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Abstract—Since its birth in 1995, particle swarm optimization
(PSO) has been well studied and successfully applied. While a
better understanding of PSO and particle behaviors have been
obtained through theoretical and empirical analysis, some issues
about the beavior of particles remain unanswered. One such
issue is how velocities should be initialized. Though zero initial
velocities have been advocated, a popular initialization strategy is
to set initial weights to random values within the domain of the
optimization problem. This article first illustrates that particles
tend to leave the boundaries of the search space irrespective of
the initialization approach, resulting in wasted search effort. It
is also shown that random initialization increases the number
of roaming particles, and that this has a negative impact on
convergence time. It is also shown that enforcing a boundary
constraint on personal best positions does not help much to
address this problem. The main objective of the article is to
show that the best approach is to initialize particles to zero, or
random values close to zero, without imposing a personal best
bound.

I. INTRODUCTION

Numerous empirical [1], [2], [3], [4], [5] and theoretical [6],
[2], [7], [8] analyses of particle swarm optimization (PSO) [9],
[10] have been done. The main objective of these studies was
to gain a better understanding of PSO, specifically the search
behavior of particles, the influence of control parameters on
performance, and the convergence properties of PSO. A very
important aspect of PSO, and often overlooked, is how ve-
locities should be initialized, and what the impact of different
velocity initialization stratgies is on PSO performance.

While a popular approach followed in the literature is
to initialize velocities to random values uniformly sampled
within the domain of the decision variables of the optimization
problem, the main objective of this article is to emphasize
that initial velocities should be set to zero, or small random
values close to zero. In reaching this objective, the article
seeks to provide empirically derived answers to the following
questions:

1) Do particles leave the boundaries of the search space,
and to what extent does this happen?

2) What are the consequences of roaming particles on
the feasibility of personal best and neighborhood best
solutions?

3) Does the severity of roaming particles and their conse-
quences depend on the way that velocities are initial-
ized?

4) What are the effects of these roaming particles and
boundary violations on the performance of PSO?

5) Does a boundary constraint on personal best positions
help to address the negative effects of boundary viola-
tions, and specifically does it help to address the issues
caused by random initialization.

The answers to the above questions result in the recommenda-
tion that a boundary constraint on the personal best positions
should be avoided, and that particles should be initialized to
zero, or small random values. Note that this is an empirical
study, considering the standard global best PSO.

The rest of the article is organized as follows: A short
overview of the global best PSO is given in Section II, to
include only those aspects that are used for the purposes of this
study. Sectoin III shows that particles leave the search space
very early during the search irrespective of the initialization
scheme, and discusses the influence of these roaming particles
on performance. Based on the outcomes of this section, Sec-
tion IV considers different velocity initialization approaches
and their influence of swarm behavior and performance. Sec-
tion V shows that a boundary constraint on the personal best
positions does not help to address the issues with random
initial velocities.

II. GLOBAL BEST PSO
The basic behavior of each particle is to move towards

two attractors, namely the best position found by the particle
and the best position found by the particle’s neighborhood.
The best position is generally referred to as the personal best
(pbest) position, while the best position within the neighbor-
hood is refered to as the neighborhood best (nbest) position.
For the global best PSO (gbest PSO), each particle’s neighbor-
hood is the entire swarm, in which case the nbest is referred to
as the global best (gbest) position. This neighborhood topology
is referred to as the star topology [11], [12]. Based on this
topology, the velocity, vi, of the i-th particle is calculated as

vi(t+1) = wvi(t)+c1r1(t)(yi(t)−xi(t))+c2r2(t)(ŷ−xi(t))
(1)

where w is the inertia weight [13], c1 and c2 are the accelera-
tion coefficients, r1(t), r2(t) ∼ U(0, 1)nx , nx is the dimension
of the search space, xi(t) is the current position of the i-th
particle, yi(t) is the particle’s pbest position, and ŷ(t) is the
gbest position. Particle positions are updated using

xi(t+ 1) = xi(t) + vi(t) (2)

A pbest position is updated only if the new position of the
corresponding particle results in a better fitness than that of
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the current pbest position. For the purposes of this article, the
gbest position is selected as that pbest position with the best
fitness. This results in a memory-based update of the gbest
position. An alternative, less often used approach, is to select
gbest as the current particle with the best fitness.

