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Abstract 
This paper extends the optimal projection equation (O.P.E.) 

robustness conditions of Bernstein [I] to a class of distributed param- 
eter systems described in Section 1. The O.P.E. approach for reduced 
order controller design WM extended to infinite dimensional systems 
by Bernstein in 1986 [2]. Using that work, Bernstein's conditions for 
robustness are extended to infinite-dimensional systems by following 
his development in 111. Thus, Theorem 3.3 is a result of his earlier 
work. 

Section 2 demonstrates that one cannot recover a loop transfer 
function perfectly when the order of the controller is less than the 
order of the design model. This points out that one cannot perform 
perfect asymptotic loop transfer function recovery using a reduced 
order controller. However, as a result of the O.P.E. robustness con- 
ditions of Theorem 3.3, a new interpretation of the LQG/LTR tech- 
nique is given in Section 4. It is demonstrated tha t ,  although loop 
transfer function recovery does not occur when a finite-dimensional 
controller is used along with an infinite-dimensional design model, 
one can achieve robustness to bounded perturbations by using the 
LQG/LTR technique. This is an insight not mentioned in the liter- 
ature since the LQG/LTR technique has  been used to recover loop 
transfer functions to achieve robustness. 

11- 
The class of problems addressed in tliis paper is the set of infinite- 

(1) 

(2) 

dimensional systems of the form 

i ( f )  = Az(t) + B u ( ! )  + C w ( t ) ,  z, = z(0) E D(A)  

Y ( t )  = C41)  + v(i) 

where the control vector U is in the input space U = L'{[O,co);R") , I 
is an element. of a Hilbert space 31, y is an observation vector which is 
an element the output space Y = W N ,  and U) and 7 are white Gaussian 
noise terms with realizations in the spaces 7f and Y respectively. The 
strength of the dynamics noise term w is described by the positive semi- 
definite operator Q o ,  and the strength of the measurement noise term 1 
is described by the strictly positive operator R j .  The operator Q/ used 
in the nominal Kalman filter design will be chosen BO that Q j  = CQ.G., 
where G' denotes the adjoint of G. t ( t )  will be denoted simply as 2 (and 
similarly for the other functions), and the following assumptions are made: 

1. A is the infinitesimal generator of a CO semigroup (i.e., strongly con- 
tinuous) T(t) on a real separable Hilbert space (Hilbert space with a 
countable orthonormal basis) 31 [3]. 

2 .  B  is a bounded linear operator from RN to 71. 

3. C is a bounded linear operator from 'H to W N  
4. G is a bounded linear operator from the Hilbert space 'H to  7f .  

5. The spectrum of A  (denoted u(A))  is discrete. 

6. The system is exponentially stabilizable and detectable 131. 

7. The eigenvectors of A are complete. 

8. The system is minimum phase (i.e. no transmission zeros in the right- 
half pl ane) . 

9. A satisfies the spectrum decomposition assumption [4]. This means 
that the spectrum of A contains only a finite number of eigenvalues 
whose real part is greater than some w which determines the expo- 
nential stability of the operator. 

10. The restriction of A to the stable subspace 'H, satisfies the spectrum 
determined growth assumption [3] (i.e. the supremum of the real 

part of the spectrum of A, equals the growth constant of the semi- 
group T ( f )  generated by A,) and generates an exponentially stable 
semigroup. 

An approach being currently taken to address the problem of robust 
reduced order controllers 12, 5, 6, 1, 7, 8, 91 is to fix the order of the com- 
pensator based on physical constraints, and determine the optimal robust 
controller using the optimal projection equation approach 151. Ignoring the 
issue of robustnetw for the moment, Bernstein [2] gives a set of necessary 
conditions for a reduced order controller to be the 'optimum controller". 
A controller will be considered "optimum" if it stabilizes the system a t  de- 
sign conditions, and if it produces a feedback control law that minimizes a 
desired cost functional which characterizes the system's steady state per- 
formance. The cost functional to he minimized will be of the form 

J = ,hirP[< Qcz(f),z(f) > + < R,u(f),u(f) >I 

where E denotes the expectation operator. This is discussed in more detail 
in Section 3. 

