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Abstract—In this paper, we present an evolutionary approach
for extracting a model of flood prediction from hydrological
data observed timely on water heights in a river watershed.
Since this kind of data recorded by sensors on river basins is
highly scarce and hopefully much unbalanced between cases of
floods and non-floods, we have adopted the notion of aggregate
variables which values are computed as aggregates on raw data.
An evolutionary algorithm is involved to allow selecting the best
sets - juries of classifiers- of such variables as predictive variables.
Two real hydrological data sets are trained and they both show
the efficiency of the method compared to traditional solutions for
prediction.

I. INTRODUCTION

River flooding produces big disasters all over the world
with important damage and loss of lives. For instance, in
1931 the flood of the Yellow river in China and in 1993 the
flood of the Mississipi river were highly devastating. More
recently, in 2009 the flood of the Lezarde river, studied in
this paper, produced destructive inundations and had tragic
consequences in the island of La Martinique in the Caribbean
area. Beyond those primary major effects, secondary results
on transportation systems, disruption of gas and electric
services or destruction of wildlife cause much concern to
regional and environment agencies that are expecting accurate
and reliable forecasting systems.
Floods like other geophysical signs like earthquakes,
rainfalls and hurricanes are hardly predictable since they
are governed by a large number of phenomena and they
are non linear systems. They are depending to various
degrees on water heights, flow discharge, rainfalls, ground
topography, infiltration, snow and ice melt or sea tides.
Among hydrological prediction systems, earliest models were
deterministic physical models [1], [2] that use differential
equations to represent the water runoff in the basins and are
quite complex. They need a wide volume of spatial data and
are known to provide prohibitive computational time. More
recent approaches have explored the efficiency of artificial
neural networks and stochastic models [3], [4] that do not
consider physical transformation mechanisms in water flows
but integrate the random aspect of these phenomena.

As argued by Damle et al. [3] flood prediction is a different
issue from flow forecasting. Indeed it represents an even more

challenging issue since events rather than values are predicted.
To ensure accuracy, flood modeling needs detailed and uni-
formly distributed recorded data observed on different sensors
along the basin. But data scarcity is known as a recurrent
problem in hydrological studies. Hopefully non-flood states are
much more frequent in watersheds but this situation produces
very parsimonious relevant data such that the task is hard to
extract reliable and stable models. Another characteristic is
the specific profiles of watersheds governed by typical regional
features such as snow melt in mountainous basins or hurricane
phenomena in tropic regions for instance that command to
design customized solutions. Current solutions are mostly fitted
to specific basin.

We have investigated a flexible stochastic approach
designed to address these issues. Our final objective is to
propose a new model for this kind of natural systems that
we can assume to be complex since factors like water height,
flow, rainfall, saturation rate, slope rate or ground types that
behave rather independently seem to infer collectively the
flood phenomenon. The model flexibility is expected in order
to obtain a solution able to be applied on different basins.
One practical advantage with such a model will be on a long
term to provide sufficient information for the optimization of
limnimetric and rainfall sensor locations on the river basin.
The complex system approach adopted consists in a first
stage on applying data mining and optimization techniques in
order to extract the most relevant knowledge on each factor
implied. A second stage will be to simulate these individual
models and merge them as multi-agents in order to observe
possible emerging collective phenomena inducing similar
floods as those observed.

In this paper, we focus on the first stage of the project to
propose an extensible method in order to optimize the selection
of features for predicting high limnimetric or discharge level
overflow on one of the last sensors downstream a river bed.
This sensor state may be considered as the prediction variable.
We assume thus that a threshold overflow on this sensor -
called event sensor - is equivalent to a flood occurrence. The
challenge is not only to globally optimize the system predictive
performances but more precisely and according to a decreasing
priority:
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• to ensure the first requirement that the FN (False Nega-
tive) rate has to be very low since this kind of error may
have dramatic consequences,