In order to prevent step sizes from becoming too large, ve-
locities can be clamped. However, the best clamping threshold,
refered to as Vmax, is problem dependent. Velocity clamping
was not used in this study.

Particle positions are initialized to random positions within
the domain of the optimization problem, and such that the
search space is uniformly covered. Different approaches have
been followed in the current literature to initialize velocities,
with some debates about the advantages and disadvantages of
each:

1) Initialize velocities to zero, i.e. vi(0) = 0, for all
i = 1, . . . , ns, where ns is the number of particles. One
of the criticisms given against zero initial velocities is
that it limits the initial exploration ability of the swarm,
and therefor that it limits the extend to which the surface
is initially covered by the swarm of particles. As shown
later, this is not the case. Remember that the initial
particle positions are uniformly distributed throughout
the search space, ensuring good initial coverage. It can
also be reasoned, in relation to the origins of PSO,
that physical objects, in their initial state, do not have
any momentum – their initial velocities are zero. If
initial velocities are large, then the momentum term (i.e.
the inertia term) of equation (1) will result in large
initial step sizes, which may be the cause of random
initialization having more roaming particles.

2) Initialize velocities to random values withing the do-
main of the optimization problem, i.e. vi(0) ∼
U(−xmin, xmax)

nx . This is an approach regularly being
used in literature, and has caused some unpublished
debates. Advocates of random initialization reason that
random initial velocities help to improve the exploration
ability of the swarm, due to the larger initial steps sizes.
Consequently, as is argued, more accurate results will
be obtained, and at better speed. While it is true that
these larger step sizes increases the initial diversity of the
swarm (as is illustrated later), it is also the case that these
larger initial step sizes result in many (usualy most) of
the particles violating the boundaries of the search space.
To illustrate this point, if initial positions are initialized
uniformly in the domain [xmin, xmax]

nx , and velocities
are also initialized in this domain, then the new positions
after the first iteration will be distributed in the range
[2xmin, 2xmax]

nx ! The consequence of these roaming
particles is that many best positions will also violate the
boundary constraint.

3) Initializing velocities to small random values. This pro-
posal was made in response to the problem that large
initial step sizes cause particles to leave the search. It
is reasoned that small random values will not suffer the
same problem, while still adding to the diversity of the

swarm. However, as is indicated later in this article, par-
ticles still leave the search space. Also, a new problem is
introduced, namely, what are appropriate small random
values? Surely, the answer to this problem depends on
the characteristics of the optimization problem.

As stated in the introduction, this article investigates these
strategies to initialize velocities, and shows that zero initial
velocities, or very small random values, are preferred.

III. FRUITLESS WONDERING

Empirical work done by the author indicated that many
particles leave the boundaries of the search space, very early
in the optimization process. This behavior results in a number
of potential problems, for example:

• Should a better solution be found outside of the defined
bounds of the optimization problem, and no boundary
constraint mechanism employed, personal best positions
are also pulled outside the bounds of the search space.
The consequence of these infeasible solutions is that
global best positions are also pulled outside of the search
space, resulting in an infeasible optimum being found.

• If roaming particles do not find better solutions outside
of the search space, they are eventually pulled back into
feasible space. However, this is done over a large number
of iterations, wasting effort searching infeasible space.

• Roaming particles have a negative influence on swarm
diversity calculations, since diversity increases as parti-
cles move further outside the bounds of the search space.
This is a problem for PSO algorithms that use measures
of diversity to control the search trajectories of particles.
Such algorithms include the diversity-guided PSO [14],
[15], amongst others [16], [17], [18].

This section provides results from an empirical analysis to
show that, for all problems considered, a significant part of
the swarm violates search space boundaries within the first
few iterations, and that this results in best positions also being
pulled outside of the search space.

While this study focuses on empirical analysis of the roam-
ing behavior of particles, and the effect that initial velocity
has, Helwig and Wanka [19] provided a theoretical analysis of
the initial behavior of particles under different initial velocity
initialization strategies. This theoretical study provided proofs
that many particles leave the search space at the beginning
of the optimization process. However, little empirical evi-
dence has been provided to support these theoretical proofs.
Therefore, this study has as its objective to provide empirical
evidence to illustrate the roaming behavior of particles.

