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Abstract— In this paper, we study the problem of aircraft
4D trajectory prediction and conflict detection which is one of
the key functions of the Next Generation Air Transportation
System (NextGen). A stochastic linear hybrid system (SLHS)
with two different discrete state transition models is proposed
to describe the aircraft motion. Based on the SLHS model, a 4D
trajectory prediction algorithm is proposed utilizing some prior
information about the aircraft’s intent. Also, a computationally
efficient conflict detection algorithm is developed based on the
cumulative distribution function (cdf) approximation for the
quadratic form of Gaussian random variables. The performance
of the proposed algorithms is validated through an illustrative
air traffic scenario.

I. INTRODUCTION

In this paper, we study the problem of 4D aircraft trajec-

tory prediction and conflict detection which is one of the key

functions of the Next Generation Air Transportation System

(NextGen)[1]. Aircraft trajectory prediction involves estimat-

ing an aircraft’s future trajectory by using the measurements

up to the current time. Based on the trajectory prediction re-

sults, the corresponding conflict detection algorithm makes a

decision (or calculates the probabilities) whether there will be

a potential conflict in the predicted time span [2]. Typically,

methods to solve these two problems can be categorized

into three kinds: nominal, worst case and probabilistic [3].

The probabilistic method predicts the aircraft trajectory by

propagating the probability density function (pdf) of its

position into the future and computes the probability of

conflict. The probabilistic approach is useful because (a) it

is more appropriate to model the aircraft motion by using a

stochastic model due to various uncertainties such as wind

gust, navigational error, etc.; and (b) it enables us to assess

the conflict probability and set different thresholds to declare

a conflict in different scenarios.

The proposed algorithm is based on the probabilistic

approach. Before our work, Lygeros et. al. proposed prob-

abilistic aircraft and weather models for the purpose of

collision avoidance [4]. For computational simplicity, Paielli

et. al. approximated the conflict probability by using a stripe

to replace the circular protection zone [5]. Yang et. al.

proposed an algorithm based on the Monte Carlo method [6].

Hu et. al. used Markov Chain to approximate the solution

of stochastic differential equations which describes aircraft

motion [7]. The work in this paper is based on our previous

research [2]. The stochastic linear hybrid system (SLHS)

model is applied to describing the aircraft motion. This
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model incorporates a multiple model set in which each

individual model captures one flight mode of an aircraft. In

NextGen, aircraft’s intent will be available through ADS-

B [1]. To incorporate this information into our model, the

stochastic guard conditions are used to model the flight mode

transition. To evaluate the conflict probability, we propose

a conflict detection algorithm. As the distance (which is a

random variable) between two aircraft can be written in the

quadratic form of Gaussian random variables, we can use

the Laurent series expansion to approximate its cumulative

distribution function (cdf), thereby evaluating the conflict

probabilities computationally efficiently. To demonstrate the

performance of our algorithm, we apply it to a two-aircraft

trajectory prediction and conflict detection scenario.

The rest of the paper is organized as follows: In Section

II, the SLHS model is briefly reviewed. Based on the SLHS

model, the problem of trajectory prediction and conflict

detection is mathematically formulated. The probabilistic

trajectory prediction algorithms and the conflict detection

algorithm are presented in Section III. Section IV demon-

strates the performance of our algorithm through a two-

aircraft conflict scenario. Conclusions are given in Section

V.

II. MATHEMATICAL FORMULATION OF THE TRAJECTORY

PREDICTION AND CONFLICT DETECTION PROBLEMS

In this section, we first review the Stochastic Linear

Hybrid System (SLHS) model. Then the problem of tra-

jectory prediction and conflict detection is mathematically

formulated.

A. Hybrid System Model

The SLHS model contains several continuous models (dis-

crete states), each matched to a flight mode. The continuous

state dynamics in each mode are described by the following

difference equations:

x(k) =Aq(k)x(k−1)+Bq(k)w(k) (1)

where x(k) ∈ X = R
n is the state vector; q(k) ∈ Q =

{1,2, . . . ,nd} is the discrete state at time k; Q is a finite set

of all the discrete states; Aq and Bq are the system matrices

with appropriate dimensions, corresponding to each discrete

state q ∈ Q; and w(k) ∈ R
p is the white Gaussian process

noise with zero mean and covariance Q(k).
There are two types of discrete state (mode) transitions in

the SLHS:

1) Markov-jump transition model: The finite state space

of the Markov Chain is the discrete state space Q.
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Suppose at each time k, the probability vector is given

by π(k) =
[

π1(k) · · ·πnd
(k)

]T
, with each entry of the

vector (πi(k)) denotes the probability that the system’s

true discrete state is i. Then, at the next time step the

probability vector is:

π(k+1) = Γπ(k) (2)

where a constant matrix Γ is the Markov transition

matrix.

