformation language, so that developers
can freely modify the optimization decisions by the compiler and
add their own domain-specific optimizations if necessary. The
auto-generated POET scripts support extra optimizations beyond
those available in the ROSE optimizer. Additionally, all the
optimizations are parameterized at an extremely fine granularity,
so the scripts can be ported together with their input code and
automatically tuned for different architectures. Our results show
that this approach is highly effective, and the code optimized by
the auto-generated POET scripts can significantly outperform
those optimized using the ROSE optimizer alone.

I. INTRODUCTION

Compiler optimization is critical for scientific applications

to automatically achieve high performance on modern comput-

ers. However, due to the excessive complexity, compilers have

lagged behind in precisely modeling the behaviors of appli-

cations running on diverse architectures. While computational

specialists can adopt low-level programing in C or assembly

to directly manage machine resources and can parameterize

their algorithm implementations to accommodate architectural

diversity [21], [2], [20], [7], [15], this approach is extremely

error prone and time consuming, and compiler technology

needs to be developed to automate the process.

We present a framework, shown in Fig. 1, to reach a

balance between direct control of resources by programmers

and automation of optimization by compilers. This framework

starts with a specialized source-to-source optimizing compiler

(the ROSE analysis engine) which interacts with develop-

ers to automatically discover applicable optimizations and

then produces output in a transformation scripting language,

POET [25]. Developers can modify the auto-generated POET

scripts as well as writing new POET transformations to

directly control the optimization of applications. The POET

output can then be ported together with an annotated input

program to different machines, where an empirical transfor-

mation engine can dynamically interpret the POET scripts

with different optimization configurations until satisfactory

performance is achieved for the input code.

This research is funded by NSF through award CCF0747357 and CCF-
0833203, and DOE through award DE-SC0001770

�������	
��

�������	
���������

�������	

����
��
��

�
�����
��	�����

���
������
��
���������

�����

���	�	���	�� � �	�����	���
��

 
!	�	
��

 �������
����
��
"��
���

��	�����	
������

���	�#����
����

$����	�����
��	�%�&��#
��

�������	������	���������

���
�
"��
����

��	��	�
����

'
�����	��	��

(�����
����

���������

����������

�

�

Fig. 1. The optimization workflow

The merit of our overall approach lies in its unique inte-

gration of programmable control by developers, automated

optimization by compilers, and empirical tuning of the op-

timization space by search engines. It permits different lev-

els of automation and programmer intervention, from fully-

automated tuning to semi-automated optimization to fully pro-

grammable control. The POET language was initially designed

by Yi et al. [25] and has been used to achieve extremely high

performance for performance critical kernels [26]. This paper

focuses on extending a source-to-source compiler, the ROSE

loop optimizer [23], to automatically generate high quality

POET scripts, so that developers do not need to manually

manage hardware resources using POET (as done by [26]).

Our extended ROSE optimizer can produce POET scripts

to support 7 optimizations: OpenMP parallelization, loop

blocking, array copying, loop unroll&jam, scalar replacement,

strength reduction, and loop unrolling. The auto-generated

POET transformations are extensively parameterized so that

each optimization can be turned on or off independently for

each relevant array or code region, and arbitrary integers

can be given as the blocking or unrolling factor for each

loop being transformed. The granularity of external control is

far beyond those supported by existing iterative compilation

frameworks [9], [16], [1], [14], [13]. Independent search

engines can be substituted with ease, and developers can easily

interfere by modifying the auto-generated POET scripts.

97978-1-61284-357-5/11/$26.00 ©2011 IEEE 97U.S. Government work not protected by U.S. Copyright97
U.S. Government work not protected
by U.S. copyright



The key challenge of our approach is using POET to

explicitly manage interactions between different transforma-

tions, as illustrated by Fig. 2 using two transformations,

loop blocking and unroll&jam. After applying blocking, the

three nested loops (nest1, nest3, and nest2) in Fig. 2(a)

become 6 nested loops in (b). Subsequent transformations,

e.g., array copying, may be applied to the outer 3 loops in

(b). However, some other transformations, e.g., unroll&jam

and scalar replacement, need to be applied to the inner 3 loops,

as demonstrated by Fig. 2(c). The matter becomes increasingly

more complex as scalar replacement may be applied after array

copying to the same array, and strength reduction may be

applied to simplify array references. Conventional compilers

overcome such difficulties by separating optimizations into

multiple phases, where each phase re-analyzes the output of

an earlier phase before performing additional transformations.

In contrast, our auto-generated POET scripts do not perform

any program analysis in between the extensively parameterized

transformations. Specifically, the auto-generated POET scripts

aim to explicitly model the interactions between parameterized

transformations and dynamically trace these interactions so

that different transformations can be applied one after another

in a well-coordinated fashion.

This paper presents techniques to extensively parameterize

and dynamically coordinate a number of complex optimiza-

tions in the absence of any sophisticated program analysis

in between the transformations. As a result, an optimizing

compiler needs to analyze an input code only once, and multi-

phase optimizations can be automatically coordinated and

collectively parameterized to support programmable control

and flexible empirical tuning. Our contributions include:

• We present a framework where optimization analyses and

program transformations are separated into independent

components (i.e., the ROSE optimizer and the POET en-

gine), so that compiler optimizations can be managed by

developers with programmable control, and fine-grained

parameterization can be explored by independent search

engines for portable performance tuning.

• We show that by carefully modeling the interactions of

different transformations, a long sequence of dynamically

reconfigurable optimizations can be effectively applied

one after another in a well-coordinated fashion without

resorting to any intermediate program analysis.

• We study several linear algebra routines and show that the

new approach can produce significantly better optimized

code then using the ROSE optimizer alone.

The rest of this paper is organized as follows. Section II

introduces our overall framework. Section III presents al-

gorithms for automatically generating parameterized POET

scripts. Section IV presents experimental results. Sections V

and VI present related work and conclusions.

II. THE OVERALL APPROACH

The key to our approach is adapting an existing optimizing

compiler to alternatively generate POET scripts which dynam-

ically coordinate a long sequence of parameterized program

void dgemm_test(const int M,const int N,const int K,const
double alpha,const double *A,const int lda,const double *B,
const int ldb,const double beta,double *C,const int ldc)

{
int i, j, l;

/*@; BEGIN(nest1=Nest) @*/
for (j = 0; j <= -1 + N; j += 1)

/*@; BEGIN(nest3=Nest) @*/
for (i = 0; i <= -1 + M; i += 1)
{
C[j * ldc + i] = beta * C[j * ldc + i];

/*@; BEGIN(nest2=Nest) @*/
for (l = 0; l <= -1 + K; l += 1)
C[j * ldc + i] = C[j * ldc + i] +

alpha * A[l * lda) + i] * B[(j * ldb) + l];
}
}

(a) Original input

void dgemm_test(const int M,const int N,const int K,const
double alpha,const double *A,const int lda,const double *B,
const int ldb,const double beta,double *C,const int ldc)

{
int i, j, l, i_bk, j_bk, l_bk;
/*@; BEGIN(nest1=Nest) @*/
for (j_bk=0; j_bk<N; j_bk+=16)
/*@; BEGIN(nest3=Nest) @*/
for (i_bk=0; i_bk<M; i_bk+=16)
/*@; BEGIN(nest2=Nest) @*/
for (l_bk=0; l_bk<K; l_bk+=16)
for (j=0; j<MIN(N-j_bk, 16); j+=1)
for (i=0; i<MIN(M-i_bk,16); i+=1)
for (l=0; l<MIN(K-l_bk,16); l+=1)
{
if (0==l)
C[i+i_bk+j_bk*ldc+j*ldc] = beta*C[i+i_bk+j_bk*ldc+j*ldc];
C[i+i_bk+j_bk*ldc+j*ldc] = C[i+i_bk+j_bk*ldc+j*ldc]+
alpha*A[l*lda+l_bk*lda+i_bk+i]*B[l+l_bk+j_bk*ldb+j*ldb];