• to extend as much as possible the flood anticipation time,
• not to neglect the FP rate to ensure system relevance.
We have conducted experiments on two sets of data from

two very different contexts, a long and slow event watershed
and a short and very fast event watershed. In both cases,
height or discharge water levels were recorded by sensors
located along the river course. Flood alarms are currently
triggered when one sensor is recording a level reaching a
predefined threshold. The current systems generally perform
rather well to predict high values on the whole river with low
rates of false positives (FP) and false negatives (FN). But the
inherent phenomenon of flood in the river basin surroundings
is not well managed. With same water levels observed on
same spots at a same time before a flood, sensitive areas down
below the river bed may be under water or not depending on
other factors obviously. Another long-term issue to address is
thus to study the whole mechanism that result in flooding all
these areas. For now, in the current stage, we are looking for
an explicit and comprehensible model that provides detailed
knowledge on the flooding process.
This work was initiated and funded by the General Council
of the island of La Martinique in French West Indies who
is much concerned by river flood problems since strategic
places in the island (main roads, airport, industrial areas) are
threatened.

A classical approach could be to take natural variables
that represent limnimetric or discharge values observed
upstream for predicting a high level on this given sensor
downstream. And indeed this kind of predictive models may
apparently perform well as we show in further sections. But
they obviously cannot be considered as relevant and sound
solutions since they are learnt on punctual and sparse data. We
show in this paper how to define much more relevant variables
that integrate levels observed on a time period. Thus we
consider variables, called aggregate variables, that represent
aggregate values on a time period - called aggregation period
- rather than punctual values. These variables are defined
by a set of parameters that give more flexibility allowing to
consider different intervals of observation and prediction. The
approach is extensible to other numeric records like rainfalls
data or sea tides.

In this work, we have trained available data that represent
real levels recorded by sensors all along two non similar river
courses. To address the issue of data scarcity, we have applied
an optimization technique in order to select the best aggregate
variables that represent aggregates of source raw values. An
evolutionary algorithm has been employed to search for the
best sets (or juries) of predictive variables among the wide
space of potential solutions. The experimental results we
obtained show good performances by comparison to standard
predictive solutions. They demonstrate the predictive power

of aggregate variables grouped in juries of classifiers.

The paper is organized in five sections. Section II describes
source data, the data pre-processing method and a first simple
exploratory analysis based on traditional predictive algorithms
as a reference. Section III introduces the principles of the
evolutionary approach based on classifiers-that implement the
concept of aggregate variables- and juries of classifiers. In
Section IV we discuss experimental results obtained and in
Section V we conclude and present future works

II. SOURCE DATA

The two data sets involved in this study are:
• a set of limnimetric levels (gage heights) recorded on

several spots along the Lezarde river in the island of La
Martinique, French West Indies by the departmental flood
alert system (SDAC),

• a set of discharge values observed at multiple spots of
the Missouri, Grand river and its affluents, from the U.S.
Geological Survey (USGS) National Water Information
System 1.

In the following we call them SDAC data and USGS data sets.
In a data-mining process, a particularly important step is the
data pre-processing as it allows to clean and transform the raw
data that are frequently noisy, may be unreliable and contain
missing values and are generally in a inadequate format for
learning algorithms, in order to generate good training and test
set candidates.
In this section, we first describe the source data and explain
how they were pre-processed, then we present as a reference
for further comparisons, the performances obtained by tradi-
tional classification algorithms on simple (i.e. non aggregate)
variables.

A. Raw data

The SDAC source data, after format standardization,
consists of eight files corresponding to eight sensors
distributed along the river basin as showed by figure 1. The
average distance between sensors is about five kilometers.
Each one registers the water level in millimeters (mm) at
its location every 6 minutes. The data files contain these
periodical measurements for the period January 2006 - August
2010.