The remainder of this section is organized as follows:
Section III-A provides a summary of the experimental pro-
cedure followed for this section and the remainder of the
article. Section III-B presents empirical result to illustrate the
roaming behavior of particles, and Section III-C discusses the
consequences of this behavior.



A. Experimental Procedure

For the purposes of this study, the gbest PSO was applied
to the functions listed in Table I. A swarm of 30 particles
was used, an inertia weight of 0.729844, and acceleration co-
efficients of 1.496180. A memory-based global best selection
strategy was used, with synchronous upadates of particles and
best positions. Fifty independent runs were executed for each
of the functions, for each initialization strategy.

B. Roaming Behavior

Using a gbest PSO as described in Section II, with param-
eter values as given in Section III-A, Figure 1 illustrates the
percentage of particles that violated boundaries. Except for the
Bukin 6 function, all over functions had most of the particles
leaving the boundaries of the search space. At least 80%
of the particles initially wandered outside the bounds, with
an exponential decrease in the number of roaming particles
as the number of iterations increased. However, note that it
does take a significant number of iterations to reduce the
number of violating particles. While the Bukin 6 function had
less roaming particles than the other functions, note that the
number of roaming particles converged to about 10% after
1000 iteration, failing to reach a zero percentage.

C. Consequences of Roaming Behavior

While Figure 1 does indicate that the number of roam-
ing particles decreases over time, and some may argue that
this indicates that roaming particles do not have negative
consequences, this section shows, with empirical results, that
roaming particles do have negative consequences:

• Best positions are pulled outside of the problem bounds.
Figure 2 shows for the personal best positions the av-
erage (over the 50 independent runs) percentage of the
personal best positions that do violate boundaries, and for
the global best positions, the percentage of simulations
for which the global best is outside of the problem
boundaries. The effect of roaming particles is clearly
illustrated with most of the personal best positions also
leaving the search space, roaming outside of the bounds.
As with the number of roaming particles, the number
of roaming personal best positions does decrease over
time, contributing to wasted effort searching infeasible
space. Also note that, during the early stages of the
search, a large percentage of simulations had the global
best position also outside of the bounds. This has the
consequence that more particles were pulled towards an
infeasible global best position, and also may be the reason
why so many particles were pulled outside of the bounds.
It is the case, for the problems considered, that over time
all simulations had their global best position inside of the
bounds. Note that functions such as Ackley and Bukin
6 never mamanged to reduce the number of roaming
personal best positions to zero during the limit of 1000
iterations, and Bukin 6 always had simulations with the
global best positions out of bounds.

• Following on the observation that global best positions
are pulled outside of the boudaries early on in the search
process, if particles fail to find a solution of better
fitness within the boundaries of the search space, an
infeasible solution outside of the problem boundaries will
be obtained.

IV. VELOCITY INITIALIZATION STRATEGIES

As indicated in Section II, three popular strategies to
initialize velocities can be identified in the literature, namely
zero velocities, uniform random values within the domain of
the optimization problem, and small uniform random values.
This section shows that initialization to random values within
the domain of the problem is not a good idea. To aid this
discussion, Figure 3 illustrates the rate at which the qual-
ity of the best found solution is improved, while Figure 4
illustrates diversity profiles. With reference to the figures,
and the previous figures, the consequences of the different
velocity initialization strategies are discussed per function. In
the discusison below, the term random initialization refers to
initial velocities sampled from a uniform distribution within
the domain of the problem, small random initialization refers
to initial velocities sampled from a uniform distribution in
the range [−0.1, 0.1], and zero initialization refers to initial
velocities of zero.

• Absolute value, Griewank, Quadric: Random initial-
ization was slower in improving the fitness of the best
solution compared to small random and zero initializa-
tion. Note that random initialization resulted in a larger
diversity, more roaming particles, significantly more per-
sonal best positions initially leaving the search space, and
a large number of simulations for which the global best
position also left the search space. Note that diversity
decreased slower than for small random initialization
and zero initialization. Also, random initialization took
signifactly longer to reduce the number of best position
violations. An analysis of the rate at which individual
decision variables converged within a threshold of 10−5

from the optimal revealed that random initialization is
much slower than the other initialization strategies in
increasing the number of converged decision variables.
Note that small random initialization and zero initializa-
tion had very similar behaviors.