}
}

(b) After applying loop blocking by factors of (16, 16, 16)

void dgemm_test(const int M,const int N,const int K,const
double alpha,const double *A,const int lda,const double *B,
const int ldb,const double beta,double *C,const int ldc)

{
int i, j, l, i_bk, j_bk, l_bk;
for (j_bk=0; j_bk<N; j_bk+=16)
for (i_bk=0; i_bk<M; i_bk+=16)
for (l_bk=0; l_bk<K; l_bk+=16)
/*@; BEGIN(nest1=Nest) @*/
for (j=0; j<MIN(N-j_bk,16); j+=2)
/*@; BEGIN(nest3=Nest) @*/
for (i=0; i<MIN(M-i_bk,16); i+=1)
/*@; BEGIN(nest2=Nest) @*/
for (l=0; l<MIN(K-l_bk,16); l+=1)
{
... statements of the jth iteration ...
if (1+j<MIN(N-j_bk,16))
{ ... statements of the j+1th iteration ... }

}
}

(c) After applying loop unroll&jam by factors of (2,1)

Fig. 2. Transforming a matrix multiply routine using POET

transformations without requiring any intermediate program

analysis. Fig. 3 shows the POET script auto-generated by our

ROSE optimizer after analyzing the code in Fig. 2(a), which

includes some POET annotations automatically inserted by the

optimizer to tag the code regions being optimized. Tab. I and

Fig. 5 complement Fig. 3 with additional details.

A. The POET Language

POET is a scripting language [25] designed for applying

parameterized source-to-source program transformations to

code in arbitrary programming languages such as C, C++,

989898



1: include opt.pi
2: <trace target/>
3: <input to=target syntax="Cfront.code" from=("dgemm.C")/>

4: <trace nest1,nest3,nest2/> <eval INSERT(nest1,target)/>
5: <trace decl_nest1="", top_nest1=(decl_nest1 nest1)/>
6: <eval ModifyTrace(nest1,top_nest1,target)/>
7: <trace incl_files=""/>
8: <eval target=(incl_files ERASE(target))/>
9: <trace private_nest1=""/>
10:<trace clnup_nest1=top_nest1, uj_nest1=nest1/>
11:<trace nest1_C_dim = ("ldc",1);

nest1_C = ArrayAccess#("C","j"*"ldc"+"i")/>
12:<trace nest1_A_dim = ("lda",1);

nest1_A = ArrayAccess#("A","l"*"lda"+"i")/>
13:<trace nest1_B_dim = ("ldb",1);

nest1_B = ArrayAccess#("B","j"*"ldb"+"l")/>

14:<parameter pthread_nest1 type=1.._ default=1
message="number of threads to parallelize loop nest1"/>

15:<parameter psize_nest1 type=1.._ default=256
message="block size to run by each thread for nest1"/>

16:<parameter bsize_nest1 type=(INT INT INT) default=(8 8 8)
message="Blocking factor for loop nest nest1"/>

17:<parameter copy1_config_C type=0..2 default=1
message="configuration for copy array C at loop nest1;

0: no opt; 1: array copy; 2: strength reduction"/>
18:<parameter copy2_config_A type=0..2 default=1

message="configuration for copy array A at loop nest1"/>
19:<parameter copy3_config_B type=0..2 default=1

message="configuration for copy array B at loop nest1"/>
20:<parameter ujsize_nest1 type=(INT INT) default=(2 2)

message="Unroll and Jam factor for loop nest nest1"/>
21:<parameter scalar1_config_C type=0..2 default=1

message="configuration for scalarRepl array C;
0: no opt; 1: scalar repl; 2: strength reduction"/>

22:<parameter scalar2_config_A type=0..2 default=1
message="configuration for scalarRepl array A"/>

23:<parameter scalar3_config_B type=0..2 default=1
message="configuration for scalarRepl array B"/>

24:<parameter usize_nest2 type=1.._ default=4
message="Unroll factor for loop nest2"/>

25:<eval par_nest1 = DELAY{......}/> <*OMP parallelization*>
26:<eval block_nest1 = DELAY{......}/> <*loop blocking*>
27:<eval copyC_nest1 = DELAY{......}/> <*copy array C*>
28:<eval copyA_nest1 = DELAY{......}/> <*copy array A*>
29:<eval copyB_nest1 = DELAY{......}/> <*copy array B*>
30:<eval unrolljam_nest1 = DELAY{......}/> <*unroll & jam*>
31:<eval scalarC_nest1 = DELAY{......}/> <*scalarRepl C*>
32:<eval scalarA_nest1 = DELAY{......}/> <*scalarRepl A*>
33:<eval scalarB_nest1 = DELAY{......}/> <*scalarRepl B*>
34:<eval unroll_nest2=DELAY{UnrollLoops[factor=usize_nest2]

(nest2[Nest.body],nest2)}/>
35:<eval cleanup_nest1=DELAY{CleanupBlockedNests

[trace=top_nest1](clnup_nest1)}/>
36:<eval APPLY{par_nest1};
37: APPLY{block_nest1};
38: APPLY{copyC_nest1};
39: APPLY{copyA_nest1};
40: APPLY{copyB_nest1};
41: APPLY{unrolljam_nest1};
42: APPLY{scalarC_nest1};
43: APPLY{scalarA_nest1};
44: APPLY{scalarB_nest1};
45: APPLY{unroll_nest2};
46: APPLY{cleanup_nest1}/>
47:<output from=(target) syntax=("Cfront.code")/>

Fig. 3. Auto-generated POET scripts for Fig. 2(a)

FORTRAN. For example, line 3 of Fig. 3 parses the matrix

multiplication code in Fig. 2(a) using C syntax descriptions

specified in file Cfront.code and then stores the resulting AST

to a global variable named target. The output command at

line 47 serves to unparse the optimized AST to standard

output. The inclusion of file opt.pi at line 1 ensures that

the POET opt library, which supports a large collection of

compiler transformations, can be invoked by the given script.

POET provides strong programming support for flexibly

Global declarations and commands
<input syntax=s
from=f to=t />

Parse file f using syntax descriptions defined in file s,
then save the parsing result to variable t

<output syntax=s
from=t to=f />

Unparse the value of t to file f using syntax descriptions
defined in file s

<trace a1,...,am/> Declare a list of related trace handles a1,...,am
<parameter p type=t de-
fault=v message=d/>

Declare a command-line parameter p which has type t,
default value v, and its meaning is defined in string d.