Among the very large amount of data available on the USGS
National Water Information System for each state of the USA,
we picked-up a set of data corresponding to measures recorded
by seven stations located along the course of the Grand River
or some of its affluents such as Thompson River, Missouri
as illustrated by figure 2. These measures represent discharge
values (ft3/s) and are generally recorded every 15 minutes for
a time period ranging from October 1994 to September 2010.
As we will see in the following, there might be sometimes
rather large time ranges during which data are unavailable for

1http://waterdata.usgs.gov/nwis



Fig. 1. Schematical view of La Lezarde sensors layout

Fig. 2. Schematical view of Grand River sensors layout

one station.
The USGS dataset is much larger than the SDAC and its topo-
logical, meteorological and hydrological characteristics are
significantly different. We have selected these two examples
that are quite representative of real watersheds in order to
train our approach on two very different samples to check its
generalization ability.

B. Data pre-processing

Missing data due to sensors malfunctions are the more
common irregularity that we found in these two data sources.
We observed an amount of missing values ranging from
12.2% to 56.8% (31.5% on average), depending on the sensor
considered, in the SDAC case, and from 16.6% to 76.6%
(49% on average) in the USGS case. These missing records
may correspond to short (minutes, hours) and long (weeks,
months) time periods. When the period length was short
enough (less than six times the default interval), we applied a
linear interpolation technique to generate the missing values.
We have indeed observed linear behaviours on such periods.
The ith missing value di (1 ≤ i ≤ 5) between d0 and dn+1

was computed as di = d0 + i×R, with R = dn+1−d0
n and n

the number of contiguous missing values. After this step, the
average amount of missing data decreased to 30.2% in SDAC

data and to 30% in USGS data.
An even more important issue was the presence of erroneous

data. By means of data visualization we have found some
abnormal behaviors, such as sudden level risings for only one
station while the others remain normal. Since unreliable data
can easily lead to erroneous conclusions, we have manually
eliminated at least the more obviously wrong fragments for
each sensor.

In the following, we call event sensor - target station -,
the sensor - or station - on which we want to predict flood
or non-flood events and measure sensor, a sensor which
data are used for prediction. Several elements may influence
the choice of the event sensor, such as the inundation risks
of the surrounding region, the number (and quality) of
both event types available to generate efficient train and
test datasets or the amount of upriver available data. In
this paper, experimental results have been obtained with
Soudon as the target sensor on SDAC data and 06902000 as
target station on USGS data, with the possibility of a future
application of the same methodology to other downriver spots.

In order to label the data for supervised classification, we
have compared each record to the alert threshold set up for the
target station in the current system: when a value overtakes the
threshold, we label it as the beginning of a Flood (F) event. As
we are interested only in the conditions that precede the very
beginning of the floods, we have discarded threshold overflows
that represent the continuation rather than the beginning of an
event. As it may happen that during a flood event, water levels
vary several times over and under the alert threshold, we have
defined a safe threshold under which we are sure that the event
ended. We consider as a Non-flood (N) event any value under
the alert threshold with the only constraint of being far enough
from a positive case, i.e. at least during a period P before its
beginning or after its end.

Table I shows the amount of threshold overflow events
found in selected SDAC and USGS stations. One can see the
scarceness and unbalanced distribution of positive events: 10
to 26 compared to the 250000 points (on average) in each
data file for the four and a half year period studied in the first
case and 6 to 95 for 400000 (on average) points on sixteen
years in the second case. Consequently, the large majority of
the data represents non-flood events, so that we had to find a
way to reduce this very high class imbalance. Since rivers are
often quiet, if we randomly pick-up non-flood events among
the whole available data, most of them will have low measures
which will not help to discriminate high non-flood events from
flood events. This is the reason why we chose to apply a
uniform sampling technique which consists in splitting the
complete range of possible values (under the flood threshold
in this case) in equal intervals and selecting uniformly samples
in each interval.

