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Abstract— There is growing interest in using unmanned
aerial vehicles to assist in operations that require search and
surveillance. However, a challenge remains in providing the
right level of automation. Manual teleoperation and waypoint-
based planning provide a great deal of flexibility but require
significant human effort, whereas high levels of automation
reduce the level of human effort but at the cost of flexibility
and human judgement in uncertain and dynamic environments.
Here, we seek to provide an intermediate level of automation
through a set of parameterized tasks that implement common
UAV search and surveillance patterns, taking into account low-
level details such as dynamics of the UAV, geometry of the
sensor footprint, and quality of the sensor imagery. We describe
implementation of these tasks and discuss how they can be used
by either human operators or by higher levels of automation
to plan search and surveillance missions.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have the potential to
save time, money, and even lives across a variety of domains
that require search and surveillance. As an example, the US
Coast Guard estimates that while only 10 percent of their
cases involve searches, these searches have an annual cost
of approximately $50 million [1]. Not only that, but the
condition of those in distress degrades and the probability of
their survival decreases the longer the search takes. Similar
concerns exist for wilderness search and rescue operations,
which may require thousands of hours of search over large,
rugged, and remote terrains [2], and for forest fire suppres-
sion, where persistent surveillance and monitoring is needed
to guide fire fighting efforts and ensure fire fighters do not
unknowingly enter high risk regions [3].

While UAVs can in theory decrease the cost and increase
the efficiency of search and surveillance in domains such as
these without the need for risking manned assets, a challenge
remains in providing the right level of automation. Manual
teleoperation provides a great deal of flexibility but is ex-
tremely labor intensive, requiring multiple human operators
per vehicle [4]. Highly autonomous UAV controllers have
been developed that allow a single human operator to su-
pervise multiple vehicles, but they are currently less flexible
and more fault-prone in complex and uncertain environments.
They also suffer from issues that arise when humans interact
with high levels of automation, including loss of situational
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awareness, mis-calibrated trust in automation, and increased
workload when automation performs poorly [5]. Emphasis
has therefore been placed on providing functionality at
different levels of automation [6], [7].

Here, we seek to provide an intermediate level of au-
tomation for UAV control by formulating a set of automated
search tasks that implement common search and surveillance
patterns. These automated search tasks handle the low-level
details of waypoint-based path planning and sensor steering,
with parameters that can be used to tailor the search pattern
to meet the needs of the current situation. In what follows,
Section II provides background on details accounted for
in the search tasks, Section III describes the search tasks
themselves, and Section IV describes a flexible method for
mission planning based on the tasks. Section V concludes
with a discussion of ongoing improvements to these tasks
and how they fit into the hierarchy of automation for multi-
UAV control.

II. BACKGROUND

The automated tasks we will develop in Section III are
motivated in part by the need to quickly and precisely
account for factors that affect imagery collected by a UAV.
While modern ground control stations allow users to pre-
specify a UAV flight plan as a series of waypoint and sensor
gimbal commands [8], the burden is generally on the user to
ensure the resulting trajectory will meet all image collection
requirements for the mission. When requirements include
– e.g., that an image of a target must be taken from a
particular angle of approach, that a target must be visible
in a video feed for a specific amount of time, or that a video
must capture the entirety of a specified region – planning
of the necessary commands must take into account low-
level implementation details such as dynamics of the UAV,
geometry of the sensor footprint, and quality of the obtained
imagery. Here, we will address these implementation details
by assuming Dubins vehicle dynamics for the UAVs and
computing the sensor footprint under a flat earth assumption,
though we note the proposed framework is readily extensible
to more elaborate models.

A. Dubins Vehicles

Let a UAV’s position relative to the Earth’s inertial frame
in North-East-Down (NED) coordinates be denoted

p = (xp, yp, zp), (1)

where xp is the position along an axis pointing toward
inertial North, yp is the position along an axis pointing
toward inertial East, zp is the position along an axis pointing
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into the Earth, and p0 = (0, 0, 0) is some fixed point on
the Earth’s surface. Note that since zp is negative above
the Earth’s surface, we define halt = −zp to be the UAV’s
altitude.

