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Abstract— Determining safe aircraft trajectories that avoid
hazardous weather regions and other aircraft while efficiently
using the available airspace is an important problem. Although
tactical weather forecast maps have been available, their use
in automated aircraft trajectory generation has not been
fully explored or implemented. We consider aircraft trajectory
generation using forecast data available from the Corridor
Integrated Weather System product. The forecasts, updated
at regular intervals, are used to design no-fly regions. We
propose a receding horizon trajectory generation based on
the dynamic nature of the forecast. Our method uses current
environment information and incrementally updated forecast
to update and optimize the trajectories. Simulations are shown
based on forecast weather and indicate the advantage of taking
into account time-varying forecasts in the planning horizon.

I. INTRODUCTION

The use of weather forecasts in trajectory planning and

control of aircraft has clear importance and applicability.

Aside from causing delays and inefficiencies costing the

United States economy billions of dollars [19], weather is a

contributing factor to thirty percent of all aviation accidents

[1]. In recent years weather forecasts with increasing accu-

racy and resolution for the national airspace have become

available, and their utilization in air traffic control has also

begun recently. Currently, in a typical commercial flight,

aircraft routes are planned in advance, using fixed predefined

waypoints. During the flight, the weather map along the route

is evaluated. In some cases, pilots reroute their flights to

avoid storms, while in other cases, the air traffic controllers,

who have access to detailed weather forecasts, may issue

warnings or commands to the pilot to avoid flying through

dangerous storms. In either case, the available forecast in-

formation is not yet used in an automated way to plan the

aircraft trajectories in their en-route phase.

Flying through well-defined routes connecting fixed way-

points simplifies the problem of conflict resolution and air

traffic management; however, it also does not efficiently

use the airspace. The Next Generation (NextGen) air traffic

project envisions accommodating an increased amount of

air traffic safely and efficiently [5]. One limiting factor in

increasing the capacity of the airspace is the controller’s

workload. Hence, to achieve the NextGen objective, we

propose to automate some of the air traffic control tasks

such as separation between aircraft and between aircraft and

hazardous weather. In order to implement this concept, an
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important problem that needs to be addressed, in addition

to equipping aircraft with appropriate sensing and commu-

nication technologies, is decentralized conflict resolution of

aircraft in the presence of storms and hazardous weather.

This work is an initial step in automatic use of forecast data

to plan paths that avoid hazardous weather and conflict with

other aircraft.

A. Previous Research

If one thinks of regions with storms or hazardous weather

as obstacles in the airspace, then the problem of control

of multiple aircraft through hazardous weather is similar to

the problem of control of multiple agents through obstacles.

There is extensive literature on this topic and numerous algo-

rithms have been developed to address safe path planning and

control of autonomous agents. The authors in [10] consider

collision avoidance control of multiple aircraft and develop

an algorithm for addressing general constrained nonlinear

multi-objective optimization problems in a decentralized

way. The authors in [14] develop decentralized collision-free

feedback control laws using potential function methods to

steer agents to their destinations while avoiding constraints.

This formulation assumes a stationary known environment

and no constraints on the input. The authors in [25] com-

bine the above method with a model predictive control to

implement a collision-free controller for multiple aircraft. In

works such as [8], [20], [2], [27], the trajectory planning and

control are addressed using a receding horizon framework,

which can accommodate a changing environment. Given the

amount of research on trajectory optimization and control,

discussing all of these algorithms is not the scope of this

work. However, it becomes clear from the previous work that

one of the main remaining challenges in air traffic control is

appropriately utilizing the weather information in the existing

trajectory generation methods.

Given the availability of forecast data with increasing

resolution, there has been growing interest in using this

available data for air traffic management. The authors in

[9], [15] determine stochastic motion models for wind based

on forecast and aircraft measurements and utilize this in-

formation in estimation and prediction of aircraft state. The

authors in [13] assume static weather regions, and design en-

route routes which avoid hazardous weather. The extension

to dynamic weather constraints is considered in [23]. The

authors in [18] utilize weather forecast in the terminal space.

They develop machine learning algorithms to find stochastic

weather maps from the deterministic forecasts and use this

information to determine aircraft routes that are robustly

safe to fly through. Additionally, the Route Availability
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Planning Tool (RAPT) has been developed to help air traffic

controllers assess the availability of departure routes prior to

aircraft take-off to better utilize the airspace [24].

