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Abstract—Techniques to reduce the search space when an 

optimizer seeks an optimal value are studied in this paper. A new 

mutation technique called the “Exponential Moving Average” 

algorithm (EMA) is introduced. The performance of EMA 

algorithms is compared to two other similar Computational 

Intelligence (CI) algorithms (an ordinary Evolutionary 

Algorithm (EA) and a “Mean-Variance Optimization” (MVO)) to 

solve a multi-dimensional problem which has a large search 

space. The classic Sudoku puzzle is chosen as the problem with a 

large search space.  

 

 
Index Terms—Computational Intelligence, Evolutionary 

Computation, Games, Mean-Variance Optimization, Sudoku 

I. INTRODUCTION 

LASSIC Sudoku is a game played in which numbers are 

arranged in a 9x9 matrix. [1] An example Sudoku puzzle 

is shown in Table 1.  

5 9 4 7 1 6 3 8 2 

6 8 1 9 2 3 4 7 5 

7 2 3 8 5 4 6 9 1 

1 3 8 5 4 9 2 6 7 

4 5 6 2 7 8 9 1 3 

2 7 9 6 3 1 8 5 4 

9 4 7 1 8 2 5 3 6 

8 1 2 3 6 5 7 4 9 

3 6 5 4 9 7 1 2 8 

Table 1 - Example Solved Sudoku Puzzle 

Some number of cells are blanked out and not revealed to the 

game player. The player must guess the missing numbers in 

the matrix in such a way that: 

 

Every row must contain the numbers 1 through 9. 
Rule 1 

Every column must contain the numbers 1 through 9 
Rule 2 

When the 9x9 matrix is divided into nine 3x3 sub 

matrices, the numbers 1 through 9 must be contained 

in each sub matrix. 
Rule 3 

 

There is also a fourth rule which perhaps often goes unspoken: 

 

Every cell that contains an initial value which is 

given as part of the solution may not be altered. 
Rule 4 

A. Statement of the problem 

Sudoku is considered an NP-Complete problem. [2] The large 

search space created by complex puzzles makes it a useful 

problem against which to apply various solving techniques. 

B. Contributions of this project 

This paper compares three Computational Intelligence (CI) 

techniques for performance and examines the Sudoku puzzle 

in the testing process. 1.) The conventional “Evolutionary 

Algorithm” (EA), 2.) “Mean Variance Optimization” (MVO) 

which was introduced in [3], and 3.) “Exponential Moving 

Average” mutation algorithm (EMA) introduced in this paper. 

 

II. PROBLEM DESCRIPTION 

 

A search algorithm which draws symbols from a set of 9 

possibilities and places them into a blank 9x9 matrix creates a 

space of approximately         possible arrangements. If 

some of the rules are then applied to narrow the number of 

legitimate possibilities it creates a search space of 

approximately (9!)
9
 ≈ 10

50
. It’s been calculated that when the 

all of the rules are enforced there are 10
21

 possible legitimate 

(classic 9x9) Sudoku grids. [4] [5] 

 

When presented with such an enormous search space, the 

tendency of a typical EA solver is to stall and not converge.  

 

Common Sudoku puzzle solving strategies can reduce the 

search space for small puzzles, but lose effectiveness as puzzle 

complexity increases. Solvers tend to approach a solution but 

not converge. They spend a lot of time finding out what 

doesn’t work better than the local minima it has settled into 

before ultimately running out of time. 

 

III. METHODOLOGY DESCRIPTION AND IMPLEMENTATION 

All three solvers follow a similar representation.  Each method 

uses the same fitness function, search space reduction 
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technique, and crossover operator. Where they vary is in the 

mutation operation. 

 

A. Fitness Functions 

The fitness is measured by counting the number of duplicated 

symbols in string “c”. 

 

1) Row fitness 

             
           

           
  

                (1) 

Where “cij” is the j
th

 row of elements to be examined 

belonging to chromosome “i”. “B” is the set of elements 

in string cij generated as the string is scanned according 

to index “k”. 

 

2) Column Fitness 

             
           

           
  

                (2) 

Where “cij” is the j
th

 column of elements to be examined 

belonging to chromosome “i”. “B” is the set of elements 

in string cij generated as the string is scanned according 

to index “k”. 