C. Exploratory analysis

In order to get a first estimation of which kind of per-
formances could be obtained from these data with simple



TABLE I
THRESHOLDS AND OVERFLOWS OF DOWNRIVER STATIONS

Period Station Threshold Overflows
Soudon 2100 mm 26

2006-2010 Spitz 2700 mm 10
Pont RN1 2900 mm 8
06902000 22000 ft3/s 95

1994-2010 06897500 24100 ft3/s 42
06899500 39000 ft3 6

approaches, we have generated simple (non aggregate) datasets
containing on each line the values of each measure sensors
taken δt minutes before a flood (F) or non-flood (N) event
occurring on time T on the event sensor. Since there is a
time shift δt of earliness between times when the prediction
values and the event are observed, the event sensor may be
also used as a measure sensor. When a measure sensor value is
not available, it is replaced by “?”. Table II shows an extract of
such a dataset. The first column corresponds to the measure
sensors values whereas the last one represents the class to
predict (F or N).

TABLE II
SAMPLE OF A SIMPLE DATASET: HEIGHT LEVELS ON MEASURE SENSORS
RECORDED δt MINUTES BEFORE A FLOOD OR NON-FLOOD EVENT ON AN

EVENT SENSOR

Sensor 1 2 ... n class

Height levels

257 699 ... 1373 F
? 582 ... 350 N

...
373 ? ... 1244 F
678 903 ... 1618 F

We applied different standard classification algorithms
available on the Weka2 data-mining platform, such as C4.5
[5], Best First Tree (BFT) [6], Functional Tree (FT) [7],
Naı̈ve Bayes (NB) [8] or Multilayer Perceptron (MLP) (neural
network), on our generated datasets. Tables III, IV and V
shows average performances obtained by these algorithms for
different δt earliness values on SDAC and USGS data. The
first column gives the δt earliness value, the second column
gives the name of the algorithm and the last column gives five
rates: False Positive (FP), False Negative (FN), True Positive
(TP), True Negative (TN) and weighted average accuracy(
Acc = |Flood|∗TP+|NonFlood|∗TN

|Flood|+|NonFlood|

)
rates. Since the number

of flood events available in SDAC data is too low, we provide
performances of the different methods on the training set
only. It was indeed unreliable to split the original dataset in
separate sets for training and test phases. However, for the
sake of completeness, we also give performances obtained by
10-fold cross validation on the training set. In the USGS case,
we have randomly separated the datapoints into a learning
and a test dataset. Thus the performance values given in this
case correspond to those obtained on the test dataset.

2http://www.cs.waikato.ac.nz/ml/weka/

We can observe that in both cases, the true negative (TN)
rates stay rather high (more than 90% on average) whatever
the δt period is, whereas the true positive rates (TP) are more
sensible to this period. Globally, we can see that the more
δt earliness value increases, the more the TP rates decreases
(from 84.2% to 0% in SDAC case and from 74.2% to 19.4%
in USGS case). Since we kept an imbalance between the two
classes (about 5 to 10 Non-floods for a Flood) to reflect the
reality, the weighted average accuracy (Acc) stays rather high,
but the most important objective to reduce FN (or optimize
TP) is far from being reached even for low earliness values.

TABLE III
LEARNING PERFORMANCES (%) OF CLASSIFICATION ALGORITHMS ON

SDAC DATA.

δt Algorithm Performances
FP FN TP TN Acc

60

C4.5 0 100 0 100 90.7
FT 2.2 36.8 63.2 97.8 94.6

BFT 0 15.8 84.2 100 98.5
MLP 2.2 36.8 63.2 97.8 94.6
NB 13.5 36.8 63.2 86.5 84.3

120

C4.5 0.5 68.4 31.6 99.6 93.1
FT 1.1 73.7 26.3 98.9 92.2

BFT 0 100 0 100 90.7
MLP 0 73.7 26.3 100 93.1
NB 14.6 52.6 47.4 85.4 81.9

TABLE IV
10 CROSS FOLD VALIDATION PERFORMANCES (%) OF CLASSIFICATION

ALGORITHMS ON SDAC DATA.

