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Abstract—Dimension reduction is an important step toward
asynchronous EEG based BCI systems, with EA based Fea-
ture/Electrode Reduction (FR/ER) methods showing significant
potential for this purpose. A PSO based approach can reduce
99% of the EEG data in this manner while demonstrating gener-
alizability through the use of 3 new subsets of features/electrodes
that are selected based on the best performing subset on the
validation set, the best performing subset on the testing set, and
the most commonly used features/electrodes in the swarm. This
study is focused on applying the subsets generated from 4 subjects
on a 5th one. Two schemes for this are implemented based on i)
extracting separate subsets of feature/electrodes for each subject
(out of 4 subjects) and combining the final products together for
use with the 5th subject, and ii) concatenating the preprocessed
EEG data of 4 subjects together and extracting the desired subset
with PSO for use with the 5th subject. The results indicate the
feasibility of generating subsets of feature/electrode indexes that
are task specific and can be used on new subjects.

I. INTRODUCTION

Particle Swarm Optimization (PSO) is an unsupervised,
population based approach inspired by bird flocking and fish
schooling. PSO evolves a population of particles that represent
possible solutions in the search space. Several studies em-
ployed PSO for dimension reduction of EEG signals [1]-[6]. It
is common in Evolutionary Algorithm (EA) based dimension
reduction studies to report the achieved performance with a
subset of features or electrodes that are tuned on a testing set.
This provides a degree of contamination between training and
testing sets that can be prevented by introducing a third set
that has not been involved in the feature/electrode reduction
procedure.

We previously investigated the use of PSO for generating a
subset of features that are optimal for a subset of electrodes
in [7]. This study is focused on further assessing the re-
usability of the PSO-selected subsets of features/electrodes by
combining subsets of feature/electrode indexes from 4 subjects
and applying this to a 5th subject. Section II discuss the
used PSO paradigm for feature/electrode reduction. Section III
presents the experimental setup. The results are demonstrated
in IV.

II. PSO PARADIGM FOR FEATURE/ELECTRODE
REDUCTION

A. Basic PSO

Particle swarm optimization (PSO) is a population-based
method inspired from animals social behaviors. PSO searches

for possible solutions through local and global interactions
of particles (members of population). Each Particle in the
population contains a velocity and a position in the search
space denoted as Vi,j and Xi,j . i represents the particle’s
index and j is the dimension in the search space respectively.
Particles have a limited memory including Local-Best and
Global-Best positions. Local-Best is the best solution (position
in the search space) found by a particle and Global-Best is the
best solution found by the particles and their neighbors [8]. In
basic PSO, particles update their velocity and position in the
search space (Vi,j and Xi,j ) using Eqs. 1 and 2 respectively.

Vi,j(t) = w × Vi,j(t− 1) + c1r1,j × (pi,j(t− 1)− xi,j(t− 1))
+c2r2,j × (gi,j(t− 1)− xi,j(t− 1))

(1)
xi,j(t) = xi,j(t− 1) + Vi,j(t) (2)

In Eq. 1, r1,j and r2,j are random values in the range of 0
and 1. Acceleration coefficients (c1 and c2) control the impact
of social and cognitive components and w is the inertia weight.
pi,j and gi,j are the local and global best positions (PBest and
Gbest) and can be updated using Eq. 3 and 4 respectively.

pi(t) =

{
pi(t− 1) if f(xi(t)) >= f(pi(t− 1))
xi(t) otherwise

(3)
g(t) = argmin {(p1(t)), f(p2(t)), ...f(ps(t))} (4)

Neighborhood topology controls the knowledge sharing
process (sharing pi) among particles. Local and global neigh-
borhood topologies respectively allow nearby particles and all
particles to share information with each other. Consequently,
a Local neighborhood topology permits the existence of more
than one Gbest while a global neighborhood topology only
allows one [9].