 

The fitness is measured by counting the number of duplicated 

symbols in string “c”. 

 

3) Box Fitness 

 

              
           

           
  

          (3) 

Where “cij” is the j
th

 box of elements to be examined 

belonging to chromosome “i”. “B” is the set of elements 

in string cij generated as the string is scanned according 

to index “k”. 

 

The fitness is measured by counting the number of duplicated 

symbols in string “c”. 

 

1 1 1 2 2 2 3 3 3 

1 1 1 2 2 2 3 3 3 

1 1 1 2 2 2 3 3 3 

4 4 4 5 5 5 6 6 6 

4 4 4 5 5 5 6 6 6 

4 4 4 5 5 5 6 6 6 

7 7 7 8 8 8 9 9 9 

7 7 7 8 8 8 9 9 9 

7 7 7 8 8 8 9 9 9 

Table 2 -- Box numbers defined 

4) Cell Fitness 

 

                                                     (4) 

 

Where chromosome “i” contains row “j” and column “k”. 

With the Sudoku grid being a 9x9 matrix, it results in 81 cells 

to be explored. 

 

Col. 

 

Row.    

1 2 3 4 5 6 7 8 9 

1 1 2 3 4 5 6 7 8 9 

2 10 11 12 13 14 15 16 17 18 

3 19 20 21 22 23 24 25 26 27 

4 28 29 30 31 32 33 34 35 36 

5 37 38 39 40 41 42 43 44 45 

6 46 47 48 49 50 51 52 53 54 

7 55 56 57 58 59 60 61 62 63 

8 64 65 66 67 68 69 70 71 72 

9 73 74 75 76 77 78 79 80 81 

Table 3 – Row numbers (in red), column numbers (in blue), and 

cell numbers (in green) defined 

 

5) Chromosome Encoding and Fitness 

The chromosome for the CI algorithms is encoded as a 9x9 

matrix as described by Table 3. Each cell in the chromosome 

corresponds to a cell in the puzzle. 

 

                                 
 
   

 
                   (5) 

 

Chromosome “i” has a fitness function which is simply the 

sum of the constituent fitness functions of every gene in the 

chromosome. 

 

Each cell in the matrix is one gene in the chromosome. 

 

A solution which perfectly satisfies all of the rules will have a 

fitness function of zero. In addition to the entire chromosome 

having a fitness of zero; the fitness of every row, column, box, 

and cell will also be zero.  

 

A fitness of zero has to be considered a stopping condition for 

the search.  

B. Restriction of Solution Search Space 

1) Reduction of the number of symbols to be tried 

a) Cell Candidate Set  

The search for a solution can be sped along by restricting the 

size of the search space to be examined. Rules 1-3 state that 

the search space domain is limited to integers 1 through 9 for 

each dimension. The legitimate gene domain set can be 

represented by the set “D” in (6).  

 
                           (6) 

 

However, we know that the application of these rules also 

constrains the number of possible candidates for a given cell. 

The search for a solution need not attempt otherwise 

legitimate domain values which are outside the list of possible 

candidates. There are those who have researched the use of 

Candidate Sets to simplify the puzzle and speed to a solution 

[6]. The candidate set for cell cjk is formed by beginning with 

the legitimate domain set “D” and removing symbols found in 

row “j” and column “k” as shown in (7). 



 

 

                                             

                    (7) 

Where, 

D is the gene domain set described by (6). 

Mrow( ) is a function which generates the set of symbols in 

puzzle row “j”. 

Mcol( ) is a function which generates the set of symbols in 

puzzle column “k”. 

Mbox( ) is a function which generates the set of symbols in 

the puzzle box for cell “j,k”. Puzzle box boundaries are 

defined by Table 2. 

 

2) Reduction of the number of cells to be searched 

The reduction in the symbols to be searched has a side effect 

(in relatively easy puzzles) of reducing the number of cells 

that must be tested. When the candidate set for a given cell is 

reduced to a single candidate, no further mutation of that cell 

need occur.  

 

C. Chromosome Selection and Crossover 

Each chromosome in the population was evaluated according 

to all of the fitness formulas. The chromosome with the best 

fitness according to (5) was selected with an elitist policy. An 

offspring was then generated using mutation (asexual 

reproduction.) 

