

David Haynes
Systems Design

Aclara

St. Louis, MO, USA

dhfff@mst.edu

Steven Corns

Engineering Management and Systems

Engineering Dept.

Missouri University of

Science and Technology

Rolla, MO, USA

cornss@mst.edu

Ganesh KumarVenayagamoorthy
Holcombe Department of Electrical and

Computer Engineering
Clemson University

Clemson, SC 29634, USA

gkumar@ieee.org

Abstract—Techniques to reduce the search space when an

optimizer seeks an optimal value are studied in this paper. A new

mutation technique called the “Exponential Moving Average”

algorithm (EMA) is introduced. The performance of EMA

algorithms is compared to two other similar Computational

Intelligence (CI) algorithms (an ordinary Evolutionary

Algorithm (EA) and a “Mean-Variance Optimization” (MVO)) to

solve a multi-dimensional problem which has a large search

space. The classic Sudoku puzzle is chosen as the problem with a

large search space.

Index Terms—Computational Intelligence, Evolutionary

Computation, Games, Mean-Variance Optimization, Sudoku

I. INTRODUCTION

LASSIC Sudoku is a game played in which numbers are

arranged in a 9x9 matrix. [1] An example Sudoku puzzle

is shown in Table 1.

5 9 4 7 1 6 3 8 2

6 8 1 9 2 3 4 7 5

7 2 3 8 5 4 6 9 1

1 3 8 5 4 9 2 6 7

4 5 6 2 7 8 9 1 3

2 7 9 6 3 1 8 5 4

9 4 7 1 8 2 5 3 6

8 1 2 3 6 5 7 4 9

3 6 5 4 9 7 1 2 8

Table 1 - Example Solved Sudoku Puzzle

Some number of cells are blanked out and not revealed to the

game player. The player must guess the missing numbers in

the matrix in such a way that:

Every row must contain the numbers 1 through 9.
Rule 1

Every column must contain the numbers 1 through 9
Rule 2

When the 9x9 matrix is divided into nine 3x3 sub

matrices, the numbers 1 through 9 must be contained

in each sub matrix.
Rule 3

There is also a fourth rule which perhaps often goes unspoken:

Every cell that contains an initial value which is

given as part of the solution may not be altered.
Rule 4

A. Statement of the problem

Sudoku is considered an NP-Complete problem. [2] The large

search space created by complex puzzles makes it a useful

problem against which to apply various solving techniques.

B. Contributions of this project

This paper compares three Computational Intelligence (CI)

techniques for performance and examines the Sudoku puzzle

in the testing process. 1.) The conventional “Evolutionary

Algorithm” (EA), 2.) “Mean Variance Optimization” (MVO)

which was introduced in [3], and 3.) “Exponential Moving

Average” mutation algorithm (EMA) introduced in this paper.

II. PROBLEM DESCRIPTION

A search algorithm which draws symbols from a set of 9

possibilities and places them into a blank 9x9 matrix creates a

space of approximately possible arrangements. If

some of the rules are then applied to narrow the number of

legitimate possibilities it creates a search space of

approximately (9!)
9
 ≈ 10

50
. It’s been calculated that when the

all of the rules are enforced there are 10
21

 possible legitimate

(classic 9x9) Sudoku grids. [4] [5]

When presented with such an enormous search space, the

tendency of a typical EA solver is to stall and not converge.

Common Sudoku puzzle solving strategies can reduce the

search space for small puzzles, but lose effectiveness as puzzle

complexity increases. Solvers tend to approach a solution but

not converge. They spend a lot of time finding out what

doesn’t work better than the local minima it has settled into

before ultimately running out of time.