Assume that each UAV flies at a constant speed and
altitude and that the Earth’s surface is approximated as flat.
We then model each UAV as a Dubins vehicle [9], with
dynamics in the North-East plane given by

ẋp = V cos(ψ)

ẏp = V sin(ψ)

ψ̇ = u(t),

where V is a constant and u(t) ∈ [−ū, ū] for all time t. In-
tuitively, these equations describe a vehicle with a minimum
turn radius rmin = V/ū, where turns can be clockwise or
counterclockwise. Suppose we have a starting configuration
νs = (ps, χs), where ps and χs are the starting position and
heading respectively, and a similarly defined desired ending
configuration νe = (pe, χe). It was shown in [10] that for a
vehicle with these dynamics, the time-optimal feasible path
between two such configurations consists of a circular arc
followed by a line followed by another circular arc. This path
can be computed by placing two circles of radius rmin on ps,
a “left” and “right” circle representing the two possible turns
from νs, with centers cls and crs at distance rmin from ps
and 90◦ counterclockwise and clockwise from heading χs.
Similarly, two circles with centers cle and cre are placed
on pe. The shortest path can be found by checking each
possible combination of starting and ending turns, with a
straight line tangent to the corresponding circles connecting
them, as shown in Figure 1.
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Fig. 1. Dubins paths that transition a UAV from a starting configuration
(ps, χs) to an ending configuration (pe, χe). Adapted from [9]. In this
case, the right-straight-right Dubins path is optimal.

B. Sensor Footprint

We would generally like to select the UAV’s starting and
ending configurations for a task such that the task’s target
is in front of the leading edge of the sensor footprint at
the task’s start and behind the trailing edge of the sensor
footprint at the task’s end. Assuming the UAV’s roll and
pitch are 0◦ throughout the task, the geometry of the sensor
footprint depends on the sensor’s gimbal elevation angle θg ,
its vertical field of view ηv , its horizontal field of view ηh,
and the UAV’s altitude halt, as shown in Figure 2. We can
then compute the distance from the UAV’s ground position
(xp, yp) to the sensor footprint’s leading edge dl, the distance
to its center dc, the distance to its trailing edge dt, and its
width dw as

dl =
halt

tan(θg − ηv/2)

dc =
halt

tan(θg)

dt =
halt

tan(θg + ηv/2)

dw = 2hc tan(ηh/2) = 2
halt

cos(θg)
tan(ηh/2).

Note that if we allow the gimbal azimuth angle ψg to change,
the sensor footprint is rotated clockwise by ψg about the
UAV, but its shape remains the same. Note ψg = 0◦ directly
in front of the UAV.
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Fig. 2. When UAV roll and pitch are both 0◦, geometry of the sensor
footprint is determined by altitude halt as well as the sensor’s gimbal
elevation θg , vertical field of view ηv , and horizontal field of view ηh.

C. Ground Sample Distance

For many of our tasks, we would like to set a desired
ground sample distance (GSD), i.e. number of meters per
pixel in the sensor image. Note that GSD is not uniform
throughout the image, so we define GSD based on the max-
imum number of meters per pixel at the sensor footprint’s
center as measured along the vertical and horizontal. Let rh
and rv be the horizontal and vertical resolution of the sensor
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in pixels. Then we define gsd as

gsd = max

(
dw
rh
,
dl − dt
rv

)
.

Note that if we fix the UAV’s altitude and the sensor’s field
of view, gsd depends only on gimbal elevation θg . Also
note that smaller values of gsd correspond to more detailed
images, and gsd is smallest when θg = 90◦. However,
smaller values for gsd are not always desirable, e.g. if the
UAV is flying quickly and we want a target to remain in
the sensor footprint longer. For most tasks, we then select a
target value for gsd and set the gimbal elevation θg to the
value that achieves it. If the target value cannot be achieved,
θg is set to 90◦.