Let A and r be bounded linear operators mapping ?l 4 W' (where k 
is the dimension of the finite-dimensional controller) such that r A -  = Is. 
2' is the identity operator on Rt. The conditions developed by 121 are a 
pair of modified algebraic Riccati equations (A.R.E.8) and a pair of coupled 
Lyapunov equations. The two modified A.R.E.s are given by 

AQ + QA' + Q/ - Q c ' R i ' C Q  + T l Q c ' R 7 ' C Q T i  = 0 (3) 

A ' P + P A + Q , - P B R ; ' B ' P + T ~ P B R ~ ' B ' P T ~  = 0 (4) 

and the two Lyapunov equations are given by 

( A - B R ; ' B ' P ) Q + Q ( A - B R ; ' B ' P ) ' +  
Q C R ~ ~ C Q  - T~QC'R,-'CQT; = o ( 5 )  

( A  - Q c ' R ; ' C ) ' P  + P ( A  - QC'RY'C) + 
P B R T ' B ' P  - T ~ P B R ; ' B ' P T ~ =  0 (6) 

where the operator T is defined by the the operators A and r ( r  = A'r) 
which determine the projection of the full order compensator to a fixed 
order compensator. The projection operator r~ satisfies the relation 

71 = I - T = I - A - r  

and using the operators A and r, the compensator is defined by the equa- 
tions 

2, = Aezc + Bey 

(7) 

(8) 

U = c,z, (9) 

where A,, B,  and C, are given by 

Notice that the Lyapunov equations are coupled to the A.R.E.8 by the 
projection operator 71. If the order of the system equals the order of 
the compensator, then ~1 = 0, and one gets the standard LQG A.R.E.8, 
and the Lyapunov equations become decoupled from the A.R.E.s. In that 
case the standard LQG results are obtained. For the cane when the order 
of the compensator is lea13 than the system order, one might wonder if 
the optimum projection equations (O.P.E.) can be modified not only to 
stabilize the system and minimize the associated cost functional J, but also 
to provide robustness (U) is done using the LQG/LTR technique [IO, 111. 
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The next section will consider whether or not loop transfer functions can 
be recovered when the order of the compensator is less than or equal to the 
order of the system. 

2 Loop Recovery 
Let A and r be the bounded linear operators that define the projection 

of the full order compensator. Figure 1 represents the infinite-dimensional 
system using the finite-dimensional controller. 

System 

1 I 

Figure 1: System with Finite-Dimensional LQG Based Controller 

The infinite-dimensional system is described by the equations 

2 = Az + Bu (13) 

y = c z  (14) 
and the compensator is described by Equations (8)-(12). With A,,B, and 
C, given as in Equations (10)-(12), the compensator state equations can be 
written as 

i, = (TAA' - rKjCd' - rEIfcA.)zc + r K j y  

2, = rAA'z, + rBu + rI iJ(y  - CA'z,) 

(15) 

(16) 
or : 

where U = -K,A'z,. 
The system input appears at  point 4 in Figure 1 This point is physically 

important since it is one point where the compensator interfaces with the 
system being controlled. The other point that is important is point 1 where 
the system output interfaces with the compensator. The transfer function 
at  point 4 is given by 

G , ( ~ )  = K ( ~ ) P ( ~ )  = C<(SI - A,)-~B,c(sI - A)- 'B (17) 

which can be written as 

G4(s) = KCA*(0r1 + TKjCA' + rBK,A*)-lTKjC@pB (18) 

where the controller state transition operator is GC = ( 6 1  - rAA*)-' and 
the plant state transition operator is 0, = (SI - A ) - l .  Since A generates 
a C,, semigroup, (SI - A)-' will exist. (SI - rAA')-' will exist since 
rAA' is a finite-dimensional operator. Note that when the order of the 
compensator is less than order of the system, 0, does not equal 0,. For 
infinite-dimensional systems, the state transition operator is the semigroup 
T(1) which is generated by the operator A. 

In a similar fashion, one can write the transfer function at  point 3 in the 
system. This is the transfer function that one would try to recover a t  point 
4 using the LQG/LTR technique for robustness enhancement. This point 
is internal to the compensator, and has guaranteed robustness properties 
as discussed in Matson's dissertation [ll]. Using the equations 

U = -KcA* Z C  (19) 

and 
y = C0,Bu' 

where U' is the input at  point 3, the statc z, can be expressed as 

tC = (sI-TAA')-'TBu'+ (SI- TAA* ) - l r K j  y- (SI- TAA' ) - ' r K j  CA-0, 
(21) 

(22) 

or equivalently 

z, = ( I  + 8,I'K,CA')-'[OeI'Bu'+ @ , r K J y ]  

Substituting for y via Equation (20), and rearranging terms, the state can 
be written as 

IC = ( I  + 8crKjcfi*)-1(&'er)(I + KJCO,)BU' (23) 

Substituting this into the expression for U, Equation (19), the loop transfer 
function at  point 3 is given as 