 

D. Mutation 

Once a chromosome has been selected as the parent, the 

offspring are generated by mutation.  

1) Cell Selection 

The CI algorithms used cell fitness to influence the probability 

of selecting the cell(s) to be mutated. The psuedocode below 

assumes that a given chromosome “ci” has been selected for 

mutation, and now a number of cells “m” within the 

chromosome must be selected for mutation. The cell is located 

at row “j” and column “k” within the 9x9 chromosome matrix. 

A modified fitness function “mff” is computed to choose the 

cell. The mff uses a normalized value defined by (9). “rand” is 

a random value in the range (0,1). Once chosen the mutation 

process itself is performed (and directed) by the EA, MVO, or 

EMA techniques. 

 

Copy most fit parent as new offspring “ci”. 

UpperBound = The count of cells in puzzle which have 

candidateQty > 1. 

m = a random number in the range [1, UpperBound ] to 

mutate. 

FOR m cells 

                                 

   Select cell with highest mff for mutation 

Mutate selected cell using EA, MVO, or EMA technique 

ENDFOR 

;Offspring completed. 
Figure 1 -- Psuedocode for cell selection 

 

2) Mutation  

Once a cell has been selected, its mutation is guided by the 

particular technique of the CI algorithm. Each algorithm 

utilizes a different technique as described below. 

a) Evolutionary Algorithm (EA) 

A candidate is selected at random (with uniform random 

distribution) from the candidate set determined for the cell in 

(7).  

(i) Baseline 

The EA was also used to generate a baseline by drawing 

candidates at random from the domain set (6). 

b) Mean Variance Optimization Algorithm (MVO) 

The MVO algorithm was introduced in [3]. Each dimension is 

analyzed independently from the others, and a mean and 

variance calculated. This in turn is used to guide the mutation 

process. The form of MVO introduced in [3] adds additional 

means (described in Figure 2) to guide the “exploration” and 

“exploitation” phases of the solver. The MVO technique is too 

involved to describe here in much detail. The reader is referred 

to [3] for an explanation of the symbols used. Figure 2 

supplies errata to the MVO calculation. 

 

              

    
               
               

  

    
                  
            

  

           
    

         
    

             
             

      
     

                 
     

Figure 2 -- MVO calculation used to guide mutation 

The MVO requires that data be normalized in the range (0,1). 

The set of domain variables {1,2,..9} is fairly easy to 

transform to the range (0,1).  

 

    
           

           
          (8) 

 

Where xij is a normalized value in the range (0,1) for cell jk. 

Sjk is a Sudoku puzzle value in the range [1,9]. 

DMIN is the domain minimum of ‘1’. 

DMAX is the domain maximum of ‘9’. 

 

How would one transform a Candidate Set, (which of course 

contains a list of discrete, discontinuous values) to the range 

(0,1)? This was accomplished using the index to the Candidate 

Set rather than the Candidate Set itself. Furthermore, the 

candidate list is sometimes quite small, but always greater 

than or equal to one. 

 

     
                       

                   
       (9) 

 

Where      is a normalized value in the range (0,1) for celljk. 



 

Sjk is a Sudoku puzzle value from celljk candidate set. 

J is the row number for Sjk. 

K is the column number for Sjk. 

CListIndex ( ) is a function which identifies the index 

position of Sjk within the Candidate Set for row j, 

column k. 

 

c) Exponential Moving Average (EMA) 

At this point, a new algorithm, the EMA technique is 

introduced. The classic EA doesn’t attempt to guide the 

mutation process. The MVO and EVA differ from the EA in 

that they do attempt to guide the mutation process.  

(i) EMA mutation -- theory of operation. 

Very complex puzzles can lead to inordinate search times and 

solutions that do not converge. The solver can spend 

considerable computational time finding inferior solutions. 

These computations need not be wasted. They can be used to 

identify choices which tend to result in poor performance. 

This can then be used to inform the mutation algorithm to 

avoid choices that tend to perform poorly. 

This is accomplished by maintaining statistics on each 

candidate’s performance as used within each cell. Candidates 

that tend to perform poorly tend to not be selected as often as 

candidates that perform well. This helps guide the solver to a 

solution. 