III. METHODOLOGY DESCRIPTION AND IMPLEMENTATION

All three solvers follow a similar representation. Each method

uses the same fitness function, search space reduction

An Exponential Moving Average Algorithm
Evolutionary Algorithms Applied to Sudoku Puzzles

C

Dr. Venayagamoorthy wishes to acknowledge sponsorship by the US
National Science Foundation CAREER grant ECCS #0348221

U.S. Government work not protected by U.S. copyright

WCCI 2012 IEEE World Congress on Computational Intelligence
June, 10-15, 2012 - Brisbane, Australia IEEE CEC

technique, and crossover operator. Where they vary is in the

mutation operation.

A. Fitness Functions

The fitness is measured by counting the number of duplicated

symbols in string “c”.

1) Row fitness

 (1)

Where “cij” is the j
th

 row of elements to be examined

belonging to chromosome “i”. “B” is the set of elements

in string cij generated as the string is scanned according

to index “k”.

2) Column Fitness

 (2)

Where “cij” is the j
th

 column of elements to be examined

belonging to chromosome “i”. “B” is the set of elements

in string cij generated as the string is scanned according

to index “k”.

The fitness is measured by counting the number of duplicated

symbols in string “c”.

3) Box Fitness

 (3)

Where “cij” is the j
th

 box of elements to be examined

belonging to chromosome “i”. “B” is the set of elements

in string cij generated as the string is scanned according

to index “k”.

The fitness is measured by counting the number of duplicated

symbols in string “c”.

1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

4 4 4 5 5 5 6 6 6

4 4 4 5 5 5 6 6 6

4 4 4 5 5 5 6 6 6

7 7 7 8 8 8 9 9 9

7 7 7 8 8 8 9 9 9

7 7 7 8 8 8 9 9 9

Table 2 -- Box numbers defined

4) Cell Fitness

 (4)

Where chromosome “i” contains row “j” and column “k”.

With the Sudoku grid being a 9x9 matrix, it results in 81 cells

to be explored.

Col.

Row.

1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9

2 10 11 12 13 14 15 16 17 18

3 19 20 21 22 23 24 25 26 27

4 28 29 30 31 32 33 34 35 36

5 37 38 39 40 41 42 43 44 45

6 46 47 48 49 50 51 52 53 54

7 55 56 57 58 59 60 61 62 63

8 64 65 66 67 68 69 70 71 72

9 73 74 75 76 77 78 79 80 81

Table 3 – Row numbers (in red), column numbers (in blue), and

cell numbers (in green) defined

5) Chromosome Encoding and Fitness

The chromosome for the CI algorithms is encoded as a 9x9

matrix as described by Table 3. Each cell in the chromosome

corresponds to a cell in the puzzle.

 (5)

Chromosome “i” has a fitness function which is simply the

sum of the constituent fitness functions of every gene in the

chromosome.

Each cell in the matrix is one gene in the chromosome.

A solution which perfectly satisfies all of the rules will have a

fitness function of zero. In addition to the entire chromosome

having a fitness of zero; the fitness of every row, column, box,

and cell will also be zero.

A fitness of zero has to be considered a stopping condition for

the search.

B. Restriction of Solution Search Space

1) Reduction of the number of symbols to be tried

a) Cell Candidate Set

The search for a solution can be sped along by restricting the

size of the search space to be examined. Rules 1-3 state that

the search space domain is limited to integers 1 through 9 for

each dimension. The legitimate gene domain set can be

represented by the set “D” in (6).

 (6)

However, we know that the application of these rules also

constrains the number of possible candidates for a given cell.

The search for a solution need not attempt otherwise

legitimate domain values which are outside the list of possible

candidates. There are those who have researched the use of

Candidate Sets to simplify the puzzle and speed to a solution

[6]. The candidate set for cell cjk is formed by beginning with

the legitimate domain set “D” and removing symbols found in

row “j” and column “k” as shown in (7).

 (7)

Where,

D is the gene domain set described by (6).

Mrow() is a function which generates the set of symbols in

puzzle row “j”.

Mcol() is a function which generates the set of symbols in

puzzle column “k”.