Inertia weight controls the impact of last step finding in the
generation of the new solution. Large and small inertia weights
cause exploration (avoiding local-minima) and exploitation
(converging toward the optimal solution) respectively. Ran-
dom, Fixed, and Linearly Decreasing Inertia Weight (LDIW))
are common methods for controlling the w [10]. This study
employed the LDIW represented in equation 5,

w = (w1 − w2)×
(maxiter − t)

maxiter
+ w2 (5)
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where, w1 and w2 are the initial and final inertia weight,
respectively. t is the current iteration and maxiter is the
termination iteration.

Algorithm 1 Basic PSO’s Pseudo-code
Initialization: Randomly initialize the population by using
random values for parameters of each particle such as
starting position (X) and starting velocity (V).
Initial Evaluation: Evaluate all members of the population
(particles) using fitness function f.
repeat

Updating the population: Update the velocity in each
particle using equation 1 and update the mask by applying
the new velocity to equation 2.
Evaluation: Evaluate all members of the population (par-
ticles) using fitness function f.
Update Bests: Update Personal (p) and Global Best (g)
using equation 3 and 4.

until (Termination: the maximum iteration is achieved or
the best member of the population (Global Best) is reached
to the desired optimum)

B. PSO based feature and electrode reduction

The common approach for EA based dimension reduction
is to apply the EA method on either the feature or electrode
dimension. The used PSO paradigm in this study allows the
election of a subset of feature indexes for a down-selected set
of electrodes. The electrode reduction phase is governed by
dividing the electrode space (human head) to 16 equally distant
regions denoted as Areas. It is desired to select the electrodes
from areas that nonscientificly represent the performed task
by subjects.

Prior to describing the used PSO paradigm, it is essential
to discuss some more general aspects of the EEG signal
assessment procedure used in this study.

1) EEG Signal Analysis: EEG signal classification usu-
ally include steps such as signal acquisition, preprocessing
(optional), artefact removal (optional), feature extraction, di-
mension reduction (optional), and classification. In this study,
dataset IVa from BCI competition III is used [15], which
contains the EEG recording of 5 healthy subjects (aa, al, av,
aw, ay) performing two classes of motor imagery tasks (right
hand and left foot imaginary movement).

The task period is set to 3.5s and 280 randomly pre-
sented trials are performed. The first and the last 0.5s of
the task periods are omitted, since these two periods can be
considered as prior and post task transition periods without
much contribution toward EEG signal classification [11]. The
resultant 2.5s super-epochs are divided to five 0.5s sub-epochs
to provide consistency with other studies on the same dataset.
The dataset is demeaned and commonly average referenced,
no artefact removal method is applied and frequency features
(Abs-DFT) are extracted. n × k fold Cross Validation (CV)
(n=10, k=20) is applied. In each fold, three sets of training,
validation, and testing representing 0.9, 0.05, and 0.05 ratio

are generated. The CV is applied in a way that sub-epochs
(0.5s) originating in a super-epoch (2.5s) only get involved in
one of the sets.

Sigmoid ELM is used as the primary classifier. The number
of hidden nodes is set to 80 which is twice the optimal number
of used hidden nodes for a Single Layer Back Propagation
Neural Network (SLBPNN) employed in previous studies with
the same dataset [11]. A higher number of hidden nodes (up
to 200) showed no significant improvement in classification
performance.

Polynoimal SVM and a modified Peceptron with early
stopping are used as alternative classifiers. The early stopping
in the modified perceptron is implemented in a way to stop
the learning procedure i) after certain number of internal
cycles during which the learning error is not improved while
the achieved accuracy is above chance level, ii) the learning
error is zero, and iii) maximum internal cycles are reached.
Bookmaker Informedness is used to assess the classification
performance due to being more informative method in com-
parison with recall, precision, and accuracy. It take advantage
from contingency table to calculate informedness. A detailed
discussion can be found in [12], [13], and [14].

For more clarity, a flowchart of the procedure is illustrated
in Fig. 1.