2) State-dependent transition model: the discrete state

transition is governed by:

q(k+1) = γ(q(k),x(k),θ) (3)

where θ ∈ Θ = R
l and γ : Q ×X ×Θ → Q is the

discrete-state transition function defined as:

γ(i,x,θ) = j if [xT θ T ]T ∈ G(i, j)

G(i, j) is called as the guard condition. For each

combination of (i, j), the guard condition G(i, j) is a

subset of the space Ω = X ×Θ with the following

assumption:

Assumption 1: The set of guards {G(i, j)| j ∈ Q} is a

partition of the space Ω for any given i ∈ Q:

G(i, j)∩G(i,k) = φ ∀i, j,k ∈ Q and j 6= k, (4)

and
r
⋃

j=1

G(i, j) = Ω ∀i ∈ Q (5)

In this paper, we consider a specific kind of the guard

condition {G(i, j)|i, j ∈ Q} named as the stochastic

linear guard condition:

G(i, j) =

{[

x

θ

]∣

∣

∣

∣

x ∈ X ,θ ∈ Θ,Li j

[

x

θ

]

+bi j ≤ 0

}

(6)

where θ ∈ Θ = R
l and θ ∼ Nl(θ ; θ̄ ,Σθ ) is a l-

dimensional Gaussian random vector with mean θ̄
and covariance Σθ representing uncertainties in the

guard condition; Li j is a ζ × (n+ l) matrix, bi j is a

constant ζ -dimensional vector, and ζ is the dimension

of the vector inequality. Here, a vector inequality y≤ 0

means that each scalar element of y is non-positive.

In this model, the dependency of the mode transition

on the continuous state models the aircraft’s intent or

flight plan, while the random variable θ models the

uncertainties in the mode transition.

B. Problem Formulation

Consider M aircraft {am|m = 1, . . . ,M} flying in the 3-

D airspace S ⊂ R
3 during the look-ahead time horizon

T = [kcTs,(kc + kp)Ts] where Ts is the sampling interval; kc

and kp are the current time step and the look-ahead time

step. Let (ξ ,η ,h) be the coordinates of an aircraft in the

local navigation frame with ξ -axis pointing the east, η-

axis pointing the north and h-axis pointing up. Thus, the

state of each aircraft is defined as x = [ξ ξ̇ η η̇ h ḣ]T ∈
X = R6. In the time horizon T , each aircraft’s continuous

state xam(k) evolves according to the continuous dynamics

(1), while its discrete state qam(k) evolves according to the

following rule: if the information about the aircraft’s intent

(e.g. waypoint information, landing profile information, etc.)

is available, the flight mode transition is modeled by the

discrete dynamics in (3); otherwise, it is modeled by the

Markov transition in (2) [8]. Before the time step kc, the

hybrid estimation algorithm [9] computes the probability

mass function (pmf) of the flight mode p[qam(k)]1, and the

pdf of the current state which are given by:

p[xam(k)] = ∑
i∈Q

p[xam(k)|qam(k) = i]Pr{qam(k) = i}

≈ ∑
i∈Q

N6(x
am(k); x̂

am
i (k),Pam

i (k))Pr{qam(k) = i}

≈N6(x
am(k); x̂am(k),Pam

x (k)) k ≤ kc

(7)

Note that in (7), a single Gaussian random variable is

used to approximate the sum of several Gaussian random

variables via moment matching [8]. Based on the estimation

result up to time kc, the trajectory prediction algorithm

computes the pmf of the discrete state p[qam(k)] and the

pdf of the continuous state conditioned on different discrete

states p[xam(k)|qam(k) = i], for all k ∈ [kc,kc + kp]. The 4D

predicted trajectory can be computed by:

p[zam(k)] =N3(z
am(k); ẑam(k),Pam

z (k))

=N3(z
am(k);Cx̂am(k),CPam

x (k)CT )
(8)

where

C =
[

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

]

