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Abstract—We describe a real-world application for a next gen-
eration airline network using a novel Small-World (SW) network
architecture. An emergent method that creates a new type of
Small-World network with less average path-length than that
obtained with conventional small-world networks is presented.
This method is inspired from an Ant-Colony Optimization (ACO)
algorithm. The resultant network architecture becomes a multi-
star network, which yields a large clustering coefficient and the
shortest average path-length among the conventional complex
networks such as the Watts-Strogatz and Barabási-Albert models
etc., from both a theoretical and an experimental analysis of the
properties of those networks. Given the advantageous properties
of the multi-star network in real-world applications, it could
be used to design a new generation global airline network
superseding in terms of efficiency and convienience the current,
conventional airline network owing to fewer transits and a
shorter cruising distance on average from any starting point
to any destination on Earth. This will be beneficial not only
both to travelers and airline companies, but will also contribute
to the reduction of greenhouse gases such as carbon dioxide
(CO2) in the near future, while enhancing communications and
transportation worldwide.

Keywords—Ant-Colony Optimization (ACO), Small-World,
airline networks, n-star networks, complex networks, average
path length

I. INTRODUCTION

A. Conventional Airline Networks

Fig. 1. A conventional airline network in North America.[1]

Fig. 2. A conventional global airline network.[2]

Typical conventional airline networks are shown in Fig.1
and Fig.2 in the cases of a North America and of a global
airline network, respectively. A significant characteristic of
these network architectures is that they are called “scale-free”,
which means that more links tend to connect to a node with
more degree (the connection probability is proportional to
the number of links possessed by the node). This is called
“preferential attachment”. The scale-free networks are often
modeled by a Barabási-Albert (BA) model [5]. This kind of
airline network has so far been considered to be convenient for
both travelers and airline companies because people can reach
any destination from any starting city if the corresponding
flight between the two cities is available. However, have
the current airline networks been optimized in terms of the
efficiency of the cruising distance (i.e., saving jet fuel) and
of convenience for travelers (i.e., saving cruising time and
minimizing the number of transits) as a whole? Isn’t there
any room to increase both the efficiency and convenience by
changing the architecture or topology of the existing airline
networks?

Very recently, a next-generation airplane, the Boeing 787,
has been brought into in service [10]. This airplane is middle-
sized and has good characteristics that are designed to ensure
energy-saving. It can operate a non-stop flight over a distance
of 14,200-15,200 km (this distance corresponds to a flight
between Tokyo in Japan and Johannesburg in South Africa)
because of its light body and energy efficiency. Many airline
companies have already purchased and/or ordered a number
of models of this airplane [10]. Changing the current airline
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networks to design more efficient and convenient networks
using this airplane will be greatly beneficial for both flying
and travelers in terms of reducing jet fuel consumption and
travel time because of shorter cruising distances and transit
times. To achieve this goal, we explore a novel Small-World
network inspired from Ant-Colony Optimization (ACO) [8],
whose average path length is shorter than that obtained with
any other conventional complex network, such as a Watts-
Strogatz model [4] and a Barabási-Albert model [5] etc. Thus,
travel time and jet fuel consumption of airplanes are reduced
by cruising on the shortest path between any starting city
and destination on the Earth, which not only increases fuel
efficiency (i.e., saves energy) and reduces both travel times
and the number of transits (to the benefit of passengers), but
also reduces the emission of greenhouse gases such as carbon
dioxide (CO2) on Earth, while enhancing communications and
transportation worldwide.

B. Background of the Small-World

In the 1960’s, S.Milgram performed a famous Small-world
experiment using letter delivery in the US [3]. From this study,
he coined the term ”Six-degrees of separation”, which means
that people are separated from only six persons on average.
Later, several researchers additionally performed similar ex-
periments for various kinds of communities such as actors
in Hollywood, co-authors of mathematical papers, etc. [4],
which supported the claim made by Milgram based on his
experiment. Recently, Yahoo began a similar experiment using
Facebook to verify the ”Six-degrees of separation” hypothesis
for the members of Facebook [6].

In this study, we will re-examine the characteristics of the
Small-World using several network parameters, such as the
number of nodes N , the average degree 〈k〉, the average
path-length L, the clustering coefficient C, the link exchange
probability ρ, etc., through experimental simulations using the
Dijkstra method [9], searching for the shortest path in several
complex networks.