III. TASKS
Each of the automated tasks we describe in this section

plans waypoint-based paths and sensor steering commands
according to the task’s type and the value of its customizable
parameters. For some tasks, the resulting task path is simply
a starting configuration νs and ending configuration νe, with
waypoints placed according to the time-optimal Dubins path
between them. For other tasks, the task path is decom-
posed into a sequence of starting and ending configurations
(νs(1), νe(1)), . . . (νs(n), νe(n)) that are then connected by
Dubins paths. For yet other tasks, the task path is computed
based on a function or more complicated algorithm that
does not explicitly make use of Dubins paths but returns
a task path that is approximately flyable. In such a case, the
UAV’s autopilot will make adjustments as it flies between
waypoints, and there may be some deviations between the
planned task path and the actual path flown by the UAV.
For sensor steering, some tasks use a single fixed sensor
orientation throughout, while others require re-positioning
the sensor at certain points on the task path.

The following sections describe planning approaches and
parameters for five tasks: Point Inspect, Line Search, Area
Search, Spiral Search, and Sector Search. Note that while
each task has its own unique parameters, all tasks have
a parameter for desired gsd. This sets the sensor gimbal
elevation angle θg as described in Section II-C.

A. Point Inspect
The Point Inspect task is motivated by the need to image a

target at a known location, possibly from a particular angle of
approach and standoff distance. Parameters for this task are
given in Table I. As shown in Figure 3, for a specified point
p, this task is by default configured to start and end with the
center of the leading and trailing edge of the sensor footprint
on p. The angle of approach χ is then chosen from a set of
discrete angles about p such that the path from the previous
task ending configuration ν̄e is minimized. The starting and
ending configurations νs = (ps, χs) and νe = (pe, χe) are
then computed according to

ps = p+ (dl cos(χ), dl sin(χ), zp) (2)
pe = p+ (dt cos(χ), dt sin(χ), zp)

χs = χe = χ+ 180◦.

It should be noted that when searching over the discrete set
of angles, we can also apply other metrics for selecting χ,
e.g. to include a hard constraint for avoiding no-fly zones or
to optimize some metric other than distance.

TABLE I
PARAMETERS FOR THE POINT INSPECT TASK

Name Description
Point p Point to inspect.
Approach
angle range
(χc, χr)

Range of allowable angles of approach to
p measured clockwise from inertial North,
with χs = χe ∈

( (
χc ± χr

2

)
+ 180◦

)
.

Default = null.
Standoff
distance s

Distance from which to approach p. De-
fault = dl.

ν̄e νs

νe

p
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Fig. 3. A Point Inspect task on point p. Since no angle of approach range
is specified, a search is performed over a discrete set of angles about p, and
angle of approach χ is chosen to minimize the path.
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Fig. 4. A Point Inspect task on point p when an angle of approach range
(χc, χr) and standoff distance s are specified.

If a particular view angle on a target at p is desired,
the user can specify a range of approach angles through
parameters χc and χr. The task will then use the value
χ ∈ [χc± χr

2 ] that minimizes the path or directly set χ = χc
if χr = 0◦. If the user would like to allow for more time to
approach p or see more of the region leading up to p, the
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user can set a standoff distance s for the start of the task.
Eq. (2) for the starting point ps is then modified to

ps = p+ (s cos(χ), s sin(χ), zp),

which may also affect the angle of approach χ. An example
with values chosen for χc, χr, and s is shown in Figure 4.

B. Line Search

The Line Search task is motivated by the need to image
entities that can be modeled as lines – e.g., roads and
area perimeters – using a particular view angle. The task
parameters are given in Table II, with line l described by
a sequence of points l = l(1), . . . , l(n) and the list of
allowable view angles as χ = χ(1), . . . , χ(n). A boolean flag
b indicates whether these view angles specify that the gimbal
azimuth angle should be set to ψg = χ for the task (when
b = false) or that path waypoints should be placed relative to
line l at distance dc and angle χ measured clockwise from
inertial North (when b = true).