The above works on integrating forecast into air traffic

management either focus on terminal airspace or consider

the availability of fixed routes or regions. Motivated by the

concept of each aircraft optimizing its own flight profile, in

our formulation, we do not consider fixed routes but rather

allow each aircraft to optimize its trajectory while avoiding

dynamic impassible weather regions and other aircraft. We

consider en-route flight areas which have a much more

significant impact on overall system delays than terminal

flight [4], [7]. The work of [7] also found that storms cause

more significant delay when they pass over areas away from

airports, near the borders of en-route and terminal airspaces.

While previous work has considered aircraft separation, for

example [28], [29], [16], [25], we extend these works by

integrating weather information. One of the initial works

on use of weather information in en-route aircraft planning

is in [21]. However, this formulation assumes probabilistic

storm appearances and these probabilities are not based on

real forecast data. The work of [22] presents recent research

that considers integrating the weather forecast with aircraft

control. In this work, only static weather is considered and a

cost for a model predictive control law based on a Hamilton-

Jacobi-Bellman approximation of the minimum-time to reach

the destination point is presented. Inspired by this work, we

consider the additional complexity of a dynamic weather

forecast in our formulation.

Our contributions are using a forecast product to account

for the dynamic forecasts in a systematic way and to estimate

dynamic of the forecast during the time intervals between the

forecast updates. Based on the dynamic forecast, we define

a receding horizon trajectory planner for aircraft with a cost

function that is computationally simpler than that of [22]. We

also compare our simulation results with actual weather data

and outline several promising directions for future research.

This report is organized as follows: in Section II we describe

the problem under consideration and set the mathematical

framework of the model. In Section III we describe our

approach in use of the forecast data in a receding horizon

trajectory generation framework. In Section IV we show the

results of simulations for a section of airspace using the

forecast and actual weather data. Finally, we conclude the

report in Section V and discuss directions for our future

work.

II. PROBLEM STATEMENT

The guidance and navigation of an aircraft is a hierarchical

procedure in which a high level trajectory planner designs a

feasible trajectory for the aircraft based on a given reference

path or initial condition and final destination of the aircraft.

Due to computational limitations, this high level planner

typically assumes a low fidelity model of the aircraft. The

low-level controller or autopilot then considers a high fidelity

model and provides the control commands, such as thrust and

bank angle, to ensure trajectory tracking [8]. An architecture

Low-level
Control

Aircraft

High-level trajectory
generation

Environment

Fig. 1. Hierchical structure of aircraft navigation and control.

for aircraft navigation and control is shown in Figure 1. In

the figure shown, the environment represents the weather

and wind conditions, and other nearby aircraft. Currently,

the weather information available from forecasts is not taken

into account in a systematic way in the trajectory generation

block. Our focus is on improving this link.

Most current approaches in trajectory generation either do

not use weather forecast data, or only consider the forecast

available at the time of trajectory generation. Due to the

movement of the storms and hazardous weather or changes

in wind profiles, the resulting trajectories are often either

suboptimal or unsafe. Additionally, planning may be overly

conservative and lead to unnecessary ground holding if a

good forecast is not used.

The ability of receding horizon control framework in

taking into account changes in the environment and plant

makes it very suitable for the problem at hand. Receding

horizon control has been applied both for high level trajec-

tory generation and low level vehicle control [11], [8], [20].

In [30] receding horizon trajectory generation based on idea

of differential flatness is considered for complex nonlinear

systems. The authors in [26] utilize a receding horizon con-

trol for trajectory generation and control of multiple UAVs

based on vision information. The authors in [12] develop a

decentralized receding horizon control for stabilizing multi-

agent systems with decoupled dynamics, constraints, and cost

functions. The authors in [2] apply receding horizon control

and graph representations of obstacles in the environment to

address the trajectory optimization of aerial vehicles.

We use the receding horizon framework for trajectory

generation. We focus on trajectories in two dimensions and

as such, we do not consider resolving conflicts between

aircraft or hazardous weather through changing altitude.

There are few reasons for this approach. First, if there are

bad weather regions such as storms, depending on the storm

height, a change in altitude will not necessarily resolve

the conflict. Second, in busy sections of airspace, aircraft

descend and ascend at various altitudes; a change in the

assigned altitude of aircraft may cause potential conflicts.

Additionally, a change in altitude may be accompanied by

passenger discomfort, and thus altitude changes will typically

be slower maneuvers.