δt Algorithm Performances
FP FN TP TN Acc

60

C4.5 1.5 80.8 19.2 98.5 91.3
FT 2.3 50 50 97.7 93.4

BFT 2.3 61.5 38.5 97.7 92.4
MLP 4.2 69.2 30.8 95.8 90
NB 11.4 26.9 73.1 88.6 87.2

120

C4.5 1.1 80.8 19.2 98.9 91.7
FT 2.3 73.1 26.9 97.7 91.3

BFT 3.4 76.9 23.1 96.6 90
MLP 1.5 73.1 26.9 98.5 92
NB 11.8 53.8 46.2 88.2 84.4

III. EVOLUTIONARY APPROACH

The basic principle we will follow for flood prediction
using limnimetric or discharge data is to consider the water
levels during a time interval and to try to predict whether an
overflow is going to take place some minutes (or hours) later
in a station’s proximity. From a data mining perspective, the
problem is about classifying a data vector, or actually a set
of data vectors, as precursor of a flood event or not. In order
to do so, it’s necessary to find the regularities among flood
previous conditions, that differentiate them from non alarming
conditions.



TABLE V
VALIDATION PERFORMANCES (%) OF CLASSIFICATION ALGORITHMS ON

USGS DATA.

δt Algorithm Performances
FP FN TP TN Acc

60

C4.5 2.8 33.3 66.7 97.2 91.9
FT 2.8 30 70 97.2 92.4

BFT 5.6 26.7 73.3 94.4 90.7
MLP 2.8 30 70 97.2 92.4
NB 2.8 26.7 73.3 97.2 93

180

C4.5 1.4 35.5 64.5 98.6 92.5
FT 0.7 35.5 64.5 99.3 93.1

BFT 1.4 35.5 64.5 98.6 92.5
MLP 4.9 35.5 64.5 95.1 89.6
NB 1.4 25.8 74.2 98.6 94.2

360

C4.5 2.8 45.2 54.8 97.2 89.6
FT 2.1 29 71 97.9 93.1

BFT 2.8 51.6 61.3 48.4 97.2
MLP 9.2 38.7 61.3 90.8 85.5
NB 2.1 29 71 97.9 93.1

720

C4.5 4.9 77.4 22.6 95.1 82.1
FT 1.4 61.3 38.7 98.6 87.9

BFT 2.8 80.6 19.4 97.2 83.2
MLP 8.5 58.1 41.9 91.5 82.7
NB 4.9 51.6 48.4 95.1 86.7

A. Simple classifiers

Our first and simpler classification method is based on an
aggregate variable analysis. This approach aims to characterize
the data for a given time interval by applying a mathematical
operation to the records of just one station. For our case,
the mathematical operation, called aggregation function, can
be one of the functions “maximum”, “minimum”, “average”,
“standard deviation” and “slope” (the latter refers to the slope
of a linear regression line). A simple aggregated variable-
based classifier or “simple classifier” will assign a boolean
(alarming/normal) classification to a data vector according to
the comparison between the aggregation function result and a
fixed threshold.

The parameters that define a simple classifier are: Station;
Aggregation function; Aggregation interval; Earliness; Thresh-
old; Comparison sense (≤, ≥). Exhaustive exploration of all
possible value combinations for the classifier parameters isn’t
possible due to the obvious combinatorial explosion: 7 or 8
(according to the data set) possible stations, 5 implemented
aggregation functions, numerous conceivable aggregation in-
terval lengths, nearly any imaginable comparison threshold. . .

An evolutionary algorithm was used to search for good
parameter combinations for simple classifiers. Indeed, evolu-
tionary algorithms, and metaheuristics in general, are partic-
ularly adapted to this kind of optimization problems, mixing
discrete and continuous variables. When applying evolutionary
algorithms to solve a problem, one needs to design three
elements: the coding of individuals, the fitness function and
the genetic operators.

We adopt a natural coding for the individuals, i.e., we
directly handle classifier parameters by genetic variables.
Some of them are boolean or discrete variables with a reduced
domain, other are integer variable with a larger domain, and

TABLE VI
SIMPLE CLASSIFIER PARAMETER MUTATION PROBABILITIES

Parameter Type Mut. rate Domain
Threshold real 0.15 real
Station discrete 0.005 number of stations
Comparison sense boolean 0.005 0,1
Agg. function integer 0.05 [30,720]
Earliness integer 0.025 [δt, δt+360]
Agg. Interval integer 0.05 number of agg. functions

one of them is a real parameter. Table VI lists all the variables
and their types.