In practice, the line described by l may consist of a
great many points, e.g. if it corresponds to a road whose
segments are derived from a high fidelity map. This can be
problematic, both because UAV autopilots have a limit on
the number of waypoints that can be uploaded at a time and
because lines may have high spatial frequency components
that cannot be imaged at a constant desired view angle due
to the dynamics of the UAV, as shown in Figure 5(a). We
therefore implement the Line Search task using the approach
described in [11]. The steps for computing the task path are
as follows:

1) Apply a greedy algorithm to line l that removes points
to form a smoother line l′. This algorithm starts with
l′ = l and at each iteration, it removes the point in
l′ that results in the smallest area between l′ and l.
The algorithm stops when only a specified number of
points remain, as demonstrated by a simple example
in Figure 5(b).

2) Form a preliminary flight path p′ for the UAV by
creating path segments for each segment in l′ such
that the center of the sensor footprint covers the
corresponding line segment at an acceptable view angle
χ. However, as shown in Figure 5(c), this leads to
discontinuities between path segments that would have
to be handled with Dubins paths, which would preclude
smooth sensor coverage of the line. Rather than strictly
enforce the view angle, adjacent segments are joined
based on the bisection of the angle between them, as
shown in Figure 5(d).

3) There might now be segments in p′ that overlap, e.g.
due to tight turns, as shown in Figure 5(e). For such
segments, we average their endpoints to form a single
point, as shown in Figure 5(f).

4) As the UAV flies the path p′ derived from l′, the center
of the sensor footprint is steered to points on l such
that the proportion of l that has been covered by the
sensor is equal to the proportion of p′ that has been
flown by the UAV. A sampling of view angles is shown

(a) A high spatial
frequency path.

(b) A smoother line is formed by removing points
from the original line using a greedy algorithm.

(c) Enforcing an exact view angle
requires Dubins paths to connect
segments, which disrupts smooth
sensor coverage.

(d) Paths for adjacent segments are
therefore joined at the bisection of
the angle between them.

(e) Tight turns can cause path seg-
ments to overlap.

(f) The endpoints of overlapping
path segments are therefore aver-
aged to form a single point.

(g) During the Line Search task, the actual view angle is chosen based
on percent progress over the path and the percent of the line that has
been imaged.

Fig. 5. Implementing the Line Search task requires smoothing line l to form
l′, forming p′ from l′ according to an acceptable view angle χ, connecting
adjacent path segments in p′, removing overlapping path segments in p′,
and making a best effort to match view angle χ throughout the task. Figures
adapted from [11].
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Fig. 6. Two Line Search tasks, the first on line l̄ with χ̄ = −70◦ and the
second on line l with χ = 40◦. For both tasks, b = false and θg = 50◦.

in Figure 5(g), where the UAV searches the line in both
directions.

Two consecutive line search tasks are shown in Figure 6,
where the first line is l̄ and the second is l. For both tasks,
gimbal elevation angle θg = 50◦ so that the shape of the
sensor footprint is the same. For both tasks, b = false so
that the gimbal azimuth angle ψg is set to the view angle;
however, the first task has view angle χ̄ = −70◦, and the
second has view angle χ = 40◦. This results in the UAV
flying closer to line l than it does to line l̄, and the sensor
points to the UAV’s right rather than its left.
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TABLE II
PARAMETERS FOR THE LINE SEARCH TASK

Name Description
Line l Line to search, defined by points l =

l(1), . . . , l(n).
View angles χ List of allowable view angles χ =

χ(1), . . . , χ(n). Default = 0◦.
Inertial angle
flag b

If b = true, interpret view angles
as placing waypoints relative to line l
at distance dc and angle χ measured
clockwise from inertial North; other-
wise, use as the gimbal azimuth ψg .
Default = true.

C. Area Search

The Area Search task is motivated by the need to image
entire regions, possibly using a particular sweep angle and
after visiting a particular point first. The task parameters
are given in Table III. The area a is described by vertices
a(1), . . . , a(n), with the option to have the task generate
vertices that approximate a circle with a specified radius
and center. By default, the task sweeps the area by creating
“lane” segments that run at angle χ measured clockwise from
inertial North, with χ = 0◦ as the default. The user can also
optionally specify a Point Inspect task to perform before the
Area Search, which can be convenient, e.g. if the area has an
associated station or facility that should be inspected before
the area is searched. Given values for these parameters, the
steps for computing the search path are as follows:

1) If a Point Inspect task is requested, compute the
starting and ending configurations νs(p) and νe(p)
as in Section III-A. When computing the subsequent
Area Search, νe(p) is then taken as the previous task’s
ending configuration.