A. Problem Model

Let x1 and x2 denote the position of the aircraft in the

horizontal plane, ψ denote the orientation of the aircraft with

respect to the x1 axis, v denote the speed of the aircraft, and
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ω denote the rate of change ψ . We use the unicycle model

to describe the equation of motion of each aircraft:

ẋi
1(t) = vi cosψ

i(t)

ẋi
2(t) = vi sinψ

i(t)

ψ̇
i(t) = ω

i(t) (1)

Here, we use superscript i to denote the parameters of aircraft

i, for i = 1, . . . ,M. We use the above model instead of a

more realistic high dimensional model of aircraft dynamics

in order to simplify computation of trajectories. In the typical

hierarchical framework of Fig. 1, the output of the trajectory

generator is the desired path of the aircraft parameterized

by x1 and x2, as well as the desired input ω and/or v

which achieve this path. These parameters are then passed to

the low-level controller which uses the high fidelity aircraft

dynamic model in order to stabilize the aircraft around the

desired trajectory.

Given a reference trajectory which is planned in advance

considering the origin and destination of aircraft as well

as the aircraft parameters, a cost is formulated such that

deviations from the reference trajectory are penalized. Let

xi = [xi
1,x

i
2,ψ

i]T denote the aircraft state, and ui = ui([0,Tf ])
denote the input to aircraft i over the time horizon of interest

[0,Tf ]. Here, we assume ui = ω i. We define the cost to

penalize the L2 norm of the tracking error of the reference

path:

J(u1, . . . ,uM) =
M

∑
i=1

∫ Tf

0
‖xi(t)− xi

d(t)‖
2dt (2)

In a decentralized formulation, each aircraft would minimize

its own cost rather than minimizing the sum of all aircraft

costs. Although we do not address this formulation in the

current paper, we note that a multi-objective game theoretic

framework can be introduced to address the decentralized

case [10]. We formulate a constrained optimization problem

to minimize the above cost, while ensuring avoidance of

other aircraft and hazardous weather:

min
u1,...,uM

J(u1, . . . ,uM)

s.t. ẋi(t) = f i(xi(t),ui(t)) ∀i

u ≤ ui(t)≤ ū ∀i

gc(x
i(t),x j(t))≤ 0 ∀i, j | i 6= j

ge(x
i(t), t)≤ 0 ∀i, ∀e = 1, . . . ,Et

(3)

In the above, f i represents aircraft dynamics defined in (1), u,

and ū are the constraints on input magnitude, gc denotes the

collision avoidance constraint and ge denotes the constraint

on avoiding time-varying hazardous weather. Each of these

constraints is enforced throughout the time [0,Tf ] and these

terms will be described in more detail below.

The protected zone of each aircraft is defined as a cylinder,

centered at the aircraft with radius of R = 5 nautical miles

and height of 2000 ft. If an aircraft enters the protected zone

of another aircraft, a conflict referred to as loss of separation

occurs. In the two dimensional framework, we impose the

loss of separation constraint between each pair of aircraft at

every time through the constraint:

gc(x
i,x j) = R2 − ((xi

1 − x
j
1)

2 +(xi
2 − x

j
2)

2)

We will assume that the hazardous weather at each time is

represented by a number of ellipses labeled by e = 1, . . . ,Et ,

in the 2-dimensional plane. Each ellipse is parameterized by

its center [xe
1,x

e
2]

T ∈ IR2 and the matrix Ae ∈ IR2×2. Hence,

the constraint for aircraft i to avoid this hazardous weather

region takes the form

ge(x
i, t) = 1− [xi

1 − xe
1,x

i
2 − xe

2]A
e[xi

1 − xe
1,x

i
2 − xe

2]
T

The dependence on time in the above is due to change

of weather over time. In the next section, we describe

what defines a hazardous weather and how the forecast

information is used to define the constraint function ge.

III. APPROACH

A. Utilizing Dynamic Weather Forecast

One factor used to determine whether or not a region of

airspace is safe to fly through is the Vertically Integrated

Liquid (VIL) measurements. These measurements represent

the amount of precipitation in a column of air, measured

by NextGen radars. The Corridor Integrated Weather System

(CIWS) product [6] provides VIL numbers in a 1 km by 1 km

gridded form for the United States. These VIL measurements

can be quantized into 6 levels, with levels 3 and higher

indicating a recommended no-fly zone for aircraft [19].