G ~ ( s )  = -K=A*(Z + OJ-KjCA*) - l (OJ- ) ( I  + KjC0, )B (24) 

If the order of the compensator equals the order of the system, then T is an 
identity operator (and r l  is a zero operator), and from Equation (24) it is 
clear that the loop transfer function at point 3 can be expressed as 

G ~ ( s )  = -Kc6pB (25) 

Since does not equal 6, when a reduced order controller is used, then 
one cannot perfectly recover a desired transfer function asymptotically via 
LTR methods if the problem involves an infinite-dimensional design model. 
Note that, since any model is an approximation of the true system, then 
the controller order will always be less than the true system order. The 
issue considered here is the case when the controller order is less than 
the design model order. The design model is the mathematical model one 
chooses to describe the physical system to be controlled, and as such, it is an 
approximation of the true system. In practice, one assumes that the design 
model is the true system so that a result can be synthesized. Robustness is 
needed due to the fact that the design model does not equal the true system 
being controlled. Thus, loop transfer recovery using a finite-dimensional 
controller can only be accomplished using a reduced order model. 

3 O.P.E. Robustness 
The O.P.E. approach allows one to achieve robustness by modifying 

the infinite-dimensional A.R.E., and this will give a new interpretation of 
LQG/LTR when the controller is finite-dimensional but the design model 
is infinite-dimensional. The O.P.E. approach provides a way to achieve ro- 
bustness to uncertainty, and to minimize the cost functional J ,  a t  conditions 
other than the nominal design condition 191. 

For a k-th order compensator where k < dimX = CO, one wants to 
determine the operators (Ac,  E, ,  C,) such that the closed-loop system con- 
sisting of the controlled system 

z = ( A +  AA)z+ ( E  + AE)u + G w  

y = (C + AC)z  + q 

(26) 

(27) 

z, = A,z, +Bey (28) 

U = c,z, (29) 

where z E X, along with measurements 

with y E SN, and a finite-dimensional compensator described by 

is exponentially stable for all perturbations ( A A ,  A B ,  A C )  E U ,  where U 
is the set of admissible operator triplets describing the perturbations to 
the operators A, E ,  and C one wishes to consider. If, for instance, one only 
allows bounded perturbations, then U is the set of bounded linear operators 
which are bounded by some constant, say D. Through U, one describes the 
robustness desired. 

However, in addition to being exponentially stable, one also would like to 
minimize the cost functional associated with the optimal control problem at 
other than design conditions. This will be made clearer later, in Equation 
(37). The cost functional to be considered is denoted by J and will be 
defined as 

J(A,,  E, ,  Cc) = ,'iz E [ <  Q d t h  z ( t )  > + < &u(t) ,  u(t) >I (30) 

where & is the expectation operator and is defined bs [12] 

&(t) = z ( w ) d P  (31) 

where Y is the space of all possible w that the random variable z(1) maps 
to some Bore1 space over which a probability measure P is defined. This 
cost functional is chosen instead of the one given by Curtain [3] since the 
objective of the O.P.E. approach is to achieve optimum steady state per- 
formance, and not necessarily optimum performance over the entire time 
interval. 

For a reduced order compensator where k < dim%, one wants to deter- 
mine (Ae,  E,,  Ce)  such that when the closed-loop system consisting of 

(32) 

(33) 

z = ( A  + AA)z + ( B  + AB)u + G w  

with noisy measurements given by 

y = (C + AC)z + q 
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is coupled with the compensator, the steady-state performance cost func- 
tional 

J(A,, B,,C,) = sup lim E[< Qcz( t ) ,  z(f)  > + < R,u(f), u(f) >] 

(34) 
(AA,AB,AC)EU 

is minimized. In other words, one wants to design a controller so that the 
largest value that the cost functional can take on for all possible perturba- 
tions is minimized. In the development that follows, C is assumed to be 
the identit,y operator (without loss of generality) in order to correspond to 
the development of Bernstein [I). 

A control will be considered admissible only if it forces the cost func- 
tional J to take on a finite value. To help simplify the notation, the 
closed-loop system can be written in terms of the augmented state-space 
‘6 = 31 @ W’. It is assumed that the noise terms w and are independent. 
In terms of the augmented state vector 

z = [z z , ] T  (35) 

(36) 
this yields 

I = (d+ AA)?+ GC 
where 

and 

or 

A d =  [ 

Also, in terms of 5, the performance cost functional can be written aa 

where 

J(A,,B,,C,) = sup lim E[< &,5 >] (37) 
(AA,AB,AC)EU 

The following lemma allows one to express the cost functional in terms 
of the second moment of P ( f ) .  This will be needed so that an upper bound 
of the cost functional can be established in a theorem to follow. 