Mbox() is a function which generates the set of symbols in

the puzzle box for cell “j,k”. Puzzle box boundaries are

defined by Table 2.

2) Reduction of the number of cells to be searched

The reduction in the symbols to be searched has a side effect

(in relatively easy puzzles) of reducing the number of cells

that must be tested. When the candidate set for a given cell is

reduced to a single candidate, no further mutation of that cell

need occur.

C. Chromosome Selection and Crossover

Each chromosome in the population was evaluated according

to all of the fitness formulas. The chromosome with the best

fitness according to (5) was selected with an elitist policy. An

offspring was then generated using mutation (asexual

reproduction.)

D. Mutation

Once a chromosome has been selected as the parent, the

offspring are generated by mutation.

1) Cell Selection

The CI algorithms used cell fitness to influence the probability

of selecting the cell(s) to be mutated. The psuedocode below

assumes that a given chromosome “ci” has been selected for

mutation, and now a number of cells “m” within the

chromosome must be selected for mutation. The cell is located

at row “j” and column “k” within the 9x9 chromosome matrix.

A modified fitness function “mff” is computed to choose the

cell. The mff uses a normalized value defined by (9). “rand” is

a random value in the range (0,1). Once chosen the mutation

process itself is performed (and directed) by the EA, MVO, or

EMA techniques.

Copy most fit parent as new offspring “ci”.

UpperBound = The count of cells in puzzle which have

candidateQty > 1.

m = a random number in the range [1, UpperBound] to

mutate.

FOR m cells

 Select cell with highest mff for mutation

Mutate selected cell using EA, MVO, or EMA technique

ENDFOR

;Offspring completed.
Figure 1 -- Psuedocode for cell selection

2) Mutation

Once a cell has been selected, its mutation is guided by the

particular technique of the CI algorithm. Each algorithm

utilizes a different technique as described below.

a) Evolutionary Algorithm (EA)

A candidate is selected at random (with uniform random

distribution) from the candidate set determined for the cell in

(7).

(i) Baseline

The EA was also used to generate a baseline by drawing

candidates at random from the domain set (6).

b) Mean Variance Optimization Algorithm (MVO)

The MVO algorithm was introduced in [3]. Each dimension is

analyzed independently from the others, and a mean and

variance calculated. This in turn is used to guide the mutation

process. The form of MVO introduced in [3] adds additional

means (described in Figure 2) to guide the “exploration” and

“exploitation” phases of the solver. The MVO technique is too

involved to describe here in much detail. The reader is referred

to [3] for an explanation of the symbols used. Figure 2

supplies errata to the MVO calculation.

Figure 2 -- MVO calculation used to guide mutation

The MVO requires that data be normalized in the range (0,1).

The set of domain variables {1,2,..9} is fairly easy to

transform to the range (0,1).

 (8)

Where xij is a normalized value in the range (0,1) for cell jk.

Sjk is a Sudoku puzzle value in the range [1,9].

DMIN is the domain minimum of ‘1’.

DMAX is the domain maximum of ‘9’.

How would one transform a Candidate Set, (which of course

contains a list of discrete, discontinuous values) to the range

(0,1)? This was accomplished using the index to the Candidate

Set rather than the Candidate Set itself. Furthermore, the

candidate list is sometimes quite small, but always greater

than or equal to one.

 (9)

Where is a normalized value in the range (0,1) for celljk.

Sjk is a Sudoku puzzle value from celljk candidate set.

J is the row number for Sjk.

K is the column number for Sjk.

CListIndex () is a function which identifies the index

position of Sjk within the Candidate Set for row j,

column k.

c) Exponential Moving Average (EMA)

At this point, a new algorithm, the EMA technique is

introduced. The classic EA doesn’t attempt to guide the

mutation process. The MVO and EVA differ from the EA in

that they do attempt to guide the mutation process.

(i) EMA mutation -- theory of operation.