• Ackley: Random initialization is signifcantly slower in
the rate of fitness improvement, despite significantly
larger diversity. Note that diversity for random initializa-
tion increases after approximately 280 iterations, indicat-
ing that particles moved further apart. Random initializa-
tion also had significantltly more particles that violated
the boundary constraint, never reaching 0% within the
1000 iterations. Personal best and global best position
violatations were also higher, never reaching zero. Note
that small random initialization and zero initialization
showed similar trends, with a very fast reduction in the
number of best position violations. Random initialization
is again much slower in converging decision variables.



TABLE I
FUNCTIONS USED FOR EMPIRICAL ANALYSIS

Function Definition Domain Dimension
Absolute Value f(x) =

∑nx

j=1
|xi| [-100,100] 30

Ackley f(x) = −20e
−0.2

√
1

nx

∑nx

j=1
x2
j
− e

1
nx

∑nx

j=1
cos(2πxj)

+ 20 + e [-32.768,32.768] 30
Bukin 6 f(x) = 100

√
|x2 − 0.01x21|+ 0.01|x1 + 10| [-15,5],[-3,3] 2

Griewank f(x) = 1 + 1
4000

∑nx

j=1
x2j −

∏nx

j=1
cos

(
xj√
j

)
[-600,600] 30

Quadric f(x) =
∑nx

l=1

(∑l

j=1
xj

)2

[-100,100] 30

Rastrigin f(x) = 10nx +
∑nx

j=1

(
x2j − 10 cos(2πxj)

)
[-5.12,5.12] 30

Rosenbrock f(x) =
∑nx−1

j=1

(
100(xj+1 − x2j )

2 + (xj − 1)2
)

[-2.048,2.048] 30
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Fig. 1. Percentage of Particles that Violate Boundary Constraints

• Bukin 6: Random initialization was again slower, and
although less severe than for the other functions, had
significantly more particle and best position violations
than small random initialization and zero initialization.
Also note that random initialization maintained a higher
diversity.

• Rastrigin: While random initialization was initially
slower in improving fitness, performance was similar to
small random and zero initialization after approximately
100 iterations. The diversity profile followed a similar
trend. However, random initialization had signifcantly
more particle and best position violations. Convergence
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Fig. 2. Personal Best and Global Best Boundary Violations

of decision variables was also slower than the other
initialization strategies.

• Rosenbrock: Random initialization showed an initial
slow improvement in best fitness, and had more par-
ticle violations. The number of particle violations and
the diversity profile approached that of small random
initialization and zero initialization after approximately
80 iterations. However, random initialization resulted
in more best position violations throughout the 1000
iterations.

Returning to the opinion that random initialization should
obtain better solutions due to its increased diversity levels
throughout the optimization process (ass illustrated in Figure 4,
Table II summarizes that average fitness of the global best
solution after 1000 iterations for random initialization and
for zero initialization. The table also contains the standard
deviation over the 50 independent runs. It is only for the
absolute value function that random initialization resulted in
a better average fitness than zero initialization. For the rest
of the considered functions, zero initialization haev resulted

TABLE II
AVERAGE FITNESS OF BEST SOLUTION AFTER 1000 ITERATIONS

Zero Init Random Init
Function No Pbest Bound No Pbest Bound
Absolute Value 3.53E-001±2.87E+000 2.46E-001±1.47E+000
Ackley 2.49E+000±1.35E+000 2.68E+000±2.67E+000
Bukin 6 6.20E-002±4.50E-002 6.65E-002±5.56E-002
Griewank 3.72E-002±5.26E-002 3.91E-002±5.57E-002
Quadric 9.04E+001±8.70E+001 1.80E+002±3.15E+002
Rastrigin 6.66E+001±1.71E+001 7.37E+001±2.16E+001
Rosenbrock 2.65E+001±1.53E+001 2.73E+001±1.66E+001

in the best average fitness. Notably is the significant differ-
ence in average fitness for the quadric function where zero
initialization obtained an average fitness of 90.4 while random
fitness managed to reach an average fitness of 180 only. These
results provide clear evidence that random initialization could
not produce better results than zero initialization for most of
the functions.