Generally speaking, it is said that the WS (Watts-Strogatz)
and BA (Barabási-Albert) models yield comparatively shorter
average path-lengths than those of the other complex networks.
However, we will further try to have new Small-World net-
works emerge with a shorter average path-length (it might be
the shortest one) in a self-organizing manner.

Next, we will analyze the resultant network architecture
theoretically and experimentally. By defining a new network
index R, we will show that the degree of the Small-World
(we call it ”Small-Worldness”) can be evaluated for several
complex networks. Finally, we will show that this new small-
world network can be applied to a new generation airline
network in the real world.

C. Comparison of Complex Networks

In Table 1, we summarize the features of conventional
complex networks in terms of the Small-World using several
network indexes. Also, in Fig.3, we show some typical exam-
ples of complex networks, such as a random graph, the BA

Fig. 3. Typical Complex Networks

Table 1. Comparing characteristics in typical complex
networks. [7]

(Barabási-Albert) model, the Tree, the WS (Watts-Strogatz)
model [4], the hypercube and the complete graph. Following
are some network indexes used in this paper;

• Number of nodes: N .
• Average degree: 〈k〉.
• Link probability: p = 〈k〉/(N − 1).
• Average path length: L.
• Clustering coefficient: C.
• Link exchange probability: ρ (in the case of the WS

model).

Comparing the average path-lengths among the complex net-
works in Table 1, the order of the average path-length L
is O(logN) for the Tree, random graphs, BA models and
hypercubes as well as for the real networks, which is compara-
tively shorter than for other kinds of networks. The clustering
coefficient C is large for real networks, lattices and cycles,
but small for Trees, random graphs and hypercubes. For a WS
model, starting from an extended cycle, as the link exchange
probability ρ gradually increases from 0, it is well known that
the average path length dramatically decreases in the range



Fig. 4. Sorting the order of pheromone concentration on links along the
shortest path.

Fig. 5. Adjacency Matrix (left) and its corresponding network (right)
generated by a method inspired from ACO (Pseudo-Ant-SW Method) when
N=100.

of small values of ρ. However, the WS model converges to a
random graph as ρ reaches 1. The only graph that yields the
smallest value of L (=1) and the largest value of C (=1) is the
complete graph. From a Small-World viewpoint, it is necessary
to know which network architecture has an absolutely small
value of L, rather than the order of L (for example, O(logN)).

II. SELF-ORGANIZING OF A SMALL-WORLD NETWORK

USING ACO

Given a complex network with a number of nodes N
and an average degree 〈k〉, one can obtain the average path
length L using the Dijkstra method [9] and the clustering
coefficient C. Then, we propose a self-organizing method for
generating a network architecture with a shorter path-length
L than that obtained with conventional complex networks,
without increasing the average degree 〈k〉.

A self-organizing method for creating a Small-World
inspired from ACO (Ant-Colony Optimization) [8] is
described as follows:
(1) Generate a random graph with a number of nodes N and

an average degree 〈k〉. In this case, the generation probability
for each link is p = 〈k〉/(N − 1).
(2) Search for the shortest path from a start node Vs to a
destination node Vd using the Dijkstra method. Pheromones
are spread by ants along the shortest path. In the initial stage,
the concentration of pheromones is zero independently of
links.
(3) Each ant searches for the shortest path, and spreads
some amount of pheromones while detecting the higher
concentration paths in all combinations of node pairs Vs and
Vd. As a result, a difference of pheromone concentration
along each path will arise. Namely, the concentration of
pheromones will be relatively higher for the paths on which
more ants walked than for those on which less ants walked.
(4) Sort the links formed in step (3) on the order of high
concentration of pheromones. Then, each vertex in two edges
is randomly connected (See Fig.4). This operation is based
on the fact that pheromone trails with higher concentration
tend to be connected with each other. As the average degree
〈k〉 increases when one or two edges are newly created,
simultaneously cut the links with the order of smaller
concentration of pheromones to keep the value of 〈k〉 as
constant as possible.
(5) Calculate the average path-length L and clustering
coefficient C for the newly created network in step (4).
(6) If the average path-length L is shorter than a pre-
determined threshold value Lth, stop the operation. Otherwise,
return to step (2) and repeat the steps from (2) to (5).