Very complex puzzles can lead to inordinate search times and

solutions that do not converge. The solver can spend

considerable computational time finding inferior solutions.

These computations need not be wasted. They can be used to

identify choices which tend to result in poor performance.

This can then be used to inform the mutation algorithm to

avoid choices that tend to perform poorly.

This is accomplished by maintaining statistics on each

candidate’s performance as used within each cell. Candidates

that tend to perform poorly tend to not be selected as often as

candidates that perform well. This helps guide the solver to a

solution.

(ii) An efficient technique for maintaining a

historical average fitness

We are all familiar with the geometric progression:

 (10)

When “n” is very large it approximates the convergent value

where

Then, with

 (11)

With (11) applied to (10), the series converges to “1”.

Consider the fitness history f1, f2, f3, f4, …, ft entrained in the

geometric series which converges to one:

 (12)

With r < 1, the contribution of the oldest history, f1 will be

quite small, and the contribution of the recent history ft

relatively significant.

Equation (12) can be rearranged as a historical accumulation

encompassing historical fitness measurements (f1…ft-1)

multiplied by the terms ar
t
 through ar

1
, plus the most recent

fitness term (ft) multiplied by ar
0
.

 (13)

The Exponential Moving Average is known to be a very

efficient means of forecasting an outcome. [7] It retains useful

knowledge but ages it – giving precedence to recent findings.

(iii) EMA applied to mutation

WHILE (solution not obtained or maximum number of

iterations not reached)

Perform CI algorithm which uses an elitist strategy to retain

the most fit chromosome …

Compute cell fitness functions (1) through (5) including

normalized cell fitness fc and

AverageNormalizedCellFitness .

 IF (no improvement has occurred in the last iteration)

 THEN

FOR each chromosome in population

 FOR each candidate used in each cell

 ht=ht-1*r+fc*a ;update historical average

 ENDFOR

ENDFOR

 ELSE ;reset historical average so all are the same

 ht= for current evaluation

ENDIF

ENDWHILE
Figure 3 -- Psuedocode for EMA historical average calculation

The cell’s historical average fitness h(i) is normalized over the

range (0,1). Mutation is performed by using the historical

moving average and a random function to create a “modified

fitness function” (mff). The mffs are then sorted to identify

the candidate with the best fitness:

EMA_Contribution = rand

FOR every candidate of selected cell “i”

ENDFOR

Sort “mff(i)” to obtain most fit selection.

Use most fit candidate as mutation value.
Figure 4 -- Psuedocode for EMA mutation

IV. TESTS AND RESULTS

A. Testing the algorithms for efficacy

The EA, MVO, and EMA solvers were tested for their ability

to solve Sudoku puzzles. The results are summarized in the

following sections.

In order to get comparable test results, all algorithms were set

to operate in the same manner:

 The population of all CI algorithms was limited to

‘2’. (Classic EA ordinarily has a much larger

population in order to facilitate crossover.)

 All algorithms performed crossover by relying on

asexual reproduction from a single parent.

 A large number of evaluations were allowed during

each trial (10,000.)

 Fifty (50) trials were performed for each test and the

results averaged.

1) EA performance when drawing from the domain set

In order to generate a baseline for comparison, an

Evolutionary Algorithm was used to search each blank cell

over the entire domain space {1,2,3…9}. Each candidate was

selected uniformly at random. The results are summarized in

Table 4.

of

blanks

Best fitness Trial Size

Min Mean σ Max Mean σ

10 0 0.8 1.21 3 3873 4412

20 0 10.4 9.989 35 8210 3195

30 9 24.16 6.783 36 10k 0

40 26 35.68 5.998 50 10k 0

50 23 40.58 6.32 57 10k 0

60 31 45.1 5.69 57 10k 0

80 33 44.22 5.19 56 10k 0

Table 4 -- Results of EA solver searching for "n" randomly

imposed blanks in a Sudoku puzzle and drawing from the

domain set {1..9}

All of the subsequent searches restrict the domain space that is

searched. Rather than searching all symbols {1..9} for each

cell as described by (6), a smaller set, the restricted candidate

set (7) is searched instead. The mutation mechanism varies

between the EA, MVO, and EMA algorithms.