<eval s1,...,sm/> Evaluate statements s1, ..., sm
POET expressions: constructing and operating on different types of values
e1 e2 ... en A list of n elements e1, e2, ..., en

HEAD(a) The first element of a list a
TAIL(a) The rest of the list after the first element

c # (p1,...,pn) A c object with data field values p1,...,pn

a[c.d] The value in data field d of c object a
f [v1=p1;...;vn

=pn](x1,...,xm)
Invoke a routine f using parameters x1,...,xm, with p1,
..., pn as values for optional parameters v1, ..., vn

REPLACE(c1,c2,e) Replace all occurrences of c1 with c2 in AST e
REPLACE(((o1,r1)
... (om, rm)), e)

Traverse AST e in pre-order to locate and replace each
oi (i=1,...,m) with ri

Tracing and evaluation operators
INSERT (x, e) Insert trace handles rooted at x inside AST e
ERASE(x, e) Remove occurrences of trace handle x from the AST e
ERASE(x) Return the value contained inside trace handle x
COPY(e) Remove all trace handles in AST e
DELAY {e} Delay the evaluation of expression e until later

APPLY (e) Force the evaluation of a delayed expression e
Selected routines from the POET opt library
ModifyTrace (a,b,x) Substitute trace handle a with value b in input code x
AppendDecl(t,v,x) Declare variables in v with type t in the input code x
ParallelizeLoop[trace=
a;trace incl=b;private
=c;threads=d](x)

Parallelize loop nest x via OpenMP using d threads; treat
variables in c as private; modify b to include OMP header
file; use trace handle a to save modifications to x.

BlockLoops[factor=a;
nonPerfect=b;
trace innerNest=d;
trace mod=c;] (n,x)

Block loops that are outside n and inside x using factors
of a; the loops are non-perfectly nested at location b;
use trace handle d to save the inner tiled loop nest; trace
modifications to expression c.

UnrollJam[factor=a;
trace=b](n,x)

Unroll loops that are outside n and inside x by factors
of a; Jam unrolled iterations inside n. Use b to trace x.

FiniteDiff[exp type=a;
trace newVars=b;
trace decl=c; trace=d;
trace mod=e](v,p,m,x)

Apply strength reduction to exp. p+m in input x using
v as name prefix for auxiliary index variables; p has type
a; trace modifications to exp. e; use b, c, d to save new
variables, new declarations, and modifications to x.

CopyRepl[elem type=a;
init loc=b; save loc=c;
delete loc=d;cpBlock=e;
scalar=f; trace decl=g;
trace vars=h; trace=i;
trace mod=i](v,r,t,x)

Use buffer v to substitute arrays referenced by r at loop
iterations t in input code x; array elements have type a,
need to be copied from r to v at location b, from v back
to r at location c, and v need to be deleted at location d;
e specifies whether/how loops in x have been blocked; f
specifies whether scalar replacement should be applied;

UnrollLoops[factor=a]
(n,x)

Unroll loops that are outside of code fragment n and
inside input code x by the factor of a

CleanupBlockedNests
[trace=t](x)

Cleanup blocked/unrolled loops in input code x via loop
splitting; use t to trace the transformation result of x

TABLE I
SELECTED POET OPERATIONS USED IN FIG.S 3 AND 5

combining a long sequence of heavily parameterized program

transformations. It uses a special collection of global variables

called trace handles which can be embedded inside an input

code to automatically keep track of various code fragments

as they go through different transformations. In particular,

these trace handles can be embedded inside parameters of an

POET routine invocation so that the routine can dynamically

modify these handles without knowing their names. For ex-

ample, lines 4-13 of Fig. 3 declare and initialize all the trace

handles that will be used to accommodate interactions between

different POET transformations, discussed in Section III-C.

In Fig. 3, the 11 optimizations that will be later applied to

transform the input code are defined at lines 25-35 using the

DELAY operator. All transformations invoke routines from the

POET opt library to operate on the trace handles declared at

lines 4-13, and their configurations are extensively controlled

by the command-line parameters declared at lines 14-24.

999999



Lines 36-46 then apply the 11 pre-defined transformations one

after another using the APPLY operator, providing developers

a clear view of all the potential optimizations that the compiler

has discovered. Each optimization is defined and invoked

independently. Developers can easily modify optimization

decisions by the compiler if necessary, e.g., by adjusting the

ordering of applying different transformations at lines 36-46 or

by adding additional optimizations. Section III-C will provide

additional details of each predefined optimization.

B. The ROSE Loop Optimizer

We have built our analysis engine in Fig. 1 by adapting the

ROSE loop optimizer [24] to automatically produce POET

scripts as output without affecting how it works otherwise.

The adapted optimizer has essentially delegated the actual pro-

gram transformations to POET, where ROSE merely performs

advanced analysis to make optimization decisions. The only

modification to input code by ROSE is the tagging of code

regions to be transformed later, an example of which is shown

in Fig. 2(a). Our framework demonstrates the practicality of

integrating POET as an alternative output language of existing

optimizing compilers, so that compilers can interact with

developers and empirical search engines in a much more ex-

plicit fashion than previously possible. This non-conventional

approach entails the following technical challenges.

• Interactions between optimizations. Since AST transfor-

mations within ROSE have been redirected to a new

POET scripting interface, each optimization now assumes

that it directly operates on the original input code. How-

ever, since program transformations are actually applied

one after another by the auto-generated POET script,

the input to each transformation could be dramatically

different from the original input code. This discrepancy

could result in incorrect program transformations.

• Phase Ordering of Optimizations. Conventional compil-

ers apply optimizations in multiple phases, with each

phase focusing on managing a different set of archi-

tectural features. However, since the actual program

transformations are now postponed and delegated to the

auto-generated POET script, our ROSE optimizer can no

longer separate these optimizations into different phases.

To resolve these issues, a key observation is that since no

compiler optimization is allowed to alter the semantics of its

input program, each optimization safe for the original input

typically remains safe even after other optimizations have been

applied. However, since the input code may have been mod-

ified by other optimizations, the auto-generated POET script

must precisely model such interactions to ensure correctness

of transformation. Further, optimizations at different phases

often share the same program analysis. For example, if a

loop nest should be blocked for cache reuse, it is safe and

typically profitable to apply unroll&jam to the blocked loops

to further promote register reuse. We therefore can use a single

optimization analysis to drive related optimizations at different

phases. Sections III discusses details of these solutions.

C. Programmable Control And Portable Tuning

After our adapted ROSE optimizer automatically producing

a POET script, the script can be modified by a developer

if necessary to change the ordering of transformations or to

integrate additional domain-specific optimizations. The final

script together with the tagged input source code can then

be ported to a variety of different machines and empirically

tuned. The POET interpreter and library, shown in Fig. 1,

are lightweight and easily portable to different architectures.

Compared to existing iterative compilation frameworks, our

infrastructure clearly offers better modularity, flexibility and

portability, as compiler optimizations are completely opened

up for programmable control by developers, the optimizing

compiler does not need to reside on the same machine that the

user application is optimized for, all the optimizations applied

by a compiler are made explicitly available for developers

to modify if necessary, and an explicit well-defined param-

eterization space can be tuned using arbitrary independent

search engines to find satisfactory optimization configurations.

Every component is independent of the others through clearly

defined interfaces. Researchers specialized in different areas

can therefore easily collaborate with each other in building a

collective high-performance computing infrastructure.

We have structured the auto-generated POET scripts so

that it is trivially easy to disable a specific transformation or

swap the ordering of different optimizations, for example, by

simply modifying lines 36-46 of Fig. 3. However, it is more

challenging to add new domain-specific optimizations into an

existing POET script, due to the complexity of maintaining

correct tracing of different transformations (which has been

managed automatically by our ROSE optimizer in the auto-

generated POET script). Our ongoing work includes adding

GUI support for composing and modifying POET scripts so

that developers can easily add domain-specific optimizations

without explicitly maintaining the relevant trace handles.

III. AUTOMATICALLY GENERATING POET SCRIPTS

We have adapted three existing optimizations within the

ROSE loop optimizer: loop blocking, array copying, and

loop unrolling, and have added analysis support for loop

parallelization to automatically generate POET transformation

scripts. The adaptation process includes the following steps.