Next, the problem of conflict detection is presented. Consider

a scenario where there are two aircraft a1 and a2 in the region

S . We fix one aircraft (reference aircraft) at the origin and

study the motion of the other aircraft (stochastic aircraft) in

the relative frame. A midair conflict is thus defined as the

event that the stochastic aircraft enters the protected zone of

the reference aircraft. Rather than the cylindrical protected

zone [5], we consider the protected zone in the quadratic

form (ellipsoid) [10]. Our method can be easily extended to

the cylindrical protected zone case. The quadratic protected

zone can be represented as:

D =

{

(ξr,ηr,hr)

∣

∣

∣

∣

(

ξr

s

)2

+
(ηr

s

)2

+

(

hr

H

)2

≤ 1

}

(9)

where s and H are the radii of the protected zone in the

horizontal plane and the vertical dimension, respectively;

ξr,ηr and hr are the relative position of the stochastic aircraft

with respect to the reference aircraft. Let ρ12(k) = za1(k)−
za2(k) be the relative distance between aircraft a1 and a2 in

the (ξr,ηr,hr) frame. Assuming the two aircraft’s motions

are independent, the pdf of ρ12 can be written as:

p[ρ12(k)] = N3(ρ12(k); ρ̄12(k),Σ12(k))

ρ̄12(k) = ẑa1(k)− ẑa2(k),

Σ12(k) = Pa1
z (k)+Pa2

z (k)

1Throughout this paper, we use Pr{•} to denote the probability of an
event and p[•] for the pdf or pmf.
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Then, the conflict probability over the time horizon T is

defined as:

Pr{C |T} := max
k∈[kc,kc+kp]

Pr{C (k)}

where Pr{C (k)} is the instantaneous probability of conflict

at time k given by:

Pr{C (k)}=
∫

ρ∈D

N3(ρ; ρ̄12(k);Σ12(k))dρ (10)

III. PROBABILISTIC TRAJECTORY PREDICTION

AND CONFLICT DETECTION ALGORITHMS

In this section, we derive the trajectory prediction algo-

rithm and the conflict detection algorithm.

A. Trajectory Prediction Algorithm

Assuming the aircraft dynamics is given by (1) combined

with (2) or (3), the trajectory prediction algorithm is based

on a multiple-model set in which each model is matched to

an aircraft’s flight mode. In the following part of this paper,

for simplicity, we ignore the superscript an in xan , qan and

other variables for a specific aircraft an in the region S . Our

algorithm is composed of 4 steps:

• Step 1. Initialization: We use Z kc to denote the

observations (measurements) up to time kc. From the

hybrid estimation algorithm, we have both the current

continuous state pdf conditioned on each discrete state,

p[x(kc)|q(kc) = i,Z kc ] = Nn(x(kc); x̂i(kc),Pi(kc)) and

the current discrete state pmf, p[q(kc)|Z
kc ].

• Step 2. Compute mixing (merging) probabilities: The

mixing probabilities Pr{q(k) = i|q(k+1) = j,Z kc} for

all i, j ∈ Q are defined as:

µ ji(k) := Pr{q(k) = i|q(k+1) = j,Z kc} (11)

By Bayes’ Theorem,

Pr{q(k) = i|q(k+1) = j,Z kc}=

1

c j

Pr{q(k+1) = j|q(k) = i,Z kc}p
[

q(k)|Z kc

] (12)

where c j is a normalizing constant. For (11) and (12),

we use the following approach to compute the dis-

crete state transition probability Pr{q(k+1) = j|q(k) =
i,Z kc}:

1) Markov-jump transition: the Markov transition

matrix provides the a priori knowledge directly.

The discrete state transition probability Pr{q(k+
1) = j|q(k) = i,Z kc} in (12) can be written as:

Pr{q(k+1) = j|q(k) = i,Z kc}= Γi j = const.
(13)

2) State-dependent transition: we recall that θ ∈ Θ =
R

l ∼ Nl(θ ; θ̄ ,Σθ ) has a multivariate Gaussian

distribution (if Θ 6= /0). With the stochastic linear

guard condition given in (6), we compute the

discrete state transition probability Pr{q(k+1) =
j|q(k) = i,Z kc} in (12) as [9]:

Pr{q(k+1) = j|q(k) = i,Z kc}

= Φζ

(

Li j

[

x̂i(k)
θ

]

+bi j,Li j

[

Pi(k) 0

0 Σθ

]

LT
i j

)

(14)

where Φζ (ȳ,Σy) is the ζ -dimensional Gaussian cdf

with mean ȳ and covariance Σy.