(ii) An efficient technique for maintaining a 

historical average fitness 

We are all familiar with the geometric progression: 

 

                       
         (10) 

 

When “n” is very large it approximates the convergent value 

where              

     
         

   
 

 

   

 

   

 

 

Then, with  

 

                (11) 

 

With (11) applied to (10), the series converges to “1”. 

 

Consider the fitness history f1, f2, f3, f4, …, ft entrained in the 

geometric series which converges to one: 

 

     
      

        
            

      
          

 (12) 

 

With r < 1, the contribution of the oldest history, f1 will be 

quite small, and the contribution of the recent history ft 

relatively significant. 

Equation (12) can be rearranged as a historical accumulation 

encompassing historical fitness measurements (f1…ft-1) 

multiplied by the terms ar
t
 through ar

1
, plus the most recent 

fitness term (ft) multiplied by ar
0
. 

 

                         

      
        

        
                  

             
 

                       (13) 

 

The Exponential Moving Average is known to be a very 

efficient means of forecasting an outcome. [7] It retains useful 

knowledge but ages it – giving precedence to recent findings.  

(iii) EMA applied to mutation 

 

WHILE (solution not obtained or maximum number of 

iterations not reached) 

Perform CI algorithm which uses an elitist strategy to retain 

the most fit chromosome … 

Compute cell fitness functions (1) through (5) including 

normalized cell fitness fc and 

AverageNormalizedCellFitness    . 

 IF (no improvement has occurred in the last iteration) 

 THEN 

FOR each chromosome in population 

   FOR each candidate used in each cell 

    ht=ht-1*r+fc*a ;update historical average 

   ENDFOR 

ENDFOR 

 ELSE  ;reset historical average so all are the same 

  ht=     for current evaluation 

ENDIF  

ENDWHILE 
Figure 3 -- Psuedocode for EMA historical average calculation 

The cell’s historical average fitness h(i) is normalized over the 

range (0,1). Mutation is performed by using the historical 

moving average and a random function to create a “modified 

fitness function” (mff).  The mffs are then sorted to identify 

the candidate with the best fitness: 

 

EMA_Contribution = rand 

FOR every candidate of selected cell “i” 

                                    
ENDFOR 

Sort “mff(i)” to obtain most fit selection. 

Use most fit candidate as mutation value. 
Figure 4 --  Psuedocode for EMA mutation 

IV. TESTS AND RESULTS 

A. Testing the algorithms for efficacy 

The EA, MVO, and EMA solvers were tested for their ability 

to solve Sudoku puzzles. The results are summarized in the 

following sections.  

 

In order to get comparable test results, all algorithms were set 

to operate in the same manner:  

 The population of all CI algorithms was limited to 

‘2’. (Classic EA ordinarily has a much larger 

population in order to facilitate crossover.) 



 

 All algorithms performed crossover by relying on 

asexual reproduction from a single parent. 

 A large number of evaluations were allowed during 

each trial (10,000.)  

 Fifty (50) trials were performed for each test and the 

results averaged.  

 

1) EA performance when drawing from the domain set 

 

In order to generate a baseline for comparison, an 

Evolutionary Algorithm was used to search each blank cell 

over the entire domain space {1,2,3…9}. Each candidate was 

selected uniformly at random.  The results are summarized in 

Table 4.  

 

 

# of 

blanks 

Best fitness Trial Size 

Min Mean σ Max Mean σ 

10 0 0.8 1.21 3 3873 4412 

20 0 10.4 9.989 35 8210 3195 

30 9 24.16 6.783 36 10k 0 

40 26 35.68 5.998 50 10k 0 

50 23 40.58 6.32 57 10k 0 

60 31 45.1 5.69 57 10k 0 

80 33 44.22 5.19 56 10k 0 

Table 4 -- Results of EA solver searching for "n" randomly 

imposed blanks in a Sudoku puzzle and drawing from the 

domain set {1..9} 

All of the subsequent searches restrict the domain space that is 

searched. Rather than searching all symbols {1..9} for each 

cell as described by (6), a smaller set, the restricted candidate 

set (7) is searched instead. The mutation mechanism varies 

between the EA, MVO, and EMA algorithms. 