It is very interesting to note that this network architecture
obtained through a bottom-up process like ACO is similar to
that obtained through an opposite top-down process called the
Monte Carlo Bimodal method (See [12]).

III. SIMULATION EXPERIMENTS AND RESULTS

Fig. 6. Multi-star networks with star nodes at the center and their peripheral
nodes. The star nodes fully connect with their peripheral nodes, and some
peripheral nodes connect with some other peripheral nodes, as denoted by
dotted lines.



Fig. 7. L vs. 〈k〉 in several complex networks.

Fig. 8. R vs. 〈k〉 in several complex networks.

Figure 5 (left) shows the adjacency matrix reflecting
pheromone concentration in the Pseudo-Ant-SW method when
N=100. The thicker the color, the higher the pheromone
concentration. Figure 5 (right) shows the multi-star network
corresponding to the adjacency matrix in Figure 5 (left) from
two different points of view. From these figures, we found
that the network architecture consists of a few stars with
many links and many peripheral nodes with a few links, and
these peripheral nodes are mutually connected with a small
probability. Furthermore, from the values of the adjacency
matrix and the connection configuration around nodes number
41 and 81, we can find a multi-star (in a sense, a ”fractal”)
structure in the network. This results from the algorithm
according to which the higher concentration nodes connect
with one another in the Pseudo-Ant-SW method.

For the n-star networks (we can call the multi-star network
the n-star network), the average degree 〈k〉, average path-

length L and clustering coefficient C are calculated as follows;

〈k〉 =
n(2N − n − 1)

N
; n = 1, 2, 3, ..., N. (1)

L =
2N(N − n − 1) + n(n + 1)

N(N − 1)
; n = 1, 2, 3, ..., N. (2)

C =
n{n−1C2+(n−1)(N−n)}

N−1C2
+ (N − n)

N
; n = 2, 3, ..., N. (3)

C = 0; n = 1.

The relationships between 〈k〉 and n (Eq.(1)), L and n

Fig. 9. 〈k〉 vs. n (upper left), L vs. n (upper right), C vs. n (bottom left),
and L vs. 〈k〉 (bottom right) in multi-star networks with n-star nodes and
their peripheral nodes.

(Eq.(2)), and between C and n (Eq.(3)) are shown in Figure
9, at the upper left, upper right and bottom left of the figure,
respectively. For n=1, the n-star network becomes a so-called
single star network, and the network becomes a complete
graph for n = N − 1 and N . The average degree 〈k〉
monotonically increases from 0 to N . On the other hand,
L monotonically decreases from 2 to 1 as n increases. The
clustering coefficient C decreases once, reaching a minimum
value around 〈k〉 = 33, and then increases with n. If n
is removed using Eqs.(1) and (2) to obtain the relationship
between L and 〈k〉, we obtain Eq.(4) as follows:

L =
2N − 〈k〉 − 2

N − 1
= 2 − p (4)

The relationship between L and 〈k〉 for N =100 is shown in
Figure 9 (bottom right). Although Eq.(4) is derived for 〈k〉
values, each value corresponding to n = 1, 2, 3, .., N , it can be
shown that this equation is also valid for any intermediate
values of 〈k〉 with arbitrary numbers of peripheral edges
connected with each other, which are represented by dotted
lines in Figure 6.

Next, we analyze the characteristics of several types of
complex networks using Lagrange multipliers. In the case of
n-star networks, for a given value of 〈k〉, we define the R
value as follows in order to obtain the minimum value of L;

R ≡ L + λ 〈k〉 (5)



By calculating the partial derivative of R with respect to n, we
obtain λ = 1/(N − 1). Substituting this formula into Eq.(5),
we obtain the invariant R ≡ 2, independent of the values of
L and 〈k〉. This means that the R value is invariant for n-
star networks. Therefore, we can comparatively evaluate each
network as the degree of Small-World (we may call it ”Small-
Worldness”) based on this invariant R. The relationships
between L and 〈k〉, and R and 〈k〉 are shown in Figures 7 and
8, respectively. The R values are always 2 for n-star networks,
as mentioned before. On the other hand, other networks such
as the random graph, the WS and BA models have relatively
larger R values than 2. Although the BA model possesses a
”scale-free” characteristic with the order of L ∝ O(logN),
the R value is not so small compared to that obtained in the
random graph and WS model. The proposed Pseudo-Ant-SW
and Monte Carlo Bimodal models (See [12] for the latter)
have remarkably small values of L and R. In particular, the
R value in the Monte Carlo Bimodal model almost reaches
2 in n-star networks. This results indicate that these networks
achieve the maximum ”Small-Worldness” for a given average
degree 〈k〉 (i.e., the minimum value of L with an appropriate
average degree 〈k〉) .