As mutation operator, we have implemented one that mod-
ifies each characteristic of a classifier independently and with
different probabilities. Some changes tend to modify radically
the behavior of a classifier, such as an aggregation function
or station replacement. For example, the set of intervals for
which the slope of the levels at Spitz is greater than 5 has
nothing to do with that of the intervals with an average level
greater than 5 at Spitz. As a second and extreme example,
in the case of the comparison sense, its modification totally
inverts the classification. However, slight variations can be
made to other parameters as the comparison threshold or the
aggregation interval producing a much more gradual change
in classifier’s behavior. In order to make more frequent the
mutations that affect more slightly the classifier, we have
established the mutation probabilities showed in table VI for
each one of its parameters. Each variable mutates according
to its type. Boolean and discrete variables mutate uniformly in
their domain. Integer and real variables mutate with a normal
law (discretized for integer) centered on the current value of
the variable with a fixed standard deviation, 50 for the real
variable and domain length divided by 6 for the integer ones.

As a consequence, mutations are not going to be too
frequent and most of the time they will affect only one or
two of the least sensible characteristics of the individuals,
thus avoiding too chaotic movements in the search space.
The expected mutation probability of a precise individual in a
generation is 0.26.

Our first impression was that a variable-wise crossover
would not be efficient, and some preliminary tests comfort
us in this impression.

The fitness of an individual is a linear combination of the
classification correctness on a learning set composed of event
(positive) cases and non event (negative) cases. For each row
in the learning set, there are 5 possible responses:

• true positive (TP): the point is an event and is correctly
classified

• true negative (TN): the point is a non event and is
correctly classified

• false positive (FP): the point is an event and is incorrectly
classified

• false negative (FN): the point is a non event and is
incorrectly classified

• unclassified (U): data are unavailable so the classifier can
not compute its response



TABLE VII
COEFFICIENTS USED FOR FITNESS COMPUTATION

Coefficient Value
TP 10
TN 1
FP -2
FN -15
U -2

Note that if data are missing for more than a half of the
aggregation period for a case, we decide that the classifier
responds the last one, i.e. unclassified. Thus, the fitness (f ) of a
classifier is the linear combination of the number of responses
of each type (nX ), weighted by coefficients (cX ) that allow
to set their relative importance according to the objective :

f = nTP ∗cTP +nTN ∗cTN +nTP ∗cFP +nTP ∗cFN +nU ∗cU
The coefficients values are given in table VII.

The evolutionary algorithm used elitist replacement, which
grants that every generation’s best individual will be at least
as good as the best of the previous one.

Experiments exhibit poor results and low performances, for
two main reasons. First, as we shown in section II, some
sensors may be unavailable for varying period of time, from
short ones to longer ones. If the simple classifier follows
a sensor that becomes unavailable, it looses its only source
of information, and become unable to compute a prediction,
whatever its accuracy during normal period. Second, floods
may occur from only one of the affluents of the river,
especially in Martinique, where rainfalls are very localized.
Listening only to only one station, as simple classifiers do,
prevents to know what happens on other affluent. This leads
us to consider jury of classifiers instead of single classifier.

B. Classifier juries

A simple classifier characterizes a data interval taking into
account the information of only one station. It is hence very
sensible to the errors or the absence of data for its particular
station: even if there is high quality data for an interval
from most of the sensors, the noise or lack of data in a
specific station can easily lead to erroneous classification.
The combination of several simple classifiers comes in as a
resource for improving the classification robustness.

If the causes of different sensor malfunction are independent
enough, the probability of simultaneous failure of several
stations should be smaller than the individual failure proba-
bilities. Thus, we can hope that from a set of classifiers not
necessarily based on the same station information, there is
often an important fraction of them that is not affected by
sporadic data faults. Following that idea, we chose as simple
classifier combination method the principle of a jury. In order
to make the prediction for a moment, each simple classifier of
a jury performs its individual classification of precedent data
(with respect to its station, its aggregation interval, etc) and
the jury’s final classification is decided based on majority rule.