 

2) EA performance when drawing from the Candidate Set 

a) Convergence Overview 

 
Figure 5 -- EA progress in solving a puzzle with 40 blanks over 

the course of 50 trials and drawing from the Candidate Set 

 

b) Summary of Results 

 

# of 

blanks 

Best fitness Trial Size 

Min Mean σ Max Mean σ 

10 0 0 0 0 1 0 

20 0 0 0 0 1 0 

30 0 0 0 0 228 323 

40 0 9.9 5.63 18 8.9k 2.8k 

50 11 22.76 4.7 32 10k 0 

60 13 31.04 5.21 43 10k 0 

80 31 42.42 5.62 58 10k 0 

Table 5 -- Results of EA solvers searching for "n" randomly 

imposed blanks in a Sudoku puzzle and drawing from the 

Candidate Set 

 

3) MVO performance when drawing from the Candidate Set 

a) Convergence Overview 

 

 
Figure 6 – MVO progress in solving a puzzle with 40 blanks over 

the course of 50 trials while drawing from the Candidate Set 

 

b) Statistical Summary 

 

# of 

blanks 

Best fitness Trial Size 

Min Mean σ Max Mean σ 

10 0 0 0 0 1 0 

20 0 0 0 0 64 105 

30 0 0 0 0 325 420 

40 0 6.4 3.9 17 9.5k 1.9k 

50 9 22.9 4.39 31 10k 0 

60 24 34.2 4.6 48 10k 0 

80 32 44.4 5.5 58 10k 0 

Table 6 -- Results of MVO solvers searching for "n" randomly 

imposed blanks in a Sudoku puzzle and drawing from the 

Candidate Set 

 



 

4) EMA Performance when drawing from the Candidate Set 

a) Convergence overview 

 
Figure 7 -- EMA progress in solving a puzzle with 40 blanks over 

the course of 50 trials while drawing from the Candidate Set 

b) Summary of Results 

 

# of 

blanks 

EMA 

“r” 

Best fitness Trial Size 

Min Mean σ Max Mean σ 

10 4/5 0 0 0 0 1 0 

20 4/5 0 0 0 0 7.68 5.07 

30 4/5 0 0 0 0 68.02 63.28 

40 4/5 0 0 0 0 240.4 115.2 

50 4/5 0 10.8 5.07 23 9952 337.8 

60 4/5 19 26.64 3.53 32 10k 0 

80 4/5 30 39.2 4.99 52 10k 0 

Table 7 -- Results of EMA solvers searching for "n" randomly 

imposed blanks in a Sudoku puzzle and drawing from the 

Candidate Set 

B. Comparing Solvers 

Four cases were compared:  

 A (baseline) Evolutionary Algorithm  selecting  from 

the Domain Set {1..9} with uniform random mutation 

 An Evolutionary Algorithm selecting from the 

Candidate Set with uniform random mutation 

 An MVO mutation algorithm selecting from the 

Candidate Set 

 An EMA mutation algorithm selecting from the 

Candidate Set 

 
Figure 8 -- End result comparison 
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Figure 9 -- Effort comparison 

V. DISCUSSION OF RESULTS 

The space to be searched by a Sudoku solver can be quite 

large. A search over the entire candidate domain space 

actually increases the search space considerably. While there 

are 10
21

 puzzles, there 10
77

 combinations to be tested for a 

puzzle with 80 blank cells.  Big improvements in speed can be 

obtained by restricting both the number of cells which are 

experimented with and restricting the number of symbols 

which must be tried within each cell. 

 

# of 

blanks 

Nine symbol 

combinations to 

be explored using 

careless search 

“Candidate 

Set” 

combinations 

to be explored 

10 

(easy) 

9*9=81 1 

30 

(moderate) 
                        

80 

(difficult) 
                  

      
Table 8 – Approximate search space size as a function of puzzle 

complexity  

A. Effect of restricting the search space 

 

By the time puzzles reach a nearly undefined condition with 

nearly all the cells blank, the search space reaches 

astronomical proportions. The challenge becomes limiting the 

search space to the 10
21

 possible puzzles. The techniques used 

herein do well to limit the search space to approximately 10
69

. 