2) EA performance when drawing from the Candidate Set

a) Convergence Overview

Figure 5 -- EA progress in solving a puzzle with 40 blanks over

the course of 50 trials and drawing from the Candidate Set

b) Summary of Results

of

blanks

Best fitness Trial Size

Min Mean σ Max Mean σ

10 0 0 0 0 1 0

20 0 0 0 0 1 0

30 0 0 0 0 228 323

40 0 9.9 5.63 18 8.9k 2.8k

50 11 22.76 4.7 32 10k 0

60 13 31.04 5.21 43 10k 0

80 31 42.42 5.62 58 10k 0

Table 5 -- Results of EA solvers searching for "n" randomly

imposed blanks in a Sudoku puzzle and drawing from the

Candidate Set

3) MVO performance when drawing from the Candidate Set

a) Convergence Overview

Figure 6 – MVO progress in solving a puzzle with 40 blanks over

the course of 50 trials while drawing from the Candidate Set

b) Statistical Summary

of

blanks

Best fitness Trial Size

Min Mean σ Max Mean σ

10 0 0 0 0 1 0

20 0 0 0 0 64 105

30 0 0 0 0 325 420

40 0 6.4 3.9 17 9.5k 1.9k

50 9 22.9 4.39 31 10k 0

60 24 34.2 4.6 48 10k 0

80 32 44.4 5.5 58 10k 0

Table 6 -- Results of MVO solvers searching for "n" randomly

imposed blanks in a Sudoku puzzle and drawing from the

Candidate Set

4) EMA Performance when drawing from the Candidate Set

a) Convergence overview

Figure 7 -- EMA progress in solving a puzzle with 40 blanks over

the course of 50 trials while drawing from the Candidate Set

b) Summary of Results

of

blanks

EMA

“r”

Best fitness Trial Size

Min Mean σ Max Mean σ

10 4/5 0 0 0 0 1 0

20 4/5 0 0 0 0 7.68 5.07

30 4/5 0 0 0 0 68.02 63.28

40 4/5 0 0 0 0 240.4 115.2

50 4/5 0 10.8 5.07 23 9952 337.8

60 4/5 19 26.64 3.53 32 10k 0

80 4/5 30 39.2 4.99 52 10k 0

Table 7 -- Results of EMA solvers searching for "n" randomly

imposed blanks in a Sudoku puzzle and drawing from the

Candidate Set

B. Comparing Solvers

Four cases were compared:

 A (baseline) Evolutionary Algorithm selecting from

the Domain Set {1..9} with uniform random mutation

 An Evolutionary Algorithm selecting from the

Candidate Set with uniform random mutation

 An MVO mutation algorithm selecting from the

Candidate Set

 An EMA mutation algorithm selecting from the

Candidate Set

Figure 8 -- End result comparison

0

5

10

15

20

25

30

35

40

45

50

10 20 30 40 50 60 80

A
ve

ra
ge

 f
it

n
e

ss
 u

p
o

n
 c

o
m

p
le

ti
o

n

Number of blank puzzle cells

Average Fitness Achieved With Various Solvers
(With 10,000 evaluation limitation)

Baseline EA-w/DS EA-w/CS

MVO-w/CS EMA-w/CS

Figure 9 -- Effort comparison

V. DISCUSSION OF RESULTS

The space to be searched by a Sudoku solver can be quite

large. A search over the entire candidate domain space

actually increases the search space considerably. While there

are 10
21

 puzzles, there 10
77

 combinations to be tested for a

puzzle with 80 blank cells. Big improvements in speed can be

obtained by restricting both the number of cells which are

experimented with and restricting the number of symbols

which must be tried within each cell.

of

blanks

Nine symbol

combinations to

be explored using

careless search

“Candidate

Set”

combinations

to be explored

10

(easy)

9*9=81 1

30

(moderate)

80

(difficult)

Table 8 – Approximate search space size as a function of puzzle

complexity

A. Effect of restricting the search space

By the time puzzles reach a nearly undefined condition with

nearly all the cells blank, the search space reaches

astronomical proportions. The challenge becomes limiting the

search space to the 10
21

 possible puzzles. The techniques used

herein do well to limit the search space to approximately 10
69

.