Evaluating the quality of a jury of classifiers is rather similar
to the simple classifier case: each simple classifier classifies

TABLE VIII
SIMPLE CLASSIFIER PARAMETER MUTATION PROBABILITIES WHEN IN

JURIES

Parameter Mutation probability
Threshold 0.15 / 8 = 0.01875
Station 0.005 / 8 = 0.000625
Comparison sense 0.005 / 8 = 0.000625
Aggregation function 0.05 / 8 = 0.00625
Earliness 0.025 / 8 = 0.003125
Aggregation Interval 0.05 / 8 = 0.00625

TABLE IX
NUMBER OF EVENT CASES AND NON-EVENT CASES OF THE TRAIN SET

FOR SDAC AND USGS, WITH THE MAX FITNESS.

Data event cases non event cases max fitness
SDAC 19 185 375
USGS 64 335 975

the elements of a reference set and the jury fitness is calculated
from the number of positive/negative answers.

The implemented evolutionary algorithm for the optimal
juries construction has a population of juries instead of simple
classifiers. Each individual of the population is a vector of
simple classifiers. The amount of classifiers per jury is a
parameter that doesn’t vary along the evolution process. The
juries of the initial population are made of totally random
simple classifiers. The mutation operator implemented for this
case introduces variation to a jury by executing on each of its
members the mutation logic used in the simple classifier case.
In order not to change many of the members of a jury in a
single mutation operation, the classifier parameters mutation
probability have been reduced as shown in table VIII.

The probability that a particular 30 members jury mutates
in a generation is 0.67.

Crossover is classifier-wise, i.e., it recombines classifiers
between two juries, in the 1-point crossover way, and it doesn’t
recombine internal parameters of classifiers.

Elitist replacement was also used for the classifier jury
evolution case.

IV. EXPERIMENTAL RESULTS

Every experience presented in this section was run 50 times
with a different random number generator seed in order to
get a valid estimator of the behavior of the algorithm. Unless
stated differently, the size of the population is set to 100,
the crossover rate is 0.5 and the evolution goes for 5000
generations.

The optimal fitness values are given in table IX.

A. Simple classifiers

As expected, simple classifiers have poor results, on both
rivers. For instance, with the earliness of 60 minutes, on
USGS data, the average fitness over 50 runs is 603.4, which
is far below 975. It is the same for SDAC data where simple
classifiers fitness reach, on average 178.48, to be compared
with the max fitness value, 375. If the number of generations is
increased, there are only few fitness improvements, as it can be
observed on figure 3. Analysis of the details shows that there
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Fig. 3. Evolution of the average fitness over 50 runs on the USGS data with
min earliness set to 60.

are on average 32.66 (about 8%) cases that are unclassified
on the train set. This proportion of unclassified cases rises to
10% on the validation set. This is an explanation of the low
results of the simple classifier model.

B. Classifier juries

On figures 4 and 5, we plot the fitness of the jury according
to its size, for different earliness value. As expected, the higher
the earliness is, the lower are the performances.

Examining evaluation detail for the USGS data with an
earliness set to 360, for jury size superior to 10 there are no
more unclassified cases on the learning set, and very few for
the validation set (the proportion is 0 for size above 30).

Table X shows the validation performances obtained on
USGS data with several jury sizes. Except for the second
column, it follows the same schema than tables III, IV and
V. For each δt value, we can see that the true positive rates
are significantly higher than in our first approach. For example,
with an earliness of 720, values are ranging from 54.5 to
71.3 (22.6 to 48.4 for simple variable classification). The true
negatives rates are a little bit lower. However, as said before,
our priority is to reduce the false negative rates ( maximizing
TP) since the non prediction of a real flood event have more
disastrous consequences than the prediction of a false flood
event.