1) Separate optimization analyses from transformations, so

that the latter can be alternatively redirected to POET.

2) Generate a sequence of parameterized POET transfor-

mations based on results of the optimization analyses.

3) Monitor interactions between different POET transfor-

mations to ensure correctness of transformation.

The translation mapping between ROSE optimization analyses

and the sequence of POET transformations is shown in Tab. II.

The following addresses each of the above steps in detail.

A. Separating Optimization Analysis and Transformation

Most compiler optimizations can be naturally separated into

an analysis and a transformation phase. The program analyses

that we have adapted from ROSE include transitive loop

100100100



ROSE opt anal. POET transformations

thread level cache level reg. level CPU level

loop parallel. OMP parallel.

loop blocking loop block. unroll&jam

array copying array copy.
+ str. reduct.

scalar repl.
+ str reduct.

loop unroll. loop unroll.
opt anal. - optimization analysis; block. - blocking; str. reduct. - strength reduction

TABLE II
MAPPING BETWEEN ROSE AND POET OPTIMIZATIONS

GenPOETScript(roseXform, fname)
roseXform: saved ROSE optimization decisions; fname: name of input file

(1) poet = new POETProgram(fname+”.pt”); /* create a new POET script file*/
poet->insert includeFile(”opt.pi”); target = poet->declare trace(”target”);
poet->read input(“rose ”+fname, target, ”Cfront.code”);

(2) top = poet->trace xform input(roseXform, target); /*tagged code fragments*/
vars = poet->trace xform output(roseXform, top); /*output place holders*/
for each saved transformation x in roseXform do

vars ∪ = x->insert traceDecl(poet, top, vars); /*trace opt. configurations*/
(3) for each optLevel in (THREAD, CACHE, REG, PROC) do

for each transformation x in roseXform do
x->insert paramDecl(poet, optLevel); /* declare command-line parameters */

(4) delayOps = empty; /* delayed transformations*/
for each optLevel in (THREAD, CACHE, REG, PROC) do

for each transformation x in roseXform do
y = x->gen xformInvoke(poet, top, vars, optLevel); /*transformation script*/
if y is not empty then /*a POET transformation has been generated for x*/

name = poet->gen delayEval(y, gen name(x,optLevel)); /*name=DELAY(y)*/
delayOps = append(delayOps, name); /*append name to delayOps*/

(5) for each delayName in delayops do /* apply the delayed transformations */
poet->insert applyOp(delayName);

poet->write output(target, ”Cfront.code”); /*unparse target to standard output*/

Fig. 4. Algorithm for generating POET transformations

dependence analysis, data reuse analysis, and optimization

analysis for loop blocking, parallelization, unrolling, and array

copying [23], [24]. We have collected all the information

necessary to perform each optimization but have circumvented

the actual transformations so that after each optimization

analysis, the information is merely saved by a POET scripting
interface to be later translated to POET transformation scripts.

All the analyses are now performed on the original input

program. No modification is applied to the input code except

for tagging code fragments which have been chosen as targets

for various program transformations.

The ROSE loop optimizer can optimize arbitrarily nested

loops through transitive dependence analysis and a special

technique called dependence hoisting [23]. To similarly sup-

port non-perfect loop nests, the POET opt library uses code
sinking to first convert non-perfect loop nests into perfectly

nested ones. As illustrated by Fig. 2(b), it embeds out-of-

place statements inside the innermost loop after surrounding

them with proper if-conditionals, so that these statements are

evaluated only by single iterations of the new surrounding

loops. The resulting perfect loop nest can then be transformed

in a straightforward fashion. A loop splitting step, applied by

the CleanupBlockedNests routine (see Fig. 3 line 35), is later

applied to eliminate the if-conditionals inside loops.

B. Generating Parameterized POET Transformations

Fig. 4 shows our algorithm for automatically implementing

the translation mapping from ROSE optimizations to POET

transformations in Tab. II. A key idea in the algorithm is

grouping the auto-generated POET transformations into four

phases: thread-level parallelization, cache level locality, regis-

ter usage, and CPU-level efficiency. Each individual ROSE

optimization decision can then be translated to a different

POET transformation at each optimization phase. For example,

each ROSE loop blocking optimization is translated to a POET

blocking transformation at the cache level and an unroll&jam

transformation at the register level. This strategy allows ROSE

to perform optimization analysis only at the thread/cache level,

and the analysis results can be used to drive optimizations typi-

cally applied at much later compilation phases. Consequently,

we are able to use POET to support a larger collection of

optimizations, e.g., unroll&jam and strength reduction, than

those currently supported by our ROSE optimizer. Fig. 3 shows

the POET script auto-generated by our ROSE optimizer for the

input code in Fig. 2(a), with all optimizations enabled.

The algorithm in Fig. 4 includes the following steps.

(1) Create a new POET script which starts with the inclusion

of the opt library and a command to parse the input

code and save the parsing result to a trace handle named

target, as illustrated by lines 1-3 of Fig. 3.

(2) Declare and initialize trace handles required to explicitly

coordinate different POET transformations, as illustrated

by lines 4-13 of Fig. 3. These trace handles are defined

in Tab. III and explained in detail in Section III-C.

(3) Declare command-line parameters to parameterize and

optionally turn off each POET transformation, identi-

fied by each pair of individual ROSE optimization and

optimization phase. These parameter declarations are

illustrated by lines 14-24 of Fig. 3.

(4) Independently generate each relevant POET transforma-

tion using the DELAY operator, illustrated by lines 25-

35 of Fig. 3. For each optimization phase and saved

ROSE optimization, the algorithm determines whether

a POET translation is applicable and appends a new

transformation to the POET script if necessary.

(5) Invoke the delayed POET transformations and output

optimization result, illustrated by lines 36-46 of Fig. 3.

The auto-generated POET script in Fig. 3 offers a clear view

of all the potential optimizations that the ROSE compiler

has discovered. Note that strength reduction is treated as an

auxiliary transformation to simplify array address calculations

and is applied together with array copying and scalar replace-

ment. The ordering of our POET transformations follows the

phase ordering strategies commonly adopted by conventional

compilers. If necessary, the transformations can be flexibly

reordered, and developers can add new transformations by

simply modifying lines 36-46.

C. Interactions Between POET Transformations

A key challenge in our approach is that after the ROSE opti-

mizer is finished, the auto-generated POET transformations are

no longer driven by any sophisticated program analysis. While

the ROSE optimizer assumes all transformations are applied

to the original input code, each POET transformation must

operate on the result of previous transformations. Note each

POET transformation is extensively parameterized and can be

101101101



Variable Code fragment to trace Used by Modified by

target the entire input code opt. input all opt.

nest1 outermost loop to transform opt. input all opt.

nest2 innermost loop to transform opt. input all opt.

nest3 middle loop to transform opt. input all opt.

incl files new include-file declarations opt. output par nest1

decl nest1 new variable declarations opt. output all opt.

top nest1 code equiv. to the orig. nest1 opt. output all opt.

private nest1 private vars for parallel. nest1 par nest1 all opt.

clnup nest1 cleanup scope for nest1 cleanup nest1 par nest1

uj nest1 input for unroll&jam nest1 unrolljam nest1 block nest1

nest1 C dim size of each dimension of array
C accessed in nest1

copyC nest1,
scalarC nest1

copyC nest1,
scalarC nest1

nest1 C how to access array C using loop
index variables in nest1

copyC nest1,
scalarC nest1

par nest1,
block nest1,
copyC nest1,
scalarC nest1

nest1 A dim size of each dimension of array
A accessed in nest1

copyA nest1,
scalarA nest1

copyA nest1,
scalarA nest1

nest1 A how to access array A using
loop index variables in nest1

copyA nest1,
scalarA nest1

par nest1,
block nest1,
copyA nest1,
scalarA nest1

nest1 B dim size of each dimension of array
B accessed in nest1

copyB nest1,
scalarB nest1

copyB nest1,
scalarB nest1

nest1 B how to access array B using loop
index variables in nest1

copyB nest1,
scalarB nest1

par nest1,
block nest1,
copyB nest1,
scalarB nest1

opt.: optimization;

TABLE III
INTERACTIONS BETWEEN TRANSFORMATIONS IN FIG. 3

optionally turned off entirely. Interactions between different

transformations therefore must be dynamically traced to ensure

correctness of program transformations.