2) Form the convex hull a′ of the polygon a. If a is
already convex, a′ = a.

3) Rotate a′ about its center by −χ.
4) Find the westernmost point ywa′ of the polygon de-

scribed by a′, and set the starting and ending y-
coordinate for the first search lane to y(1) = ywa′ +
αdw
2 . At y = y(1), find the southernmost and north-

ernmost points xsa′ and xna′ of a′, and account for
the sensor footprint at the start and end of the lane
by setting xs(1) = xsa′ − dl and xe(1) = xna′ − dt.
The starting and ending configurations for the first lane
are then νs(1) = ((xs(1), y(1), zp), 0

◦) and νe(1) =
((xe(1), y(1), zp), 0

◦).
5) For each subsequent lane i > 1, set y(i) = y(i −

1) + αdw. At y = y(i), find the northernmost and
southernmost points xna′ and xsa′ of a′. If i is odd, set
xs(i) = xsa′−dl, xe(i) = xna′−dt, and χ(i) = 0◦. If
i is even, set xs(i) = xna′ +dl, xe(i) = xsa′ +dt, and
χ(i) = 180◦. The starting and ending configurations
for the lane are then νs(i) = ((xs(i), y(i), zp), χ(i))
and νe(i) = ((xe(i), y(i), zp), χ(i)).
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Fig. 7. An Area Search over a circle with χ = 0◦, α = .9, θg = 60◦,
and a Point Inspect task.

−1,000 −500 0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
−5,000

−4,500

−4,000

−3,500

−3,000

−2,500

−2,000

−1,500

−1,000

−500

0

500

1,000

position east (m)

p
os
ti
on

n
or
th

(m
)

dw

dt
dl

dl

νs(1)

νs(15)

νe(15)

dt

νe(1) αdw
χ = 30◦

Fig. 8. An Area Search over the same circle as in Figure 7, but with
χ = 30◦, α = .6, θg = 20◦, and no Point Inspect task.

6) Repeat Step 5 until y(i) is less than αdw
2 from the

easternmost point in a′.
7) Rotate the search lanes about the center of a′ by χ.
8) Connect the search lanes with Dubins paths.

Figure 7 shows an example Area Search for a circle when
χ = 0◦, α = .9, θg = 60◦, and there is a Point Inspect
task. Figure 8 shows an example for the same circle when
χ = 30◦, α = .6, θg = 20◦, and there is no Point Inspect
task. Comparing Figure 7 and Figure 8, note that because θg
is larger in the former, the leading and trailing edges of the
sensor footprint are closer to the UAV and as a result, the
search lanes start and end much closer to the boundary of
the circle. In the latter, since α is smaller, the search lanes
are closer together and as a result, more search lanes are
required to complete the task.

D. Spiral Search

The Spiral Search task is motivated by the need to search
for an entity from a last known location. As the name
suggests, the search is performed by following a spiral path
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TABLE III
PARAMETERS FOR THE AREA SEARCH TASK

Name Description
Area a Polygon defined by points a =

a(1), . . . , a(n).
Sweep Angle χ Angle of the search lanes. Default =

0◦.
Lane Spacing
Factor α

Lanes are separated by distance αdw.
Default = 0.9.

Point Inspect
Pt

Point Inspect task to perform before
Area Search. Default = null.
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Fig. 9. A Spiral Search task with an adjustable extent e and with rotations
of the spiral separated by adjustable distance αdw .

from this location, an efficient strategy promoted in domains
such as maritime search and rescue [1]. Parameters for this
task are given in Table IV. The center of the spiral is set to
a specified location p, and the starting configuration of the
path is set to νs = (p + (dw4 , dl, zp), 270◦). The rest of the
path for the search is then formed by sampling points from
an Archimedian spiral described in polar coordinates (r, θ)
by the equation

r =
dw
4

+ αdwθ (3)

starting from θ = 0◦ with θ measured counterclockwise.
This sets the start of the spiral so that the region near the
center is covered by the sensor footprint during the first
rotation. Subsequent rotations cover points at distance αdw
from points in the previous rotation, with the default α = 0.9
ensuring there is a slight overlap in the sensor footprint
between rotations so that the whole region is imaged. The
task ends when the center of the trailing edge of the sensor
footprint intersects the circle centered at p and with radius
equal to the specified extent e. An example Spiral Search
task is shown in Figure 9.