To create weather maps for routing, a geographic region

of interest, time, and date are selected and the current and

forecast VIL quantities are uploaded as pixel images. Then,

the VIL data is converted into binary fly and no-fly zones

based on the VIL quantization levels. The binary zones are

segmented into disjoint storms, with each storm containing

no pixels adjacent to any other storms. These storms are

then enclosed by minimum volume bounding ellipses.

This ensures that all the storms’ pixels are accounted

for while creating a conservatively larger storm in the

more algorithmically friendly form of an ellipse. In our

algorithm, storms are these elliptical over-approximations of

impassible weather. Other approximations such as bounding

polygons could be used at the expense of computational

speed. This CIWS product, which comes with additional

weather data, is currently used by air traffic controllers for

tactical routing [31]. By using a weather product that is

already available for air traffic control, our algorithms are

viable for testing and comparison with current methods.

Figure 2 shows the impassible regions segmented into

individual storms, their polygonal convex hulls, and their

elliptical over approximations created from the raw VIL data.

Every 5 minutes, the CIWS product provides 2 hours

of 5 minute forecasts (24 forecasts) for the entire United

States airspace. In addition, these forecasts are updated at

5-minute intervals. Figure 3 shows the time variation of the

forecasted storms. Here, we tracked storms in the window
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Fig. 2. Impassible regions from VIL data segmented into storms,
each a different shade of gray. Convex hulls of storms were used
to create the minimum volume bounding ellipses.
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Fig. 3. The minimum volume bounding ellipses are tracked over
time based on the dynamic forecasts.

of Figure 2 over 80 minutes of time. Although the forecast

remains constant during the 5 minute update intervals, in

reality the storms and hazardous weather regions move due to

wind. There is no general closed form motion or uncertainty

model for these forecasts that one could take into account

while planning trajectory between the forecast updates. In

order to account for the movement of storms we identify

ellipses corresponding to storms in subsequent forecasts.

From this, we determine the rate of movement and growth of

the ellipses. This rate is then used to interpolate the location

of the storms during intervals of time for which there is

no forecast available. We automatically have identified and

tracked storms that are persistent in the window of interest.

B. Receding Horizon Trajectory Generation

In order to implement a receding horizon trajectory gen-

eration algorithm, we discretized the dynamics and cost

function using Euler forward integration. In the receding

horizon framework, a planning horizon np is chosen as the

number of discrete steps for which the trajectory planning

is performed. Let the sequence of inputs to aircraft i for a

planning horizon starting at t be denoted by ui(t : t +np) =
[ui(t),ui(t + 1), . . . ,ui(t + np)]. Starting at an initial time

index 1 and with the initial state xi(1) = xi
0, the optimization

problem is solved over the planning horizon np to provide

inputs ui
o(t : t + np), i = 1, . . . ,M. Then, for an execution

horizon of ne, the first ne inputs ui
o(t : t + ne) are applied

for each aircraft. The horizon is shifted by ne time units

and the optimization step is repeated, this time, with initial

condition set to xi(t + ne). By repeating the optimization,

one is able to consider variations in the environment or the

aircraft motion. For the cases in which a receding horizon

optimization is implemented to approximate infinite horizon

optimal control problems with constant state constraints, it

decreases the computational burden while ensuring stability

and feasibility under appropriate formulation of a terminal

cost and a terminal constraint [17].

In our current formulation, we choose the execution hori-

zon as the interval for which the current weather forecast

update is available. Hence, the execution horizon is set

to 5 minutes. Given the desired destination point for an

aircraft [xi
1d(Tf ),x

i
2d(Tf )]

T , at every receding horizon iter-

ation at time t with initial condition on dynamics given

by xi(t), we compute the shortest distance to reach the

desired point, as the line segment joining [xi
1(t),x

i
2(t)]

T with

[xi
1d(Tf ),x

i
2d(Tf )]

T . We let [xi
1d ,x

i
2d ]

T be the point along this

line segment that is reached in the planning horizon of np

steps. Let ui = ui(t : t+np), the receding horizon cost at time

t based on the tracking error cost in (2) is then defined as:

Jt(u
1, . . . ,uM) =

M

∑
i=1

(xi
1(t +np)− xi

1d)
2 +(xi

2(t +np)− xi
2d)

2

(4)

Let K denote the number of execution steps in a planning

horizon of np, i.e. K =
np

ne
. The receding horizon optimization

algorithm is described below:

Algorithm 1 Receding Horizon Trajectory Generation using

Dynamic Forecast

Given. t = 1, and initial condition xi
0, for i = 1, . . . ,M.