IV. APPLYING N-STAR NETWORKS TO AIRLINE

NETWORKS

Fig. 10. Calculation of the cruising distance in global airline networks.

In the previous sections, we have found that the n-Star
network could be formed in a self-organizing way by an ACO-
inspired Small-World network. An essential reason why the n-
Star network shows a high degree of “Small-Worldness” is the
architecture consisting of its clique with n star nodes and their
peripheral nodes with some mutual links. This advantageous
architecture can be applied to real-world problems such as lo-
gistics, for example, reorganizing an efficient next-generation
airline network, while reflecting the importance ranking of a
city, its population and the distance between any two cities in
the world. For that purpose, it might be possible to generate
from scratch (i.e., a random graph) an n-Star network for the
airline network in a self-organizing way while considering the
importance ranking of a city etc. However, it is much easier

to map an n-Star network onto a global airline network while
considering the above importance ranking of a city etc. We will
use the latter method in the following section for realizing a
global airline network.

It is well known that the current airline network has a ”scale-
free” characteristic like the BA model (see also Table 1). As
is proved in Sec.III, the L value of the n-star network is much
smaller than that of the BA model in the range of a small
value of 〈k〉. For example, the average path-length L of the
n-star network is 24.4% smaller than that of the BA model
for 〈k〉 = 5.88. Very recently, a next-generation airplane, the
Boeing 787, has been brought into service [10]. This airplane
is middle-sized and has good characteristics that are designed
to ensure energy-saving. It can operate a non-stop flight over
a distance of 14,200-15,200 km (this distance corresponds to
a flight between Tokyo in Japan and Johannesburg in South
Africa) because of its light body. The n-star networks could
be applied to the design of next-generation global airline
networks, as an example of logistics. Figure 10 shows how
to calculate the distance between any two cities, P and Q on
the surface of the Earth in 3D spherical polar coordinates (r, θ,
φ). A British consulting company (GaWC) ranked important
cities in the world [11]. We chose the top 100 cities from
this list (see Appendix) and compare in the next section the
average path-lengths L among five kinds of airline networks.
We selected five major cities on five continents from these
top cities that occupy a central place in the world in terms of
economy and geography: Tokyo, Chicago, Frankfurt, Sydney
and Johannesburg.

V. SIMULATION EXPERIMENTS AND RESULTS IN SEVERAL

AIRLINE NETWORKS

We construct the following five kinds of airline networks
based on the n-star networks, and compare their performance
in terms of the Small-World, i.e., of efficiency and convenience
for both flying and travelers. First, we define the following
parameters for constructing several network models:

• Average flight service per city: 〈k〉.
• Population of city i: Po(i).
• Spherical distance between city i and city j on the surface

of the Earth: dij .
• Traffic between city i and city j: tij ∝ Po(i) · Po(j).
• Importance of relation between city i and city j (weight

value): wij ∝ tij/dij ∝ Po(i) · Po(j)/dij .
• Physical average distance between any two cities on the

surface of the Earth: L(distance).
• R value based on the physical average distance

L(distance): R(distance).
• Average number of steps between any two cities:

L(steps)
• R value based on the average number of steps L(steps):

R(steps).
• Threshold for traffic and importance of relation: Th.

The spherical distance dij between a city i and a city j is
calculated using the equation shown in Fig.10. Traffic tij
between a city i and a city j can be proportional to the



multiplication of the populations of two cities. The importance
of the relation between a city i and a city j can be proportional
to the traffic and reversely proportional to the distance between
the two cities. Namely, when the traffic is larger, and the
distance is shorter, the importance of the relation between two
cities becomes higher. We will construct the following five
kinds of airline network models based on these parameters.

(1) An airline network with frequent traffic (denoted as
”Traffic + peripheral links” in Figures 11-16): This airline
network is formed based on the population of cities and their
traffic in proportion to the multiplication of the population in
each city. As the threshold value Th of traffic changes, the
average degree 〈k〉 changes. Namely, if the traffic between
two cities i and j is larger than the threshold value Th,
the corresponding component aij of an adjacency matrix a
is 1, otherwise 0. Therefore, there are some peripheral links
between some cities according to the threshold.