1) The “Candidate Set” technique

The “Candidate Set” technique has the beneficial side effect of

limiting the symbols to be tried to a smaller set, and also the

number of cells that must be experimented on. This is perhaps

best demonstrated by example.

Table 9 shows 20 randomly selected cells (in red) and the

resulting Candidate Set Quantity for each cell. Notice that the

vast majority of the cells have a single viable candidate. This

candidate is computed at the outset prior to optimization.

1 1 1 1 1 1 1 2 3

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 2 2

Table 9 -- Example Candidate Quantity for 20 randomly selected

cells

However, the savings do not hold out as the number of blanks

cells increase. Figure 10 shows diminishing returns, and

eventual loss of benefit as the number of blank cells reaches

60 (74%).

Figure 10 -- Comparative search space

These savings are then seen in Figure 8 as the difference

between the “Baseline EA-w/DS” and “EA-w/CS” curves.

1

10

100

1000

10000

10 20 30 40 50 60 80 A
ve

ra
ge

 n
u

m
b

e
r

o
f

e
va

lu
at

io
n

s
to

 c
o

m
p

le
ti

o
n

Number of blank puzzle cells

Average Effort Expended With Various
Solvers(With 10,000 evaluation limitation)

Baseline EA-w/DS EA-w/CS

MVO-w/CS EMA-w/CS

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100

C
e

lls
 t

o
 b

e
 m

o
d

if
ie

d

Number of Blanks

Reduction brought by Candidate Set

Baseline Candidate Quantity greater than 1

B. Comparing mutation techniques

All three techniques use genetically inspired CI techniques.

None of them guarantee convergence. Figure 8 shows that the

techniques that attempt to guide the mutation process perform

better than the technique that does not. The MVO performs an

analysis of the population at hand to compute the direction of

the mutation. The EMA performs an analysis of the recent

historical population to synthesize individual performance

statistics. The EMA statistics could be viewed a Probability

Distribution Function which guides the selection of the

candidate. The mutation technique proposed in Figure 4

selects a random “EMA_Contribution” to apply to every

mutated gene in the offspring. The use of a random

contribution seemed to serve the Sudoku optimization well.

For problems which are more linear and predictable in nature,

a constant value could be used which is a function of the

progress toward resolution.

One pitfall of the EMA approach is that rapid wholesale

mutation of the chromosome in a problem in which

dimensions are interrelated could produce an irrelevant

history, and thus a series of choices which are no better than

uniform random selection.

For this particular problem a sensitivity analysis to the value

of “r” finds that it matters very little as long as
As “r” falls within or it tends to

lose its effect. It could be argued that because the “r” value

affects the depth of history retained in the average, that “r” in

(13) should increase over the course of the search as the solver

transitions from “exploration” to “exploitation.” This didn’t

appear to be necessary because the data itself stabilizes as the

solution becomes apparent. The history becomes relatively

consistent as the solver converges on a solution, so looking at

a deeper or shallower history isn’t necessarily helpful.

Another comparison is that the MVO algorithm introduced

in [3] has a mechanism to convert discrete values into a

normalized continuous range. Some effort was needed to make

it work for discrete values. The EMA algorithm introduced

here works naturally with discrete domain values. A discrete-

to-continuous transformation would be needed to apply the

technique to continuous domain values. One such approach

was developed in [3], is shown in Figure 2, and could be used

for continuous applications of the EMA.