Tab. III shows the collection of POET trace handles used

to dynamically manage interactions between different trans-

formations in Fig. 3. These trace handles are essentially place

holders which can be embedded inside complex data structures

(e.g., the AST of an input code) so that they can be auto-

matically modified by the POET opt library even though the

library routines cannot access them directly via their names.

For example, when the opt library invokes the REPLACE
operator in Tab. I to modify an AST e, the operator will

automatically modify all the trace handles embedded inside

e to contain the corresponding transformed code fragments.

The trace handles in Tab. III are declared at lines 4-13 of

Fig. 3 and can be categorized as follows.

• Input trace handles, e.g., target, nest1, nest2, and

nest3, which are used to tag and dynamically trace

various fragments of the original input code.

• Output trace handles, e.g., decl nest1, incl files, and

top nest1, which are used to save new code fragments

created by various POET transformations.

• Configuration trace handles, e.g., those declared at

lines 9-13 of Fig. 3, which are used to properly configure

various POET transformations.

Only the input and output handles need to be embedded inside

the input code so that they can be automatically modified by

all POET transformations, as shown by lines 4-8 of Fig. 3.

The configuration handles are modified by explicitly passing

them as side-effect parameters of the opt library routines. The

following explains how each POET transformation modifies

these trace handles to dynamically coordinate with others.

1: <eval par nest1 = DELAY{ <*OMP parallelization*>
2: if (pthread nest1!=1) {
3: private nest1 = (”l” ”i” ”j par” ”j”);
4: AppendDecl(IntType, ”j par”, decl nest1);
5: BlockLoops[factor=BlockDim#(”j”,”j par”,psize nest1);
6 trace mod=(nest1 B nest1 A nest1 C)] (nest1[Nest.body], nest1);
7: ParallelizeLoop[trace=top nest1;private=private nest1; trace incl=incl files;
8 threads=pthread nest1] (nest1);
9: ModifyTrace(nest1, nest1[Nest.body], top nest1);
10: clnup nest1 = nest1
11: } }/>
12: <eval block nest1 = DELAY{
13: if (bsize nest1 != (1 1 1)) {
14: AppendDecl(IntType,((”l bk” ”i bk” ”j bk”)),decl nest1);
15: private nest1=((”l bk” ”i bk” ”j bk”) (ERASE(private nest1)));
16: bdim = (BlockDim#(nest1[Nest.ctrl][Loop.i],”j bk”,HEAD(bsize nest1))
17: BlockDim#(nest3[Nest.ctrl][Loop.i],”i bk”,HEAD(TAIL(bsize nest1)))
18: BlockDim#(nest2[Nest.ctrl][Loop.i],”l bk”,HEAD(TAIL(TAIL(bsize nest1)))));
19: BlockLoops[factor=bdim; nonPerfect=NonPerfect#(””,nest2);
20: trace mod=(nest1 B nest1 A nest1 C); trace innerNest=uj nest1]
21: (nest2[Nest.body],nest1));
22: } }/>
23: <eval copyC nest1 = DELAY{
24: if (bsize nest1!=(1 1 1) && copy1 config C==1) {
25: AppendDecl(IntType,((”C cp0” ”C cp1”)),decl nest1);
26: private nest1=((”C cp0” ”C cp1”) (ERASE(private nest1)));
27: cpDim=(CopyDim#(”j”,0,nest1[Nest.ctrl][Loop.stop],nest1 C dim[0])
28: CopyDim#(”i”,0,nest3[Nest.ctrl][Loop.stop],nest1 C dim[1]));
29: CopyRepl[elem type=”double”; scalar=0; init loc=nest1; save loc=nest1;
30: delete loc=nest1;trace=top nest1; trace decl=decl nest1;
31: trace vars=private nest1; trace mod=(nest1 B nest1 A nest1 C);
32: cpBlock=(CopyBlock#(”C cp0”,”j bk”,HEAD(bdim nest1))
33: CopyBlock#(”C cp1”,”i bk”,HEAD(TAIL(bdim nest1))))]
34: (”C buf”, nest1 C, cpDim, nest1);
35: fdDim = (ExpDim#(nest1,1,”C cp1”)
36: ExpDim#(nest3,1,HEAD(TAIL(bsize nest1))));
37: FiniteDiff[exp type=PtrType#”double”; trace newVars=private nest1;
38: trace decl=decl nest1; trace=top nest1;trace mod=(nest1 B nest1 A nest1 C)]
39: (”C buf fd”,nest1 C[ArrayAccess.array], fdDim, nest1));
40: nest1 C dim = (HEAD(TAIL(bsize nest1)),nest1 C dim[1])
41: }
42: else if (bsize nest1!=(1 1 1) && copy1 config C==2) {
43: fdDim=(ExpDim#(nest1,1,nest1 C dim[0]) ExpDim#(nest3,1,nest1 C dim[1]));
44: FiniteDiff[exp type=PtrType#”double”; trace newVars=private nest1;
45: trace=top nest1; trace decl=decl nest1;trace mod=(nest1 B nest1 A nest1 C)]
46: (”C buf fd”, nest1 C[ArrayAccess.array], fdDim, nest1))
47: } }/>
48: <eval unrolljam nest1 = DELAY{
49: if (uj nest1 != nest1) {
50: ERASE((nest1 nest3 nest2),top nest1);
51: TraceNest(ERASE(uj nest1),((nest1 nest3 nest2)));
52: REPLACE(ERASE(nest1),nest1,top nest1);
53: REPLACE(ERASE(nest3),nest3,top nest1);
54: REPLACE(ERASE(nest2),nest2,top nest1);
55: }if (ujsize nest1 != (1 1))
56: UnrollJam[factor=ujsize nest1; trace=top nest1] (nest2,nest1)
57: } }/>

Fig. 5. Details of missing transformations in Fig. 3

OpenMP Parallelization, the definition of which is il-

lustrated at lines 1-11 of Fig. 5. This transformation first

blocks the outermost loop of the input code by invoking the

BlockLoops routine from POET opt library (lines 5-6 of Fig. 5)

and then parallelizes the block enumerating loop by inserting

an OpenMP pragma (lines 7-8). It uses a configuration trace

handle, private nest1 (initialized at line 3), to keep track of

private variables within the parallelized loop, Two output trace

handles, decl nest1 and incl files, are modified to insert a

new variable declaration for j par (line 4) and to include the

OpenMP header file (line 7). Finally, it modifies the input

handle nest1 to hold the sequential loop inside (line 9) and

modifies the configuration handle clnup nest1 (line 10) so

that cleanup code is generated only for the sequential loop.