• Step 3. Update pdf: By the totoal probability theorem,

p[x(k+1)|q(k+1) = j,Z kc ] = ∑
i∈Q

p[x(k+1)|q(k+1) = j,q(k) =i,Z kc ]Pr{q(k) = i|Z kc}
(15)

To evaluate (15), we need to compute n2
d pdfs p[x(k+

1)|q(k+ 1) = j,q(k) = i,Z kc ] for i, j = 1,2, . . . ,nd . To

reduce the computational complexity, we assume each

pdf p[x(k+1)|q(k+1)= j,q(k)= i,Z kc ] to be Gaussian

and approximate (15) by a single Gaussian pdf via

moment matching [11]:

p[x(k+1)|q(k+1) = j,Z kc ] =

Nn(x(k+1); x̂ j(k+1),Pj(k+1))
(16)

where

x̂ j(k+1) =A j x̂ j0(k) (17)

Pj(k+1) =A jPj0(k)A
T
j +B jQ jB

T
j (18)

x̂ j0(k) =
nd

∑
i=1

µ ji(k)x̂i(k) (19)

Pj0(k) =
nd

∑
i=1

µ ji(k)
{

Pi(k)

+[x̂i(k)− x̂ j0(k)][x̂i(k)− x̂ j0(k)]
T
}

(20)

The discrete state probability at time k+1 is given by

Pr{q(k+1) = j|Z kc} := α j(k+1)

=
nd

∑
i=1

Pr{q(k+1) = j|q(k) = i,Z kc}αi(k)

• Step 4. Output: The discrete state estimates are given

by:

q̂(k+1) = max
j

Pr
{

q(k+1) = j|Z kc

}

By the total probability theorem, the continuous state

pdf at time k+1 is given by

p[x(k+1)|Z kc ] =
nd

∑
j=1

p[x(k+1)

|q(k+1) = j,Z kc ]Pr{q(k+1) = j|Z kc}

(21)

We approximate the sum of the nd terms in (21) via

moment matching by a single Gaussian pdf:

p[x(k+1)|Z kc ]≈ Nn(x; x̂(k+1),P(k+1))
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where

x̂(k+1) =
nd

∑
j=1

α j(k+1)x̂ j(k+1|k+1)

P(k+1) =
nd

∑
j=1

{

Pj(k+1|k+1)+α j(k+1)

[x̂ j(k+1|k+1)− x̂(k)][x̂ j(k+1|k+1)− x̂(k)]T
}

B. Conflict Detection Algorithm

In Section II-B, it has been shown that the conflict

detection involves evaluation of the integration in (10). A

straightforward approach is to use the Monte Carlo simula-

tion to compute (10) [6], which is computationally expensive.

To improve the accuracy and computational efficiency of

conflict detection, we propose an algorithm based on the

method of cumulative distribution function (cdf) approxima-

tion. Equation (10) can be rewritten as:

Pr{C (k)}=
∫

ρ∈D

N3(ρ; ρ̄12(k);Σ12(k))dρ

=Pr{ρ12(k) ∈ D}

=Pr{κ(k)≤ 1}

(22)

where

κ(k) = ρT
12(k)Ψρ12(k) and Ψ =





1
s2 0 0

0 1
s2 0

0 0 1
H2



 (23)

Consider a general case in which Ψ ∈R
M×M is an indefinite

Hermitian matrix (the definite matrix case can be solved in

a similar way) and ω ∈ R
M and p[ω] = NM(ω; ω̄,Σω). The

quadratic form is given by:

κ = ωT Ψω (24)

Firstly, we look for a orthogonal matrix P∗ to diagonalize

the Hermitian matrix Σ
1
2
ω ΨΣ

1
2
ω , such that

P∗T Σ
1
2
ω ΨΣ

1
2
ω P∗ = diag(λ1, . . . ,λM),P∗P∗T = I

where λ1, . . . ,λM are eigenvalues of the matrix Σ
1
2
ω ΨΣ

1
2
ω . The

quadratic form of ω: κ = ωT Ψω can be rewritten as [12]:

κ =
M

∑
j=1

λ j(U j +b j)
2 (25)

where U j ∼ N (0,1) are mutually independent, and bT =

[b1, . . . ,bM] = (P∗T Σ
− 1

2
ω ω̄)T . Let U = [U1, . . . ,UM]T . Then,

we have U = P∗T Σ
− 1

2
ω (ω − ω̄). Next, we group the eigen-

values λ1, . . . ,λM to a set of λk, k = 0, . . . ,N −1, each with

multiplicity mk so that M = ∑N−1
k=0 mk. We define

µ2
k = ∑

mk

b2
j (26)

The computation of the cdf and pdf of the quadratic form

(24) involves finding the inverse Laplace transformation of

the moment-generating function of (25) [13]:

Pr{κ ≥ y}=−
1

2πi

∮

C

1

s
e−syΦ(s)ds (27)

where y > 0 is any given number; C is a contour encircling

the right half plane; and Φ(s) is the moment-generating

function of (25) which can be written as:

Φ(s) = exp

{

−
1

2
∑

j

µ2
j +

1

2
∑

j

µ2
j

1−λ js

}

∏
j

1

(1−λ js)
m j

(28)

To compute the inverse Laplace transformation of (28), we

define

gk(s,y) = exp

{

1

2
∑
j 6=k

µ2
j

αk j −λ js
− sy

}

∏
j

1

(αk j −λ js)
mk j

(29)

for each λk with multiplicity mk. Note that in (29), we

define αk j = 1−λ j/λk, mk j = m j for j 6= k, and αkk = −1,

mkk = 1 for j = k. Next, we need to compute recursively the

derivatives of gk up to the n-th order. Note that

lngk(s,y) =
1

2
∑
j 6=k

µ2
j

αk j −λ js
+ ∑

j 6=k

m j ln

(

1

αk j −λ js

)

− sy

(30)

By induction, we have

[lngk(s,y)]
(n) =

1

2
∑
j 6=k

n!λ n
j µ2

j

(αk j −λ js)n+1
+ ∑

j 6=k

(n−1)!λ n
j m j

(αk j −λ js)n

(31)

Taking (n − 1)-th derivative of both sides of g
(1)
k =

gk(lngk)
(1), we have [12]:

g
(n)
k =

n−1

∑
l=0

(

n−1

l

)

g
(l)
k (lngk)

(n−l), n ≥ 1 (32)

By using (32), for a given g
(0)
k (0,y), we can compute

g
(n)
k (0,y) recursively. Next we define βk = µ2

k /(2λk). We can

compute the probability (25) based on the Laurent series and

the Taylor series expansion:

Pr{κ ≤ y}= 1− exp

{

−
1

2
∑

j

µ2
j

}

∑
λk>0

{

1

(−λk)mk−1

exp(−λ−1
k y)

∞

∑
n=mk−1

ĝ
(n)
k (0,y)

(−βk)
(n−mk+1)

n!(n−mk +1)!

} (33)

In (33), letting y = 1 and taking finite terms in the third

summation, we can evaluate (33) and (22).

IV. SIMULATIONS

In the simulation, Aircraft 1 (a1) starts from Point A

heading towards the north, while Aircraft 2 (a2) starts from

Point B heading towards the east (see also Figure 1). Both

aircraft are flying straight at the initial stage. Since the

altitude difference between them is bigger than the minimum

vertical separation distance (1000 f t), there is no potential

conflict initially. However, to avoid the adverse weather cell

W , Aircraft 2 climbs to the same altitude as Aircraft 1, which

generates a potential conflict.

Next, we present the discrete-time continuous dynamics

of both aircraft in the (ξ , η , h) frame. The state vector of
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W

Fig. 1. Two-aircraft conflict scenario.

each aircraft is x =
[

ξ ξ̇ η η̇ h
]T

∈ X = R
5. The aircraft

dynamics in the horizontal plane is given by:

x(k+1) = Ax(k)+Bw(k) (34)

where

A =









1 Ts 0 0

0 1 0 0

0 0 1 Ts

0 0 0 1









B =











T 2
s
2

ωξ 1 0

Tsωξ 1 0

0
T 2

s
2

ωη1

0 Tsωη1











and w(k) ∈ R
2 is a standard white Gaussian noise vector;

Ts = 5sec is the sampling time; and ωξ 1 = ωη1 = 0.5m/s2

are scaling parameters [9].