2) PSO Paradigm Used: Assume a 2 layer swarm notation
in which the population is the first layer and each member
of the population is a sub-swarm by itself. The sub-swarms
(denoted as Masks) have limited memory containing a vector
of selected electrode indexes (denoted ELV) and a set of
particles bundled in a matrix notation in a way that each
particle (each row of the matrix) represents a set of indexes
from feature-space that are down selected by PSO for the
designated electrode in the ELV. This matrix is called Feature
Set Matrix and denoted by FSM.

Given an EEG dataset with N electrodes and K feature
points in each electrode, ELV vector in each Mask of the
swarm contain n out of N electrodes while the FSM contains
n× k out of N ×K possible features (indexes).

In addition, each mask contains a velocity vector Vi for
i ∈ [1...n] representing the previous velocity for each particle
in the feature set matrix. Adopting this notation for Eq. 2, each
particle in the sub-swarm can be denoted as Xi,j for i ∈ [1...n]
and j ∈ [1...k].

In the swarm, Pbesti for i ∈ [1...n] represent the personal
best findings of the masks. This is equivalent to a copy of
the matrix of the masks that received the highest classification
performance.

Therefore, a member of the swarm (sub-swarm) called
Subi contains a mask with n electrodes and n × k features.
In each iterations, the sub-swarms share their best achieved
mask (the mask with the highest classification performance)
called Pbest. Gbest is considered as the global best and
represents the mask that the best Pbest belong to.



EEG Data
Acquisition

Pre-
Processing

Apply n ×
k-fold CV

Create
training,

testing, and
validation
sets using
90%, 5%,
and 5%
ratios

Feature /
Electrode
Reduction

Classification
is

k ≤ 20?

k← k+1

is
n ≥ 10?

n← n+1;
k← 0;

stop

no

yes

yes

no

Fig. 1. The applied steps for EEG data processing

Assuming the mentioned 2 layer swarm notation, the
following steps are taken for feature and electrode reduction:

1) Initialization:
• Create a Mask with random index values in ELV

vector and FSM (Sub1).
• Create a Mask with random index values in ELV

vector and FSM (Gbest).
2) Initial Evaluation: Evaluate the Sub1 by applying its

FSM and ELV to the EEG training and validation
sets and assessing the classification performance using
Sigmoid ELM with 80 hidden nodes.

3) Update the population:
• Isolate the top 10 sub-swarms and eliminate the rest.
• For each Subi for i ∈ [1..10]

a) Generate a new mask with new set of electrodes
(ELV) that are positioned in nearby areas. FSM
and Pbest are inherited from the parent mask.

b) Generate a new mask with new set of electrodes
(ELV) that are positioned in the same areas.

FSM and Pbest are inherited from the parent
mask.

c) Generate a child mask with new set of n × k
indexes of features using velocity vector v and
position matrix x and update equations 5, 1 and
2. ELV and Pbest are inherited from the parent
mask.

d) Generate a child mask with new set of randomly
chosen electrodes (ELV) that are positioned in
the same areas and a new set of n× k features
using velocity vector v and position matrix x and
update equations 5, 1 and 2. Pbest is inherited
from the parent mask.

4) Re-Evaluation: Evaluate the Subi for i ∈ [1...t] where
t is the maximum number of sub-swarms in the swarm
by applying their FSM and ELV to the EEG training
and validation sets and assessing the classification per-
formance using Sigmoid ELM with 80 hidden nodes.

5) Update Pbest and Gbest.
6) go to step 3 if Gbest informedness is below 0.9 or

maximum iteration is not reached.
7) Final Evaluation: re-evaluate the Gbest by applying its

feature set matrix and ELV to the EEG training and
testing sets and assessing the classification performance
using Sigmoid ELM with 80 hidden nodes, Polynomial
SVM and Modified Perceptron with Early Stopping.

8) Stop.
As mentioned in the procedure, Sigmoid ELM’s informed-

ness results are used as the fitness criteria for evaluating the
potential of the generated masks in the swarm.