LEMMA 3.1: For anygiven(A,,B,,C,),and(AA,AB.AC)EU,the 
performance cost functional can be expressed in terms of the covariance of 
f ( t ) ,  defined as: 

GA(l) = & [ ( z ( t )  - & i ( t ) ) ( i ( t )  - &?(t ) ) ’ ]  

Furthemore, if the system is stable for all ( A A , A B , A C )  E U ,  then the 
performance cost functional can be expressed as 

J(Ac, Be, C e )  = SUP fr[i)AR] 
(AA,AB.AC)€U 

where tr denotes the trace operator, and where QA satisfies the equation 

(ti + AA)QA + QA(d + AA)* + P = o 

ProoT: Balakrishnan [13], cage 317, defines the covariance of i ( f )  as the 
nonnegative-definite operator QA ( t )  given above. Bernstein and Hyland [Zl, 
Lemma4.1, page 137, prove that J(A,, B,, c,) = SUP(AA,AB,~C)E~ fr[Q&] 
and Lemma 4.4, page 139 [Z] proves that QA satisfies the last equation of 
Lemma 3.1. Q.E.D. 

In the development to follow, the operator P will be modified by a 
nonnegative operator Y. A result that will be needed is, if ( V I 2 ,  d + Ad) 
is detectable, then so is ([V + Y]’lz,d + Ad)  under certain conditions. 
The following theorem from Wonham [14] gives conditions under which the 

property of detectability is preserved. 

THEOREM 3.2: Let 31 be a real Hilbert space, and let M,,, be a 
bounded linear operator mapping 31 - 31. If M,,, is a nonnegative operator 
and if (MA12,A) is detectable, then for all nonnegative operators N,  the 
pair ([Mm + N]’12,  A) is detectable. 

Proof: See Wonham’s book [14] page 79, and let the operators of The- 
orem 3.6, Q and B ,  be such that Q = B = 0. Q.E.D. 

The next theorem is the main theorem of this section, and it provides 
sufficient conditions for robust stability and optimum performance. In the 
theorem to follow, the operator R is a positive self-adj~int operator that 
“bounds” the uncertainty described by the operator AA. The operator R 
is part of a Lyapunov condition (which will be defined in more precision 
in the theorem) involving the nominal system operators. The operator 4 
is the bounded positive-semidefinibe self-adjoint operator solution for the 
Lyapunov condition, and it is the only unknown in the Lyapunov equation. 
It is assumed that R and 2 both exist. Satisfying the Lyapunov equation 
will ensure stability in the presence of perturbations described by the op- 
erator AA. The next theorem demonstrates that the operator R is also a 
function of the operator 9. 

THEOREM 3.3: Let R : 31 4 31 be a self-adjoint positive operator 
such that 

i) < A ~ * z , Q ,  > + < ~ z , A ~ * z  > 5 < RZ,Z > vz E 31 

for all (AA, AB,  AC) E U. 
Also, for a given (Ac, E,, Cc),  w u m e  that there exists a 9 E S (where 

S is the class of bounded, positive-semidefinite, sell adjoint operators) such 
that Q satisfies the equation 

on D ( d ) .  
In addition, assume that (P112,d+Ad) (where Ad is defined by Equa- 

tion (36)) is detectable for all (AA, AB,  AC) E U. Then, d + A d  is expc- 
nentially stable for all (AA, AB,  AC) E U. Also, 

QA 5 4  
where QA satisfies Equation (ii) and 

Proof: Following Bernstein [l, 91, and recalling Lemma 3.1, for all 
(AA, AB,  AC) E U ,  Equation (ii) is equivalent to 

(d + Ad)Q + Q(d* + Ad.)  + P + Y@, E,, C,, A d )  = 0 

where Y = R - ( A d Q + g A p ) .  
Notice that, by Equation (i) of the theorem, Y is nonnegative for all 

(AA,AB,AC) E U. Since (V’12,d + Ad) is assumed detectable, then 
by Theorem 3.2, it follows that ([v + Y]’12,d + Ad) is detectable for all 
(AA, A B ,  AC) E U. Bernstein [2] Lemma 4.1 gives that this detectabil- 
ity condition, along with the fact that the assumption that 0 is bounded 
implies that (d + A d )  must be stable. 