Figure 6 shows the true negative and true positive rates on
validation set for USGS data with an earliness of 360. One can
observe that when the jury size increases the true negative
rate also increases but the true positive rate decreases. For
the learning set these rates, are for the size 70 very close
to 100%. Further investigations are needed to understand this
phenomena.

V. CONCLUSION

In this paper, we have address the flood prediction issue
according to a stochastic approach and by means of aggregate
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TABLE X
PERFORMANCES (%) OF CLASSIFIER JURIES OF DIFFERENT SIZES, ON

USGS DATA.

δt Jury size Test
FP FN TP TN Acc

60
5 12.1 8.3 91.7 87.9 88.6
20 6.8 13.7 86.3 93.2 92
35 5.6 17.4 82.6 94.4 92.3
55 3.3 18.9 81.1 96.7 93.9
70 3.3 18.5 81.5 96.7 94

180
5 13.8 12.5 87.5 86.2 86.4
20 7.6 22.3 77.7 92.4 89.8
35 5.8 24.9 75.1 94.2 90.8
55 3.1 21.7 78.3 96.9 93.6
70 3.2 19.7 80.3 96.8 93.8

360
5 15.3 18 82 84.7 84.2
20 10.7 22.8 77.2 89.3 87.1
35 9.3 25.6 74.4 90.7 87.8
55 4.7 26.4 73.6 95.3 91.4
70 4.6 26 74 95.4 91.6

720
5 29.3 28.7 71.3 70.7 70.8
20 19 38.8 61.2 81 77.5
35 14.6 45 55 85.4 79.9
55 9.2 45.5 54.5 90.8 84.3
70 11.5 41.5 58.5 88.5 83.1

variables. The objective is to be able to classify with accuracy
and reliability, current situations of an hydrological system in
two classes, flood alert or quiet situation, from past states of
the system, given that watersheds may be very different from
one to another, but are all sharing the same sparseness of target
events. Our method is characterized by three parameters:

• the concept of aggregate variables, i.e. variables which
values are aggregate over a period of time, instead of
being punctual ;

• simple linear classifiers teamed in juries ;
• an evolutionary algorithm to design best juries.

We have shown that the first point allows to smooth irregulari-
ties due to uncertainty and missing data. It provides also some
flexibility in time, an advantage which is much valuable since
the relation between values read on a sensor and the trigger
of an alert is stochastic by nature.
The second point is critical, particularly in flood prediction,
characterized by the scarcity of the data due to unavailability
of some sensors over large period of time. Combination of
aggregate variables in a jury is thus more efficient to cover
the different dimensions of the flooding system than standard
models based on a reduced set of variables. Moreover, the
jury model brings together simplicity and expressiveness.
The complexity of the juries space, implied by the number
of parameters to set and their different types (discrete or
continuous) justifies the choice of the last point.

We have demonstrated that our method shows both adaptiv-
ity and robustness. Indeed the two rivers on which we made
predictions have different profiles. The first river with very fast
and short flood events. The second river undergoes slower and
longer ones. Moreover, data are of different kinds, limnimetric
or discharge values. In both cases, we succeed in finding good
predictor, despite the scarcity of the data.

From the data mining point of view, future work on a
data set enriched by new recorded values, should allow to
better understand the mechanisms that produce such differ-
ences between learning and test performances, and to reduce
them. Our experiments have shown that this difference could
be important, either with our stochastic method or with
classical classification methods. Obviously, true positive rate,
true negative rate and earliness are antagonist objectives. It
would be interesting to investigate multi-objective techniques
to optimize them concurrently.

From the artificial evolution point of view, we plan to work
on understanding the relation between performances and the
jury size. Fitness landscape analysis will certainly highlight
this question. Our method lays between parametrized models
setting, where the objective is to find the parameters of a fixed
model, and free models discovery, as in genetic programing,
where the structure of the model has to be searched along
with its parameters. The former are simpler and the latter are
more adaptive. One track to explore will be toward genetic
programming if we allow variable jury sizes in the population.
In this case, the system can adapt its expressiveness to the
problem under consideration. However, genetic programming
issues such as bloat will certainly arise.
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