The testing set is only introduced in the final evaluation
stage in order to provide unbiased results. The masks are
generated from separate data in the training and the validation
sets. In this study, two variations of PSO is used. The variation
is in terms of the parameter adjustment. The used parameter
adjustments are presented in table I.

TABLE I
THE INITIAL SETUP OF PSO

PSO1 PSO2
Parameters The Value The Value The Adjustment Method

c1 0.5 0.5 Fixed Acceleration
c2 0.5 2.5 Coefficient (FAC)
w1 0.2 0.2 Linearly Decreasing
w2 1 1 Inertia Weight (LDIW)

III. EXPERIMENTAL SETUP

As mentioned in previous sections, in [7], a PSO paradigm
that allows the reduction of feature and electrode dimension
concurrently is used on 2 class dataset containing EEG signal
of 5 subjects performing motor imagery tasks. 3 sets of
training, validation, and testing are used and the output of
the PSO paradigms are meant to be tuned on the validation
set and further evaluated by the testing set.

The average primary results achieved by either of the used
PSOs from the reduced dimension validation set (using the



masks generated by PSO) reached 0.48 informedness (aver-
aged across subjects) using Sigmoid ELM while the averaged
informedness across subjects using the combination of full-set
and Polynomial SVM reached 0.478. The achieved informed-
ness (averaged across subjects) from PSO1 and PSO2 on the
reduced dimension testing set reached 0.11 with Polynomial
SVM in PSO1 and 0.19 with modified Perceptron in PSO2.
These results are presented in Table II.

TABLE II
COMPARISON RESULTS OF TWO PSO BASED DIMENSION REDUCTION
METHODS USING SIGMOID ELM, POLYNOMIAL SVM AND MODIFIED

PERCEPTRON WITH EARLY STOPPING ON THE TESTING SET.

Subject Full-Set
SELM PSVM Perc

AA 0.08 0.38 0.11
AL 0.31 0.72 0.52
AV 0.10 0.21 0.15
AW 0.18 0.58 0.31
AY 0.09 0.51 0.00

PSO1 PSO2
SELM PSVM Perc SELM PSVM Perc

AA 0.02 – 0.02 0.04 – 0.01
AL 0.21 0.21 0.11 0.22 0.22 0.11
AV 0.03 0.03 0.01 0.01 0.02 0.01
AW 0.07 0.07 0.02 0.07 0.06 0.01
AY 0.18 0.13 0.08 0.18 0.12 0.8

This indicates the lack of generalizability in the solutions
(masks) generated by PSO. To address this problem, 3 new
masks are considered based on

1) The best performing mask on the validation set.
2) The best performing mask on the testing set.
3) The most commonly used indexes by the masks during

the 10× 20 CV.
The results indicate improvement of at least 0.1 informedness
in most cases using either of the suggested new masks. In addi-
tion, in some subjects, the best performing masks on the testing
and the validation sets reached to maximum performance of
0.53 using Polynomial SVM. The results achieved with the
combination of either of these new masks and Polynomial
SVM is illustrated in Table III.

TABLE III
THE HIGHEST BOOKMAKER INFORMEDNESS PERFORMANCE ACHIEVED BY

ANY COMBINATION OF PSO BASED DIMENSION REDUCTION METHODS
AND THE POLYNOMIAL SVM.

Subject PSO1 PSO2
Val Tes Com Val Tes Com

AA 0 0.04 0.11 0.11 0.05 0.12
AL 0.53 0.44 0.36 0.43 0.43 0.30
AV 0.07 0.03 0.24 0.12 0.11 0.20
AW 0.13 0.12 0.37 0.30 0.24 0.27
AY 0.36 0.30 0.19 0.35 0.34 0.35

Two experiments are designed to further analyze the
achievements with the new 3 masks and generate a mask that
is task (not subject) specific so that it can be used on a subject
whose data was not involved in its creation.