Next, subtracting 

(2 + ad)QA + QA(d + a d ) ’  + P = o 
(which is a result from Lemma 3.1) from the first equation in this proof, 

(d + a d ) q + q ( A -  + A A - )  + P +  Y = o 
yields that 

(d + A i ) @  - QA) + (9 - G A ) ( ~ *  + Ad’) + Y = 0 

Since Bernstein [2] Lemma 4.1 yields that (d+Ad) is stable, then Lemmas 
4.4 and 4.1 of [Z] allow one to write 

m 

9- QA = 1 T(t )yT(( l )df  2 0 
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where T ( t )  is the semigroup generated by (A + A A ) .  Thus, 
as a result 

2 QA and 

t r [ ~ R ]  2 tr[QAR] 

J ( A , ,  &, Cc) 5 fr@k1 

for all ( A A ,  A B ,  AC) E U ,  so that 

Note that, since Q is bounded, then this last inequality places an upper 
bound on the suptr[QAR]. Q.E.D. 

Theorem 3.3 provides a sufficient condition that ensures robustness, and 
provides an upper bound on the value of the cost functional J. By choosing 
an operator R so that conditions (i) and (ii) of Theorem 3.3 are satisfied, 
one can achieve robustness. The difficulty with the theorem is the ability to 
find an operator R that satisfies the conditions. One would like to choose R 
so that it reflects uncertainty in a meaningful way, and this may be difficult 
to do. Also, the existence of a bounded operator Q is assumed. 

4 Insights 
Choosing R is based on the type of perturbations one wishcs to con- 

sider, and depends on how one chooses to model uncertainty. Bernstein [l] 
gives one choice of R that works for finite-dimensional problems in which 
uncertainty is described in terms of stability radius. The only constraint on 
R is that it be chosen so that the hypotheses of Theorem 3.3 are satisfied. 
Assuming that is done, then using the operator R allows one to accom- 
plish a procedure like that of Bernstein [2, 11. Thus, by setting the Frechet 
derivatives of the cost functional 

L(Q, A,, B , ,  CJ = tr[xgh + (& + 22 + R + +)PI 
(where X and p are nonzero scalar Lagrange multipliers) to zero, one could 
derive conditions similar in form to those of Theorem 8.1 of [I]  with the 
obvious differences due to operators being considered instead of matrices. 
The exact form of the resulting equations depends on the form chosen for 
R. 

The advantage of this approach is that one can possibly address pertur- 
bations other than bounded ones. The disadvantage is that an algorithm 
to solve the complex coupled equations is not readily available. However, 
the approach does allow a new interpretation of the LQ_G/LTR technique. 

Let A B  = 0 and AC = 0. Then one obtains that A A  = A A .  Following 
the development of Bernstein’s Theorem 8.1 [I], one finds that one of the 
necessary A.R.E.s that must be satisfied is 

AQ + QA’ + Q. + R - QC*R,-~CQ + Q Q C ’ R ~ ~ C Q T ;  = o (38) 

Note that if A i  and A i *  are bounded, then one can choose R = 
P 2 B V B ’ ,  and as P - 00 one gets that 

R 2 ~ . i g + g ~ d ’  (39) 

Substituting R = P2BVB’ into this equation yields I 

and the work of Matson Ill] demonstrates that the aperator 8 monotoni- 
cally decreases as P -.* M since Q is bounded. Therefore, one can achieve 
robustness to bounded perturbazons by using a “tuning” procedure like 
LQG/LTR. Note that, by doing this, one does not asymptotically recover a 
loop transfer function with guaranteed margins, as was pointed out before. 
Also, this form for R will result in the other A.R.E. given by 

A 0 P + P A + R 1 - P B R ; ’ B ’ P + r i P B ~ - ’ B ’ P r *  = O  (41) 

which does not invlove R. The only assumption is that Equation (ii) of 
Theorem 3.3 be satisfied in order to guarantee stability. In this way, 9 will 
be admissible only if Equation (ii) is satisfied, which will also ensure that 
the cost functional J is finite, since 9 is bounded. 

5 Summary 
This paper demonstrates that the LQG/LTR technique can be viewed 

as a way to achieve robustness even under the constraint of a reduced order 
controller, even though one is not necessarily recovering a desired transfer 
function asymptotically. Also, note that if A d  and Ad.  are unbounded op- 
erators, then one cannot find a p large enough to satisfy Theorem 5.3.3 when 
R is chosen to be O 2 B V B ’ .  This is similar to the problem in [15] where one 
needs to find a p sufficiently large 80 that Kp is uniformly bounded. The 
O.P.E. approach gives an expanded view of the LQG/LTR technique when 
the order of the controller is intentionally less than the order of the system 
design model. Also, the O.P.E. approach allows one to choose other forms 
for R which may give more flexibility M to how one models the system 
perturbations. 
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