The aircraft motion in the vertical dimension consists of

two modes: Mode 1: Constant Height (CH), and Mode 2:

Constant Climb (CC). Therefore, Q= {1,2}. The continuous

dynamics of the CH mode is given by:

h(k+1) = h(k)+TswCH(k) (35)

where wCH(k) ∈ R is a standard Gaussian noise vector. The

continuous dynamics of the CC mode is given by:

h(k+1) = h(k)+TswCC(k)+u (36)

where wCC(k) ∈ R is a standard Gaussian noise vector; and

u = 30m/s is a constant input which specifies the aircraft’s

climbing rate.

CH CC

(ξ ≥ ξ∗) ∧ (h < h∗)

(ξ < ξ∗) ∨ (h ≥ h∗)

Fig. 2. Aircraft discrete state transition model (Note that we use “∧” to
denote logical “AND” and “∨” to denote logical “OR”).

The discrete state transition model is shown in Figure 2.

The transition can be described as follows: Aircraft 2 is origi-

nally in the CH mode; when it is close to the adverse weather

cell, it pulls up and enters the CC mode; after it reaches a new

altitude which allows it to pass the weather cell safely, Air-

craft 2 enters the CH mode again. To model the uncertainties

in these transitions, we use two Gaussian random variables

ξ ∗ ∼N (ξ̄ ∗,Σξ ∗)∈Ξ=R and h∗ ∼N (h̄∗,Σh∗)∈H =R to

denote the thresholds for the transitions. In the simulation, we

choose ξ̄ ∗ =−1×104m, Σξ ∗ = 3×103m, h̄∗ = 1.45×104 f t

and Σh∗ = 700 f t. Thus, the guard conditions defined in the

space Ω = {X ×Ξ×H }= R
7are given by:

G(1,2) ={[x ξ ∗h∗]T |x ∈ X ,ξ ∗ ∈ Ξ,h∗ ∈ H ,

(ξ ≥ ξ ∗)∧ (h < h∗)}

G(1,1) =Ω\G(1,2)

G(2,1) ={[x ξ ∗h∗]T |x ∈ X ,ξ ∗ ∈ Ξ,h∗ ∈ H ,

(ξ < ξ ∗)∨ (h ≥ h∗)}

G(2,2) =Ω\G(2,1)

A simulation of the total length 250sec is performed. The

transition from Mode 1 to Mode 2 happens around 125sec

and the transition from Mode 2 back to Mode 1 happens

around 175sec. Our trajectory prediction starts from 110sec

and the prediction time horizon is 120sec (2min). Before we

begin the prediction, the hybrid state estimates are computed

by the standard IMM algorithm with the aircraft position

information provided by radar in every 5sec.
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Fig. 3. Aircraft 2’s position prediction error (RMS error of 100 Monte
Carlo run).
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Fig. 4. Comparison of conflict probabilities computed by different
algorithms.

Figure 5 shows the trajectory prediction results of the

intent-based algorithm and the non-intent-based algorithm in

the 3-D space. The red bulbs are the σ ellipsoids of the

Gaussian random variables representing the uncertainties of

each prediction result. From Figure 5, we can deduce that the

intent-based algorithm yields prediction results with lower

uncertainties, because the intent-based algorithm accurately

predicts the true flight mode utilizing the prior information

about when and where the flight mode transition is supposed

to happen. On the other hand, the non-intent-based algorithm

assumes a constant Markov transition matrix for the flight

mode transition. Through a Monte Carlo simulation of 100
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Fig. 5. Aircraft trajectory prediction results.

runs, Figure 3 compares the Root-Mean-Square (RMS) tra-

jectory prediction errors of Aircraft 2 with the intent-based

and the non-intent-based algorithms.

Figure 4 compares the conflict probabilities computed by

four different algorithms: the proposed cdf approximation

algorithm yields the result that is the closest to the ex-

act solution computed by the Monte Carlo approach. The

non-intent-based algorithm and the Paielli’s algorithm [5]

show poor conflict probability estimation due to their over-

approximation. Additionally, our algorithm is much more

computationally efficient than the Monte Carlo approach in

calculating the integration (22) [14].

V. CONCLUSIONS

We have developed a computationally efficient algorithm

for aircraft trajectory prediction and conflict detection. We

use the Stochastic Linear Hybrid System (SLHS) to model

the dynamics of an aircraft with changing flight modes

and compute the accurate prediction of an aircraft’s future

trajectory efficiently. To estimate the conflict probability

accurately and efficiently, we use the cumulative distribution

function (cdf) approximation.
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