(2) An airline network with frequent traffic and city rank
(denoted as ”Traffic + peripheral links + city rank” in Figures
11-16): This airline network is formed based on the population
of cities and their traffic in proportion to the multiplication of
the population in each ranked city. Furthermore, the values
(i.e., the importance of the relation between two cities) in
proportion to each city rank are weighted according to the
above evaluation (i.e, wij ∝ tij/dij). Similar to the case of
(1), if the importance between two cities is larger than the
threshold value Th, the corresponding component aij of an
adjacency matrix a is 1, otherwise 0. Therefore, there are
some peripheral links between some cities according to the
threshold. Note that the top ranked few selected cities (e.g., the
top five cities) are not necessarily fully connected by forming
a “clique (sub-complete network)” in the cases of (1) and (2).

(3) An airline network with 5 star cities and their peripheral
links (denoted as 5 star + peripheral links around the nearest
star” in Figures 11-16): This network consists of 5 star cities
with their peripheral city links around the nearest star city. As
the 5 star cities, we chose Tokyo in Japan, Sydney in Australia,
Chicago in the US, Frankfurt in Germany, and Johannesburg
in South Africa, for example, because these cities are located
near at the center of each continent, and play important roles
in terms of geography and/or economics. There are some
peripheral links between some cities around each nearest star
city. As the number of peripheral cities increases, the average
degree 〈k〉 increases. This network includes a sub-complete
network (i.e., a clique) among the above 5 star cities.

(4) An airline network with 5 star cities and their peripheral
links at random (denoted as 5 star + peripheral links in Figures
11-16): This network consists of the 5 star cities with their
peripheral city links. The peripheral cities are selected at
random within the non-stop cruising distance of a Boeing 787
(i.e., 14,200-15,200km). As the number of peripheral cities
increases, the average degree 〈k〉 increases as well.

(5) An airline network with 5 star cities and their peripheral
links with city rank (denoted as 5 star + peripheral links+ city
rank in Figures 11-16 ): This network also consists of the 5 star
cities with peripheral city links. The peripheral cities connect

with one another based on each city weight value wij . The
city weight value wij is defined in proportion to the traffic
tij and in reverse proportion to the distance dij between two
cities.

We calculated the average distance L(distance) between
any two cities i and j, and show the results in Fig.11. From
these values of L, we calculated the R(distance) values and
show the results in Fig.12. These distances are based on the
physical spherical distance on the surface of the Earth. On
the other hand, another important issue for airline networks
is the number of transits, because the fewer the transits, the
more convenient traveling is for passengers. Fig.13 shows the
average number of steps L(step) to reach any destination city
from any starting city. If the L(step) is less than 2, travelers
can reach any destination city with only one transit. In this
sense, an average small value L(step) is extremely important
as well as the average physical cruising distance L(distance),
for airline companies, travelers and Earth’s environment in
terms of reducing fuel consumption, travel time and green-
house gases such as carbon dioxide. From these values of
L(steps), we also calculated the values of R(steps), and
show them in Fig.14 as well. From this figure, we can easily
evaluate the “Small-Worldness” for each network, where the
networks (4) and (5) have better characteristics in terms of
“Small-Worldness”, especially in a relative smaller range of
〈k〉, compared to the other networks (1)-(3).

When considering the clustering coefficients C in Fig.15
and the maximum eigenvalues in Fig.16, the network with 5
star cities and their peripheral links around the nearest star (3)
is the smallest among the five kinds of networks, where the
values C increase almost in proportion to the increase of 〈k〉.
Networks (1) and (2) produce some relatively larger values.
Network (4) yields an intermediate value among the five kinds
of networks.

Fig. 11. L(distance) versus 〈k〉 for distance in global airline networks. L
is normalized by the radius r of the Earth, 6,356 Km (from the pole to the
center) -6,378 Km (from the equator to the center).

VI. DISCUSSION

We have re-examined the characteristics of the Small-World
(SW) in several complex networks from the viewpoint of the



Fig. 12. R(distance) versus 〈k〉 for distance in global airline networks. R
is normalized by the radius r of the Earth, 6,356 Km (from the pole to the
center) -6,378 Km (from the equator to the center).