Step 1. Set up the optimization problem

• a. initialize xi(t) = xi
0.

• b. get weather constraint ellipses e = 1, . . . ,El from

the forecasts at times l = t, t +ne, . . . , t +Kne.

Step 2. Find ui
o, for i = 1, . . . ,M as the minimizer of the

cost in (4).

Step 3. Apply ui
o(t : t +ne) to aircraft i, for i = 1, . . . ,M.

Evaluate xi(t +ne).
Step 4. Set xi

0 = xi(t +ne), t = t +ne, and go to Step 1.

If aircraft i reaches a pre-defined neighborhood of its

destination, then it is removed from the optimization in

the subsequent iterations. The algorithm terminates when all

aircraft reach their destinations.
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Fig. 4. Planned trajectories, starting at the top points and moving
towards the target points at the bottom, using static forecast data.
The labels f1, f2, f3 show the minimum bounding ellipses for a
predicted storm at times 1, 6, and 11 minutes. Similarly, the time
variation of the forecast for the other storms is shown through
using different line formats. The circles indicate aircraft states at
the end of each iteration of the receding horizon optimization. The
trajectories generated using static forecast use the predictions at
time 1. Consequently, aircraft 2 has a potentially unsafe trajectory.

IV. RESULTS

We considered a section of airspace centered at latitude

30o and longitude 86.5o coordinates, near the gulf coast of

Florida. We used the weather forecast data for 01/07/2009, a

day in which there were storms observed in the region under

consideration. The aircraft speed was set to 230 nautical

miles per hour, which is a typical airspeed for the en-route

portion of the flight. We used a TOMLAB nonlinear solver

for implementing the iterations of Algorithm 1.

The simulations for a two aircraft scenario using static and

dynamic forecasts are shown in Figures 4 and 5 respectively.

Here, the planning horizon was set to 15 minutes. Each

5 minute portion of the trajectory as well as the forecast

is shown with a different line format and labeled in order

to highlight the dynamic nature of the forecast and the

trajectories generated. From these figures, one can see the

movement of the no-fly zones which represent the storms.

Observe from Fig. 4 that if the static weather forecast,

labeled by f1 for the largest storm in the window, is used the

path of aircraft 2 will intersect the storm forecasted at the

second time interval, labeled by f2 in this figure, while the

trajectories planned using the dynamic forecast will remain

safe as shown in Fig. 5.

Figure 6 shows the same trajectories obtained from the

dynamic forecast plotted over the weather ellipses obtained

from the actual weather recorded for the day under con-

sideration. The comparison of the weather ellipses indicates

that there is relatively significant error between the forecast

and actual data for the largest storm in the second time

horizon. While aircraft 2 has a safe trajectory despite this

error, aircraft 1’s trajectory enters the no-fly zone for a short

period of time. However, the advantage of using dynamic

forecast is still clear because re-routing the aircraft to avoid
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Fig. 5. Planned trajectories using dynamic forecast. In this case,
the trajectories remain safe with respect to the updated forecasts.
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Fig. 6. Trajectories through the actual weather storms. Here, aircraft
1’s trajectory enters the no-fly region due to discrepancy between
forecasted and actual weather.

the hazardous weather could be achieved through deviating

the aircraft from its planned path by a small amount.

Based on these simulations, we are motivated to quantify

the differences between the forecast and the actual weather

data and utilize this information to design robust trajectories.

Several additional future research directions are detailed in

the next section.

V. CONCLUSIONS AND FUTURE WORK

We utilized a dynamic weather forecast product to formu-

late a receding horizon framework for designing safe aircraft

trajectories in the en-route portion of flight. We showed our

methods with simulations based on weather forecast data and

actual weather maps. Our simulations confirm the advantage

of taking into account dynamic versus static forecasts in a

systematic way in trajectory generation.

In the future, we plan to deal with the complexities of

storm evolution including merging, splitting, dissipating, and

growing behavior. In addition to the VIL precipitation levels

used in this study to characterize the no-fly zones, we plan to

utilize other weather factors that affect the pilot’s decision in

flying through a region of airspace, such as types and heights
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of storms [3]. We plan to take into account the uncertainty

in the forecast through a stochastic or robust trajectory

generation method. Finally, in order to envision the optimized

aircraft profile concept in the near future, a provably safe

decentralized version of the trajectory generation should be

implemented.
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