Array reference handles (nest1 B, nest1 A, nest1 C) are

modified as side effects of invoking BlockLoops at lines 5-6.

102102102



Loop blocking, illustrated by lines 12-22 of Fig. 5. This

transformation uses a local variable bdim to set up how to

block each loop and then block all three loops accordingly by

invoking the BlockLoops routine (lines 16-21). The invocation

of BlockLoops at lines 19-21 uses the nonPerfect parameter

to specify that nest2 is not perfectly nested inside nest1 (see

Fig. 2(a)) and therefore code sinking is necessary to block the

loops. Two trace handles, decl nest1 and private nest1, are

modified to include a new loop index variable for each blocked

loop. Additionally, the unroll&jam trace handle uj nest is

modified as a side-effect of BlockLoops to contain the inner

tiled loops after blocking.

Array copying and strength reduction, which are illus-

trated by lines 23-47 of Fig. 5 and are enabled only when loop

blocking has already been applied to nest1. If array copying is

desired, the transformation uses a local variable cpDim to set

up how to copy each array dimension, invokes the CopyRepl
routine to copy array elements accessed by each block into

a continuous region (a new array C buf ), and then invokes

the FiniteDiff routine to reduce the cost of accessing elements

from the copied buffer via strength reduction (lines 29-39). If

strength reduction is desired without array copying (lines 42-

46), the FiniteDiff routine is invoked directly to simplify

element accesses of the original array C after the surrounding

loops have been blocked.

Two trace handles, decl nest1 and private nest1, are

modified to include the new loop index variables created to

enumerate array elements being copied (lines 25-26). Addi-

tionally, as side-effects of invoking CopyRepl and FiniteD-
iff, nest1 C is modified to contain an equivalent element

access of the new array C buf , and both decl nest1 and

private nest1 are again modified to contain the new variables

created to facilitate the transformations. Finally, the dimen-

sionality of the array is modified accordingly at line 40.

Loop unroll&jam, which is illustrated by lines 48-57 of

Fig. 5 and is the first register-level optimization in our current

collection of auto-generated POET transformations. If loop

blocking has already been applied (i.e., uj nest1!=nest1),

all register level optimizations should operate on the inner tile

(traced by uj nest1) resulted from the blocking transforma-

tion, so lines 49-54 of Fig. 5 adjust all the input trace handles

(i.e. nest1, nest3, and nest2) to go inside uj nest1. Then,

the actual transformation is applied if desired by invoking the

UnrollJam routine at line 56.

Scalar replacement and strength reduction, which are

similar to the array copying and strength reduction trans-

formations illustrated by lines 23-47 of Fig. 5. The main

differences are that scalar replacement does not depend on

loop blocking, there is no cpBlock parameter to the invocation

of CopyRepl, and it does not need additional loop index

variables to enumerate array elements (i.e., lines 25-26 is no

longer necessary). Further, scalar is set to 1 when invoking

CopyRepl, and cpDim, fdDim, and copying locations are set

differently to reflect the needs of register-level optimizations.

Loop Unrolling, which is illustrated by line 34 of Fig. 3

and does not require any additional tracing support besides the

input/output trace handles used by all optimizations.

Cleaning up transformed code, which is invoked at

line 35 of Fig. 3 and is the last POET transformation applied. It

searches the input code region (clnup nest1) for special tags

inserted by loop blocking and unroll&jam and applies loop

splitting to remove the if-conditionals inserted inside loops by

previous transformations.

D. Correctness, Robustness, And Generality

Our approach essentially uses the ROSE loop optimizer

to determine potential optimizations applicable to an input

code and then uses POET to dynamically compose the trans-

formations one after another. The correctness of the POET

transformations relies on the following conditions.

• The POET opt library is implemented correctly and mod-

ifies all the input and output trace handles as expected.

• After each transformation, all the input trace handles

(e.g., nest1, nest2, and nest3 in Fig. 2(a)) carry the same

dependence constraints as their original code fragments.

• All the interactions between different transformations are

explicitly modeled via the collection of configuration

trace handles, and each transformation properly updates

all the affected configuration trace handles.

In summary, as no optimization can modify the dependence

constraints of the input code (guaranteed by the ROSE op-

timizer), and we keep all transformation configurations up-

to-date by modifying the affected trace handles after each

transformation, all the POET optimizations are guaranteed to

be safe, unless given an invalid optimization configuration,

where the POET opt library will exit with errors or simply skip

the transformation. For example, if a search engine decides to

invoke the POET script in Fig. 3 by blocking nest1 by factors

of (16 16 16) and then unrolling the innermost loop by 32, an

error will be reported. Note that all POET transformations in

Fig. 5 use the input, output, and configuration trace handles as

parameters instead of directly using values generated by the

ROSE optimizer, so they always operate on the most up-to-

date values. For example, whether or not par nest1 is applied,

loop blocking and array copying are always applied to the

sequential loop nest evaluated by each thread.

The POET language can express arbitrary source-to-source

program transformations, including those that eliminate code

(e.g., strength reduction) or modify control flow (e.g., loop

blocking). The robustness of our approach is determined by its

ability to always trace the corresponding modified code after

each transformation. The tracing may be broken when given

illegal combinations of optimization configurations or if the

result of some transformation is not tracible. As a result some

optimizations may have to be excluded from out approach

if they render some input trace handles no longer tracible.

The trace handles we use are based on the current collection

of transformations supported by our ROSE optimizer. Some

optimization configurations, e.g., the index variables (j and i)
of array references at lines 27-28 of Fig. 5, are not traced as

they are not modified by our current POET transformations.

103103103



As new optimizations are included, additional trace handles

may need to be modeled.

A key technical contribution of this paper is a practical

approach where compiler optimizations can be cleanly sep-

arated into two phases: program analysis and transformation,

where the transformation phase does not require any inter-

mediate analysis. This clean separation of concerns allows

programmable control to be given to developers so that they

can conveniently intervene and modify how their programs

will be optimized. Our approach is dramatically different from

how conventional compiler optimizations are implemented.

As a result, it requires the tracing support of the POET

scripting language. Since we use an optimizing compiler to

automatically generate POET scripts, we have released HPC

library (e.g., ATLAS [21]) developers from having to manually

compose code optimizations from scratch and allows them to

better utilize optimization capabilities within compilers.

IV. EXPERIMENTAL RESULTS

This paper focuses on adapting an existing source-to-source

optimizing compiler to automatically generate extensively pa-

rameterized transformation scripts in POET so that developers

can freely modify and extend optimization decisions by the

compiler, and optimization configurations can be empirically

determined via performance tuning on a wide variety of dif-

ferent architectures. To confirm that the auto-generated POET

scripts can indeed achieve portable high performance across

different architectures, we have selected several linear algebra

routines and have used our ROSE optimizer both to directly

generate optimized code and to alternatively produce POET

scripts together with an annotated but un-optimized source

code. We then compare the best performance achieved by

the auto-generated POET scripts with that achieved using the

ROSE optimizer only. Additionally, when applicable, we com-

pare the best performance we achieved against that achieved

by the code generator of ATLAS [21], which is well-known

for its high performance matrix computation kernels.

A. Experimental Design

We have used our adapted ROSE optimizer to optimize four

linear algebra routines, matrix-matrix multiplication (dgemm),

matrix-vector multiplication (dgemv), vector-vector multi-

plication (dger) and LU factorization with partial pivoting

(dgetrf ). The source code of dgemm is shown in Fig. 2(a).