In conclusion, a strong correlation can be seen between
random initialization and a slow improvement in fitness, high
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Fig. 3. Fitness Reduction Profiles

diversity, large number of roaming particles, large number of
personal best and global best position violations, and a slow
convergence per decision variable. This leads to the main
disadvantages of random initialization, namely much slower
convergence and much more wasted effort searching outside
the bounds of the optimization problem. The conclusion is
therefore that random initialization should be avoided in favor
of small random or zero initialization. Note that the latter two
strategies exhibited similar behavior.

V. PERSONAL BEST CONSTRAINT

A first critique against the finding of Sections III and IV is
that no boundary constraint mechanism has been used. Helwig
and Wanka [19] showed that a boundary constraint mechanism
should be used to prevent the roaming particles problem.

A very simple, and natural boundary constraint mechanism
is to constrain personal best positions to always remain in the
search space. Should a memory-based approach be used to
select the global best position, then the global best position
is guaranteed to be within bounds. This can be achieved

with a simple change in the decision to update personal best
positions: The personal best position of a particle is only
updated if that particle has a better fitness than the current
personal best position and if the particle is within bounds.

It may be argued that the effects of random initialization will
be diminished should such a personal best boundary constraint
be employed. This section investigates whether the personal
best boundary constraint above does address the issues with
random initialization. The previous figures also included the
behaviors of gbest PSO for the three velocity initialization
strategies under the personal best boundary constraint. With
reference to the these figures, the following observations can
be made:

• In general, bounding of the personal best position for
random initialization did not help with reference to the
rate at which the fitness of the best solution improves
nor the rate at which decision variables converges. Only
for the Bukin 6 function did the random initialization
with personal best bound performed better than without
the personal best bound. However, random initialization
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with personal best bound still performed worse that small
random and zero initialization without the personal best
bound.

• The above observation is despite the increased diversity,
and slower decrease in diversity of the personal best
bound strategies. The increased diversity is likely due to
the larger number of roaming particles. This might be due
to the large distances between roaming particles and their
bounded personal best and global best positions. These
larger step sizes may result in more particles leaving the
boundaries of the search space, and roaming particles to
move further away from feasible space.

• Considering all of the velocity initialization strategies
with a personal best bound, performance was worse than
the non-bounded strategies. Overall, the small random
and zero initialization without personal best bounds still
performed best.

The above observations leads to the conclusion that a per-
sonal best bound does not address the issues with random
initialization. It might be that other boundary constraint mech-

anisms will help, but such investigation is suggested or future
research.

The outcome of this section is further confirmation of the
conclusion that random initialization of velocities within the
bounds of the optimization problem should be avoided, and
that the best approach to follow is zero initialization or very
small random values.

VI. CONCLUSION

The main objective of this paper was to show that initializa-
tion of velocities to uniform random values within the domain
of the optimization problem is not an optimal approach to
initialize velocities. It was shown empirically that fitness of
the global best solution is improved at a much slower rate
than zero initial velocities or small random initial velocities.
Empirical results also showed that convergence per decision
variable is delayed using random initialization. This is mainly
due to the larger number of roaming particles, as well as the
significantly larger number of roaming personal best positions
and violating global best positions.



It was also illustrated that a boundary constraint on the
personal best positions does not help to address the slow
convergence of random initialization, nor the issue with the
number of roaming particles. In fact, a personal best bound
resulted in even slower convergence and more roaming parti-
cles.

As a side-effect of this study empirical results have clearly
supported statements in previous theoretical studies [19] that
most particles leave the search space early during the search
process, irrespective of the initialization strategy.

Future research will expand this analysis to provide answers
to the following questions:

• Does the swarm size have an effect on the findings of
this article?

• What happens during the first iterations of PSO that result
in most particles violating the boundary constraints?

• Do other PSO algorithms, such as the local best PSO,
constriction PSO, and the Barebones PSO also suffer
from roaming particles? Preliminary studies [20] with the
charged PSO [21] have shown similar trends of roaming
behavior. Furthermore, do the observations about random
initialization also apply to these algorithms?

• To what extend will other boundary constraint mecha-
nisms help to address the deficiencies of random initial-
ization?
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