A. Experiment 1: Analysis of Masks at Subject Level

In this experiment, the previously generated masks by either
of PSO1 or PSO2 for each subject are used in the following
way:

1) Given that 10×20 CV is used for generating the masks,
200 masks each representing the Gbest of the swarm for
a particular fold is reported in each subject.

2) For each subject, the remaining masks from other
subjects performing the same tasks are concatenated
together creating a Meta-set of 4 × 10 × 20 masks (5
subjects were involved in the EEG data acquisition).

3) For each subject the following masks are extracted from
its meta-set:
• The best performing mask on the validation set.
• The best performing mask on the testing set.
• The most commonly used indexes by the masks.

4) The potential of the new 3 masks containing selected
feature/electrode indexes extracted from the meta-set
of each subject are assessed by applying them to the
subject’s EEG data and using Sigmoid ELM, Polynomial
SVM, and modified Perceptron with early stopping as
classifiers (in a 10× 20 CV paradigm).

B. Experiment 2: Analysis of Masks at Task Level

In this experiment, the described PSO paradigm explained
in section II-B is used to generate a set of masks that are task
specific with the capability of being applied to subjects that
were not involved in the mask acquisition procedure. To do
so, the following steps are used in each subject:

1) The EEG data of the other 4 subjects are concatenated
together. To preserve the underlying characteristics of
each one of the 4 datasets used in the concatenation,
they are first preprocessed individually (demeaned and
commonly average referenced and Frequency features
(Abs-DFT) are extracted).

2) A 10×20 CV is used and the dataset is divided to three
sets of the training, the validation and the testing with
the ration of 0.9 0.05 and 0.05.

3) In each fold, the PSO paradigm explained in section
II-B is used to generate a mask (GBest of the swarm)
containing down-selected feature/electrode indexes.

4) For each subject the following masks are extracted:
• The best performing mask on the validation set.
• The best performing mask on the testing set.
• The most commonly used indexes by the masks.

5) The potential of the new 3 masks is assessed by applying
them to the subject’s EEG data and using Sigmoid ELM,
Polynomial SVM, and modified Perceptron with early
stopping as classifiers (in a new 10× 20 CV paradigm).
The subject’s EEG data is introduced for the first time.

IV. RESULTS

A. Experiment 1: Analysis of Masks at Subject Level

For an easier view, the results are divided into groups of two
subjects and presented in Figs. 2, 3, and 4. With the exception
of subject aa, the combination of the common mask and the
Polynomial SVM reached a higher classification performance
compared to the other two masks (best performing masks
on the testing and validation sets). There is still a clear



Fig. 2. The comparison results of three new set of masks coined as Best Mask
of Validation set, Best Mask of Testing Set, and Common Mask on subject aa
& al using Sigmoid ELM, Polynomial SVM and modified Perceptron with
early stopping (experiment 1)

disadvantage across subjects in terms of the classification
performance using the reduced dimension sets with either of
the three masks, as in all subjects, the combination of full-set
and the Polynomial SVM reached to the highest performance.
Despite such a disadvantage, a noticeable Informedness gain
is still observed with the set of masks that are tuned on other
subjects’ signals. The final testing set was not used in either
of PSO paradigm steps, which guarantees non-contamination
of the testing and training sets.

B. Experiment 2: Analysis of Masks at Task Level

For an easier view of the results, they are divided into
groups of two subjects and presented in Figs. 5, 6, and 7.
The common mask shows clear superiority in comparison with
other two masks. In addition to the achieved informedness,
in subjects ay, av, and aa, the combinations of the common
mask and the Polynomial SVM is marginally performing as
well as the combinations of the full-set and the Polynomial
SVM. Given that the results indicate the achieved performance
with the testing set that were intentionally kept blind to the
PSO feature/electrode reduction paradigm and considering the
fact that the used paradigm reduce 99% of the data, such a
performance is noteworthy.