The other routines are written similarly. These routines are

chosen because they are known to benefit from the collection

of optimizations that we support. We chose the dgetrf routine

to demonstrate that through code sinking combined with a later

cleanup step, the auto-generated POET scripts are capable

of blocking arbitrarily nested loops (which is the case with

dgetrf ) despite the lack of program analysis support. For

all benchmarks, the best performance achieved by the auto-

generated POET scripts is compared against that achieved

by using the ROSE optimizer alone. For dgemm, dgemv,

and dger, the performance is additionally compared with that

achieved by the code generator of ATLAS release 3.9.4.

We evaluated all benchmarks on two multi-core machines:

a quad-core machine running Linux with two dual-core 3 GHz

AMD Opteron Processors (each with 1KB L1 cache), and an

eight-core machine running MacOS with two quad-core 2.66

GHz Intel processors (each with 32KB L1 cache). All the

optimized code are compiled with -O2 option using gcc 4.2.4

on the AMD machine and gcc 4.4.4 on the Intel machine.

We did not use -O3 to prevent gcc from applying aggressive

loop optimizations to our already heavily optimized code. To

discover the best performance achieved by each approach,

we used an optimization-specific search engine implemented

using Perl [17]. The search algorithm assumes domain-specific

knowledge about each optimization being tuned and therefore

can avoid being stuck at local minima which is a known

problem for other general-purpose generic search algorithms.

Our search engine has been used to tune both the auto-

generated POET scripts and the adapted ROSE optimizer

but has not been used in tuning the ATLAS generated code

(which was tuned by the ATLAS search engine). We present

the best performance found for all cases. Note that how to

efficiently explore the immensely complex multi-dimensional

optimization space is beyond the scope of this paper. Our

framework is independent of specific search algorithms and

can easily collaborate with other existing search engines in

the literature[13], [19], [20], [27], [4].

B. Performance of Optimized Code

Figs. 6 and 7 show the best performance of the four

linear algebra routines when optimized using five different

approaches: auto-POET-small and auto-POET-large, the best

performance achieved by auto-generated POET scripts using

small and large input sizes (100*100 vs. 1000*1000 randomly

initialized matrices) respectively; auto-ROSE-small and auto-
ROSE-large, the best performance achieved directly by the

ROSE loop optimizer without going through POET, using

small 100*100 matrices and large 1000*1000 matrices respec-

tively; and ATLAS, the best performance achieved by ATLAS

release 3.9.4. The small and large input sizes are used to

measure both the in-cache and out-of-cache/multi-threading

performance of each optimized code. The ATLAS result is

the out-of-cache single-threaded performance of its kernels.

From Figs. 6 and 7, auto-POET has performed significantly

better than auto-ROSE for almost all cases. In particular, it

outperformed auto-ROSE by factors of 2-10 for dger using

large matrices on the 8-core Intel machine, dgemv using large

matrices on both machines, and dgemm using both small and

large matrices. It performed better than auto-ROSE by 25-50%

for dgemv and dger using small matrices. For dgetrf , auto-
POET performed similarly as auto-ROSE.

The performance of dgemm achieved by auto-POET is

20%-40% slower than that achieved by ATLAS When using

small matrices but is about 2-4 times better than that by

ATLAS when using large matrices. For dgemv and dger, auto-
POET has significantly outperformed ATLAS code generator

for both small and large input sizes.

104104104



0
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000

dgemm dgemv dger dgetrf

Benchmarks

M
F
L
O
P
S auto-POET-small

auto-ROSE-small
auto-POET-large
auto-ROSE-large
ATLAS

Fig. 6. Performance on the AMD quad-core machine

0

5000

10000

15000

20000

25000

dgemm dgemv dger dgetrf

Benchmarks

M
F
L
O
P
S auto-POET-small

auto-ROSE-small
auto-POET-large
auto-ROSE-large
ATLAS

Fig. 7. Performance on the Intel 8-core machine

C. Interpretation Of Results

Since our benchmarks are individual routines containing

single loop nests, we can use compilation flags to control

how auto-ROSE optimizes each loop nest. Therefore while

the auto-generated POET scripts support more comprehensive

parameterization of the combined array copying and scalar

replacement optimization, both auto-POET and auto-ROSE
share a similar level of parameterization for loop blocking and

unrolling. Auto-POET performs three additional optimizations:

loop parallelization, unroll-and-jam, and strength reduction,

than auto-ROSE. Since both approaches use the same empiri-

cal search algorithm, the better performance achieved by auto-
POET is mostly due to the extra optimizations, which enable

a much larger tuning space, instead of better strategies to

explore the common portion of the tuning spaces. Note that the

granularity of control via auto-ROSE becomes much coarser

when optimizing larger routines with multiple loop nests.

Iterative compilation can support extensive parameterization of

optimizations internally. However, the internal optimizations

cannot be controlled by outside developers or independent

search engines.

When using small (100*100) matrices, neither cache block-

ing nor loop parallelization is necessary for any of our

benchmarks. Consequently the best optimized code from both

auto-POET and auto-ROSE use only a single thread, and auto-
POET performs significantly better than auto-ROSE due to

better parameterization of array copying/scalar replacement

and the extra loop unroll&jam and strength reduction opti-

mizations it applies to improve the register- and CPU-level

performance of the benchmarks. Because matrix multiplication

has a much higher computation/memory access ratio than the

other routines, when using a single thread, the register- and

CPU-level optimizations are critically important for the overall

performance of the benchmark. ATLAS features a larger

collection of such optimizations, e.g., memory prefetching

and better cleanup code, than those currently available using

our framework. As a result it achieves about 25-40% better

performance than that by auto-POET.

When using large (1000*1000) matrices, auto-POET out-

performs both auto-ROSE and ATLAS because of the extra

OpenMP loop parallelization optimization. Here the perfor-

mance improvements on the Intel machine are much higher

than those on the AMD, as the Intel machine has 8-cores while

the AMD has only 4 cores.

V. RELATED WORK

The initial design of the POET language was published

by Yi et al. [25]. Yi and Whaley demonstrated that by

manually writing POET scripts to optimize several linear

algebra kernels, they can achieve performance comparable to

that achieved by manually written assembly in ATLAS [26].

While designed to be easy to use, using POET to manually

compose a long sequence of code optimizations remains a

challenging and error-prone task for developers. This paper

focuses on using a source-to-source optimizing compiler to

automatically produce parameterized POET scripts. The goal

is to enable seamless integration of the domain-specific knowl-

edge possessed by computational specialists and the automated

program analysis and optimization capabilities by compilers.

Several existing projects also focused on facilitating effec-

tive communication between optimizing compilers and devel-

opers to support better tuning of applications. The work by

Hall et al.[8] allows developers to provide a sequence of loop
transformation Recipes to guide transformations performed

by an optimizing compiler. The X language [6] uses C/C++

pragma to guide the application of a pre-defined collection

of compiler optimizations. Instead of asking developers to

guide transformations applied by a compiler, we adapt an

optimizing compiler to output its optimization transformations

to be perused by developers. The degree of parameterization

in our auto-generated POET scripts is much more extensive

than that supported by existing other approaches.

Empirical tuning of performance has been successfully

adopted by many popular scientific libraries, including AT-

LAS [21], PHiPAC [2], OSKI [20], FFTW [7], SPIRAL [15],

among others, which use specialized kernel generators to

parameterize and orchestrate differently optimized code. More

recent research on iterative compilation has empirically mod-

ified the configurations of general-purpose compiler optimiza-

tions based on performance feedbacks [9], [16], [1], [14],

[13]. None of these existing compilers support programmable

control of optimizations by developers. Our framework aims

to overcome this weakness by providing better means to

support the integration of domain-specific knowledge and

general-purpose compiler optimizations. Our auto-generated

POET scripts can be easily integrated with existing search

techniques [13], [19], [20], [27], [4] to automatically find

desirable optimization configurations.