 

1) The “Candidate Set” technique 

 

The “Candidate Set” technique has the beneficial side effect of 

limiting the symbols to be tried to a smaller set, and also the 

number of cells that must be experimented on. This is perhaps 

best demonstrated by example. 

 

Table 9 shows 20 randomly selected cells (in red) and the 

resulting Candidate Set Quantity for each cell. Notice that the 

vast majority of the cells have a single viable candidate. This 

candidate is computed at the outset prior to optimization. 

 

1 1 1 1 1 1 1 2 3 

1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 2 2 

Table 9 -- Example Candidate Quantity for 20 randomly selected 

cells 

However, the savings do not hold out as the number of blanks 

cells increase. Figure 10 shows diminishing returns, and 

eventual loss of benefit as the number of blank cells reaches 

60 (74%). 

 

 
Figure 10 -- Comparative search space 

These savings are then seen in Figure 8 as the difference 

between the “Baseline EA-w/DS” and “EA-w/CS” curves. 
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B. Comparing mutation techniques 

All three techniques use genetically inspired CI techniques. 

None of them guarantee convergence. Figure 8 shows that the 

techniques that attempt to guide the mutation process perform 

better than the technique that does not.  The MVO performs an 

analysis of the population at hand to compute the direction of 

the mutation. The EMA performs an analysis of the recent 

historical population to synthesize individual performance 

statistics. The EMA statistics could be viewed a Probability 

Distribution Function which guides the selection of the 

candidate. The mutation technique proposed in Figure 4 

selects a random “EMA_Contribution” to apply to every 

mutated gene in the offspring. The use of a random 

contribution seemed to serve the Sudoku optimization well. 

For problems which are more linear and predictable in nature, 

a constant value could be used which is a function of the 

progress toward resolution.  

One pitfall of the EMA approach is that rapid wholesale 

mutation of the chromosome in a problem in which 

dimensions are interrelated could produce an irrelevant 

history, and thus a series of choices which are no better than 

uniform random selection.  

For this particular problem a sensitivity analysis to the value 

of “r” finds that it matters very little as long as            
As “r” falls within         or           it tends to 

lose its effect. It could be argued that because the “r” value 

affects the depth of history retained in the average, that “r” in 

(13) should increase over the course of the search as the solver 

transitions from “exploration” to “exploitation.” This didn’t 

appear to be necessary because the data itself stabilizes as the 

solution becomes apparent. The history becomes relatively 

consistent as the solver converges on a solution, so looking at 

a deeper or shallower history isn’t necessarily helpful.  

Another comparison is that the MVO algorithm introduced 

in [3] has a mechanism to convert discrete values into a 

normalized continuous range. Some effort was needed to make 

it work for discrete values. The EMA algorithm introduced 

here works naturally with discrete domain values. A discrete-

to-continuous transformation would be needed to apply the 

technique to continuous domain values. One such approach 

was developed in [3], is shown in Figure 2, and could be used 

for continuous applications of the EMA.  

 

VI. CONCLUSION AND FUTURE WORK 

Imposing constraints to reduce the search space is found to 

hold value in efficiently finding solutions in much the same 

way as learning from ones failures. The EMA algorithm 

introduced here attempts to identify dimension candidates 

which appear to perform poorly and then avoid them.  

The nature of the Sudoku puzzle is such that the dimensions 

are interrelated. Of all of the fitness functions available, 

individual cell fitness was used to guide the EMA. Future 

work could involve study of a problem in which the 

dimensions are independent of each other, and the use of the 

overall chromosome fitness to guide the EMA. Future work 

could also involve the application of the EMA technique to a 

problem which has continuous variables. The technique 

should also be tested on a problem which has multiple 

minima. A larger chromosome population than used here 

should be used where multiple minima exist. 

It is interesting to note that while CI techniques are 

genetically inspired, the forecasting and selection technique 

presented here of an “exponential moving average” finds its 

roots in the world of finance. [8] The technique was found to 

be useful here in guiding the mutation process away from 

choices which have shown to be unproductive. There are 

many other forecasting techniques from the world of finance 

that could be applied to CI mutation and candidate selection. 

[9] [10] [11] [12] Ultimately we find that when searching a 

large space it is advisable to reduce the search space where 

possible, and guide the mutation process to avoid 

unproductive search areas. 
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