VI. CONCLUSION AND FUTURE WORK

Imposing constraints to reduce the search space is found to

hold value in efficiently finding solutions in much the same

way as learning from ones failures. The EMA algorithm

introduced here attempts to identify dimension candidates

which appear to perform poorly and then avoid them.

The nature of the Sudoku puzzle is such that the dimensions

are interrelated. Of all of the fitness functions available,

individual cell fitness was used to guide the EMA. Future

work could involve study of a problem in which the

dimensions are independent of each other, and the use of the

overall chromosome fitness to guide the EMA. Future work

could also involve the application of the EMA technique to a

problem which has continuous variables. The technique

should also be tested on a problem which has multiple

minima. A larger chromosome population than used here

should be used where multiple minima exist.

It is interesting to note that while CI techniques are

genetically inspired, the forecasting and selection technique

presented here of an “exponential moving average” finds its

roots in the world of finance. [8] The technique was found to

be useful here in guiding the mutation process away from

choices which have shown to be unproductive. There are

many other forecasting techniques from the world of finance

that could be applied to CI mutation and candidate selection.

[9] [10] [11] [12] Ultimately we find that when searching a

large space it is advisable to reduce the search space where

possible, and guide the mutation process to avoid

unproductive search areas.

VII. ACKNOWLEDGEMENT

The primary author would like to thank Benjamin Hammond

for his promotion of the “exponential moving average” within

Aclara as a means of measuring average signal strength.

VIII. REFERENCES

[1] Chevron Corporation, “Suduko Daily,” 2011. [Online]. Available:

http://www.sudokudaily.net/instructions. [Accessed: 30-Sep-2011].
[2] L. Aaronson, “Sudoku Science,” IEEE Spectrum, vol. 43, no. 2, pp. 16–

17, Feb. 2006.

[3] I. Erlich, G. K. Venayagamoorthy, and N. Worawat, “A Mean-Variance
Optimization algorithm,” in 2010 IEEE Congress on Evolutionary

Computation (CEC), 2010, pp. 1–6.
[4] B. Felgenhauer and F. Jarvis, “Enumerating possible Sudoku grids,”

20-Jun-2005. [Online]. Available:

http://www.afjarvis.staff.shef.ac.uk/sudoku/sudoku.pdf.
[5] Shanchen Pang, Eryan Li, Tao Song, and Peng Zhang, “Rating and

Generating Sudoku Puzzles,” in 2010 Second International Workshop

on Education Technology and Computer Science (ETCS), 2010, vol. 3,
pp. 457–460.

[6] J. S. Provan, “Sudoku: Strategy versus Structure,” The American

Mathematical Monthly, vol. 116, no. 8, pp. 702–707, Oct. 2009.
[7] H. Charles C., “Forecasting seasonals and trends by exponentially

weighted moving averages,” International Journal of Forecasting, vol.

20, no. 1, pp. 5–10.
[8] F. R. Johnston and P. J. Harrison, “Discount Weighted Moving

Averages,” The Journal of the Operational Research Society, vol. 35,

no. 7, pp. 629–635, Jul. 1984.
[9] J. Taylor, “Smooth transition exponential smoothing,” Journal of

Forecasting, vol. 23, no. 6, p. 385, Sep. 2004.

[10] E. Uysal, F. Trainer, and J. Reiss, “Revisiting Mean-Variance
Optimization,” Journal of Portfolio Management, vol. 27, no. 4, p. 71,

2001.

[11] O. L. V. Costa and R. B. Nabholz, “Multiperiod Mean-Variance
Optimization with Intertemporal Restrictions,” Jrnl of Optimization

Theory and Apps, vol. 134, no. 2, pp. 257–274, Jun. 2007.

[12] H. Markowitz, “Portfolio Selection,” The Journal of Finance, vol. 7,
no. 1, pp. 77–91, Mar. 1952.