Fig. 3. New mask comparison results, as in Fig. 2, but for subjects av &
aw (experiment 1).

Fig. 4. New mask comparison results, as in Fig. 2, but for subject ay
(experiment 1).

V. CONCLUSION AND DISCUSSION

Dimension reduction is an important step toward asyn-
chronous EEG based BCI systems. A PSO-based approach that
reduces Feature and Electrode dimensions concurrently shows
potential for use in EEG studies, as it reduced 99% of the
EEG data and demonstrated generalizability through the use
of 3 new subsets of features/electrodes that are selected based
on the best performing subset on the validation set, the best
performing subset on the testing set, and the most commonly



Fig. 5. The comparison results of three new set of masks coined as Best Mask
of Validation set, Best Mask of Testing Set, and Common Mask on subject aa
& al using Sigmoid ELM, Polynomial SVM and modified Perceptron with
early stopping (experiment 2)

Fig. 6. New mask comparison results, as in Fig. 5, but for subjects av &
aw (experiment 2).

used features/electrodes. This study provided further analysis
on these new subsets by assessing their re-usability. To do so,
two different approaches are considered.

Fig. 7. New mask comparison results, as in Fig. 5, but for subject ay
(experiment 2).

In the first approach the subsets generated with PSO from
4 subjects are concatenated together and 3 new subsets rep-
resenting the best performing subsets in the testing, and the
validation sets and the most commonly used indexes are
extracted and their potentials are measured using the EEG
data of the 5th subject. Given that this procedure prevents the
contamination between the training and the testing sets and
the resulting subsets are tuned on other subjects, the achieved
results are noteworthy.

In the second approach, the EEG data of 4 subjects are con-
catenated together after passing the preprocessing and feature
extraction stages. The PSO paradigm is used to generate sets
of subsets for the concatenated dataset. Three new subsets
representing the best performing subsets on the testing and
the validation sets and the most commonly used indexes are
extracted. The 5th subject’s EEG data is used to asses the
potential of the 3 subsets. The results indicate the superiority
of the commonly used indexes in comparison with the other
two subsets, in addition to reaching a marginally equal or
better classification performance in comparison to the full-set
(in 3 out of 5 subjects). Given that the subject’s EEG data
was only introduced to evaluate the potential of the extracted
subsets and was not involved in the swarm evaluation stages,
no contamination between the training and the testing set can
be considered. The results indicate the possibility of shortening
the on-line training phase in EEG study through generating
subsets of feature/electrode indexes that are originated from
other subjects’ signals that performed the same task in an off-
line mode.

VI. FUTURE WORK

Despite the fact that the results clearly show the possibility
of generating task-tuned masks that reduce 99% of the EEG
data (especially with the combination of the common mask
and the Polynomial SVM as in experiment 2), there are lots of
questions that need to be answered. Given that in this dataset -
based on the achieved informedness with the full-set - subjects
can be categorized as strong (al), normal or middle range (aw
and ay), and weak (aa and av), it is noticeable that in subjects
aa, av, and ay, the achieved informedness with combinations
of the common mask and Polynomial SVM are as well as or



close to the best achieved results with full-set. In all of these
subjects, the mask is generated from the EEG data that of a
strong subject and at least one normal subject. However, the
impact of such combination is not clear. In other words, the
variations of subjects (in terms of their performance strength)
that is required in order to create a fine-tuned task-specific
mask that is suitable for all other subjects with different
performance strengths is not clear. In case of generating such
mask, it is still not clear if it is possible to improve the weak
subject’s performance to a level as high as the strong or normal
subjects’ performances. The contribution of weaker subjects
are also unclear. Considering the achieved results with subjects
aa and av, it is not clear if the improvement is due to the
inclusion of one strong and two middle range strength subjects
in the mask generating procedure or due to the inclusion of
one weak subject. A more conservative fusion of masks that
consider the performance strength of the subjects in generating
the task-specific masks might reach to a higher performance
compared with the employed paradigm.
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