Existing compiler research has developed a large collection

of optimization techniques for improving the performance of

scientific applications [10], [11], [22], [3], [5]. Our approach

105105105



can be used to similarly extend these optimizations to generate

parameterized POET scripts for portable performance tuning

and programmable intervention by developers.

A focus of this research is to develop effective techniques

that allow collective parameterization of advanced compiler

optimizations. Previous research has studied a number of

compiler optimizations which have naturally parameterized

configurations, including loop blocking, unrolling [9], [14],

[18], software pipelining [12], and loop fusion [16]. The work

by Cohen, et al. [5] used the polyhedral model to parameterize

the composition of loop transformations applicable to a code

fragment. Our work is different from the work by Cohel, et al.
in that we parameterize the configuration of each individual

transformation instead of parameterizing the overall combined

optimization space. Our research focuses on composing these

parameterized transformations in a well-coordinated fashion

without intermediate program analysis support.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a new optimization framework to support

the programmable control and extensive parameterization of

compiler optimizations so that developers can freely modify

and extend optimization decisions by compilers, and optimiza-

tion configurations can be empirically tuned on a wide variety

of different architectures to achieve portable high performance.

We have demonstrated the practicality of this framework by

automatically generating programmable transformation scripts

from a source-to-source optimizing compiler, and have shown

that significantly better performance can be achieved by the

more flexible and portable tuning framework than using the

optimizing compiler alone.

Our approach opens up compiler optimizations to be con-

trolled both by developers and independent search engines. It

exposes an explicit well-defined parameterization space which

is much bigger than the set of optimization flags supported

by conventional compilers and can be tuned using arbitrary

independent search engines. Our ongoing research is working

on efficient exploration of the optimization space to enable

better tuning of application performance.

REFERENCES

[1] N. Baradaran, J. Chame, C. Chen, P. Diniz, M. Hall, Y.-J. Lee, B. Liu,
and R. Lucas. Eco: An empirical-based compilation and optimization
system. In International Parallel and Distributed Processing Sympo-
sium, 2003.

[2] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel. Optimizing
matrix multiply using phipac: a portable, high-performance, ansi c
coding methodology. In Proc. the 11th international conference on
Supercomputing, pages 340–347, New York, NY, USA, 1997. ACM
Press.

[3] S. Carr and K. Kennedy. Improving the ratio of memory operations to
floating-point operations in loops. ACM Transactions on Programming
Languages and Systems, 16(6), 1994.

[4] C. Chen, J. Chame, and M. Hall. Combining models and guided
empirical search to optimize for multiple levels of the memory hierarchy.
In International Symposium on Code Generation and Optimization,
March 2005.

[5] A. Cohen, M. Sigler, S. Girbal, O. Temam, D. Parello, and N. Vasilache.
Facilitating the search for compositions of program transformations. In
ICS ’05: Proceedings of the 19th annual international conference on
Supercomputing, pages 151–160, New York, NY, USA, 2005. ACM.

[6] S. Donadio, J. Brodman, T. Roeder, K. Yotov, D. Barthou, A. Cohen,
M. J. Garzarán, D. Padua, and K. Pingali. A language for the compact
representation of multiple program versions. In LCPC, October 2005.

[7] M. Frigo and S. Johnson. FFTW: An Adaptive Software Architecture for
the FFT. In Proceedings of the International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), volume 3, page 1381, 1998.

[8] M. Hall, J. Chame, C. Chen, J. Shin, G. Rudy, and M. M. Khan. Loop
transformation recipes for code generation and auto-tuning. In LCPC,
October 2009.

[9] T. Kisuki, P. Knijnenburg, M. O’Boyle, and H. Wijsho. Iterative com-
pilation in program optimization. In Compilers for Parallel Computers,
pages 35–44, 2000.

[10] M. Lam, E. Rothberg, and M. E. Wolf. The cache performance and
optimizations of blocked algorithms. In Proceedings of the Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-IV), Santa Clara, Apr.
1991.

[11] K. McKinley, S. Carr, and C. Tseng. Improving data locality with loop
transformations. ACM Transactions on Programming Languages and
Systems, 18(4):424–453, July 1996.

[12] M. O’Boyle, N. Motogelwa, and P. Knijnenburg. Feedback assisted iter-
ative compilation. In Languages and Compilers for Parallel Computing,
2000.

[13] Z. Pan and R. Eigenmann. Fast automatic procedure-level performance
tuning. In Proc. Parallel Architectures and Compilation Techniques,
2006.

[14] G. Pike and P. Hilfinger. Better tiling and array contraction for compiling
scientific programs. In SC, Baltimore, MD, USA, November 2002.

[15] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. W.
Singer, J. Xiong, F. Franchetti, A. Gačić, Y. Voronenko, K. Chen,
R. W. Johnson, and N. Rizzolo. SPIRAL: Code generation for DSP
transforms. IEEE special issue on Program Generation, Optimization,
and Adaptation, 93(2), 2005.

[16] A. Qasem, K. Kennedy, and J. Mellor-Crummey. Automatic tuning
of whole applications using direct search and a performance-based
transformation system. The Journal of Supercomputing, 36(2):183–196,
2006.

[17] S. F. Rahman, J. Guo, and Q. Yi. Automated empirical tuning of scien-
tific codes for performance and power consumption. In HIPEAC:High-
Performance and Embedded Architectures and Compilers (to appear),
Heraklion, Greece, Jan 2011.

[18] M. Stephenson and S. Amarasinghe. Predicting unroll factors using
supervised classification. In CGO, San Jose, CA, USA, March 2005.

[19] M. J. Voss and R. Eigenmann. High-level adaptive program optimization
with ADAPT. In ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, 2001.

[20] R. Vuduc, J. Demmel, and K. Yelick. OSKI: An inter-
face for a self-optimizing library of sparse matrix kernels, 2005.
bebop.cs.berkeley.edu/oski.

[21] R. C. Whaley, A. Petitet, and J. Dongarra. Automated empirical
optimizations of software and the ATLAS project. Parallel Computing,
27(1):3–25, 2001.

[22] M. J. Wolfe. More iteration space tiling. In Proceedings of Supercom-
puting, Reno, Nov. 1989.

[23] Q. Yi, K. Kennedy, and V. Adve. Transforming complex loop nests for
locality. The Journal Of Supercomputing, 27, 2004.

[24] Q. Yi and D. Quinlan. Applying loop optimizations to object-oriented
abstractions through general classification of array semantics. In The
17th International Workshop on Languages and Compilers for Parallel
Computing, West Lafayette, Indiana, USA, Sep 2004.

[25] Q. Yi, K. Seymour, H. You, R. Vuduc, and D. Quinlan. POET:
Parameterized optimizations for empirical tuning. In Workshop on
Performance Optimization for High-Level Languages and Libraries, Mar
2007.

[26] Q. Yi and C. Whaley. Automated transformation for performance-critical
kernels. In ACM SIGPLAN Symposium on Library-Centric Software
Design, Oct. 2007.

[27] K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, and
P. Stodghill. A comparison of empirical and model-driven optimiza-
tion. IEEE special issue on Program Generation, Optimization, and
Adaptation, 2005.

106106106