Fig. 13. L(steps) versus 〈k〉 for the number of transits in global airline
networks.

”absolute” average path-length, because conventional complex
networks known as Small-World are not necessarily SW in a
rigorous sense. A method inspired by ACO is proposed to
create a new Small-World with the smallest average path-
length L. Also, we compared several characteristics in con-
ventional typical complex networks from different viewpoints.
In particular, we defined a new evaluation criterion, the R-
value, in order to minimize the average path-length L when
〈k〉 is constant. We found that the R-value reaches a minimum
value and is invariant for the n-star networks. Several kinds
of complex networks can be evaluated based on this R-value
in terms of the Small-World (”Small-Worldness”).

On the other hand, based on the above knowledge, we could
also design an optimized next-generation airline network, as
shown in Fig.17, where 5 star cities are completely connected
(i.e., forming a “clique”) and their peripheral cities are ade-
quately connected based on demand (i.e., traffic, importance
and value of relation between two cities). This network ar-
chitecture has not only the merit of saving mileage, but also
is more efficient and convenient to both airline companies

Fig. 14. R(steps) versus 〈k〉 for the number of transits in global airline
networks.

Fig. 15. C versus 〈k〉 in global airline networks.

and travelers because of the shortest cruising distance (e.g.,
1.32 r = 8,404 km for 〈k〉=13.2) and smallest number of
transits (i.e., only one transit is necessary between any two
cities for any value of 〈k〉) on average, which will also
have a beneficial impact on Earth’s environment in terms of
reducing greenhouse gases (e.g., carbon dioxide (CO2)), while
enhancing communications and transportation worldwide.

VII. CONCLUSION

We described a new generation airline network as a real-
world application of a novel Small-World (SW) network archi-
tecture. An emergent method that creates a new type of Small-
World network with less average path-length than that obtained
with conventional small-world networks was presented. This
method is inspired by an Ant-Colony Optimization (ACO)
algorithm. The resultant network architecture becomes a multi-
star network, which yields a large clustering coefficient and the
shortest average path-length among the conventional complex
networks such as a Watts-Strogatz model and a Barabási-
Albert model etc., from both a theoretical and an experimental
analysis of the properties of those networks. Considering the
advantageous properties of the multi-star network in real-world



Fig. 16. Eigenvalue versus 〈k〉 in global airline networks.

Fig. 17. Schematic diagram of a new generation global airline network in
the near future.

applications, it could be used to design a new generation
global airline network superseding in terms of efficiency and
convenience the current, conventional airline network owing to
fewer transits and a shorter cruising distance on average from
any starting point to any destination on Earth. This will be
beneficial not only both to travelers and airline companies, but
will also contribute to the reduction of greenhouse gases such
as carbon dioxide (CO2) in the near future, while enhancing
communications and transportation worldwide..
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APPENDIX

Table 2. Top 100 cities (shown in part) in the world. [11]
The population is represented in units of ten thousands.
No. Rank City Country Pop.

1 A++ London UK 1250
2 A++ New York US 800
3 A+ Hong Kong China 700
4 A+ Paris France 1184
5 A+ Singapore Singapore 507
6 A+ Tokyo Japan 1320
7 A+ Shanghai China 2300
8 A+ Chicago US 300
9 A+ Dubai UAE 226
10 A+ Sydney Australia 434
.. .. ....... ..... ...
.. .. ....... ..... ...
44 A- Santiago Chili 467
45 A- Lisbon Portugal 565
46 A- Philadelphia US 580
47 A- Johannesburg South Africa 388
48 B+ Dusseldorf Germany 58
49 B+ Stockholm Sweden 75
50 B+ Prague Czech 120
51 B+ Montreal Canada 162
52 B+ Roma Italy 272
53 B+ Hamburg Germany 174
54 B+ Manila Philippine 166
.. .. ....... ..... ...
.. .. ...... ..... ...
91 B- Panama Panama 71
92 B- Helsinki Finland 59
93 B- Shenzhen China 1200
94 B- Guatemala City Guatemala 101
95 B- Stuttgart Germany 60
96 B- Abu Dhabi UAE 143
97 B- Birmingham UK 100
98 B- Kolkata India 458
99 B- Koln Germany 100
100 B- St. Louis US 283