E. Sector Search

The Sector Search task is motivated by the need to image a
target from many different view angles. Task parameters are

TABLE IV
PARAMETERS FOR THE SPIRAL SEARCH TASK

Name Description
Point p The last known position of a target.
Extent e The radius of the search area.
Lane Spacing
Factor α

The distance between points on the
spiral that lie at the same angle from
the center is αdw. Default = 0.9.

given in Table V, with an example search shown in Figure 11.
At a high level, a Sector Search iteratively approaches a
target at point p from a standoff distance determined by
the search extent e, changing the angle of approach for
each pass by a fixed offset at every iteration. Approaches
are made until the circular region of radius e around p has
been imaged. Given that the circumference of the region is
2πe, the approximate number of passes needed is 2πe

αdw
. Then

amount to offset the angle of approach between passes is
360◦(αdw2πe − 1

2 ), where the default of α = 0.9 results in full
coverage of the region. Steps for computing the path for a
Sector Search task are as follows:

1) Set the heading for the first approach to 90◦, the point
for the starting configuration such that the center of
the leading edge of the sensor footprint is on closest
point of the extent boundary around p at that heading,
and the point for the ending configuration such that
the leading edge of the sensor footprint is on the
farthest point of the extent boundary at that heading.
In addition, create an “intermediate” point at two times
the UAV’s turn radius below the starting configuration
with heading 270◦. The corresponding intermediate,
starting, and ending configurations are then

νi(1) = (p+ (−2r,−e− dl, zp), 270◦)

νs(1) = (p+ (0,−e− dl, zp), 90◦)

νe(1) = (p+ (0, e− dl, zp), 90◦),

where the goal of the “intermediate” configuration is
to enforce a consistent shape for each pass.

2) For each pass i > 1, draw a line l from νe(i − 1)
at angle χ(i − 1) − 360◦(αdw2πe ) and a parallel line l′

with points at distance 2r and 90◦ clockwise from
points on l. Set the heading for νs(i) and νe(i) to
χ(i) = χ(i− 1)− 360◦(αdw2πe − 1

2 ), place the point for
the starting configuration on l′ such that the leading
edge of the sensor footprint is on the closest point of
the extent boundary along this heading, and place the
point for the ending configuration such that the leading
edge of the sensor footprint is on the farthest point. Set
the heading of the intermediate configuration νi(i) to
χ(i)− 180◦ and the point on l perpendicular to νs(i)
on l′.

3) Repeat step 2 until N ≥ 2πe
αdw

passes are made.
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Fig. 10. A Sector Search task for point p with an extent e = 350 m. Note
that in this case, the leading edge of the sensor footprint dl is approximately
equal to 2e, so that approaches end near the extent boundary.

TABLE V
PARAMETERS FOR THE SECTOR SEARCH TASK

Name Description
Point p The position of the target of interest.
Extent e The radial distance to extend the search

with respect to p.
Lane Spacing
Factor α

Spacing between arms of the sector
search is a function of αdw. Default
= 0.9.

IV. PROCESS ALGEBRA FOR TASK-BASED MISSION
PLANNING

Just as each task described in Section III provides a
fast and flexible way to quickly accomplish a single search
objective, it is useful to have a similarly fast and flexible way
to compose tasks into a mission plan. A major advantage of
these tasks is that they can easily be used in conjunction with
a wide variety of planning approaches. Here, we demonstrate
an approach based on process algebra [12].

Suppose a and b are two search tasks. Process alge-
bra allows one to specify the relationship between task
assignments in a mission plan through three composition
operators: a+ b, a · b, and a ‖ b, which are called the alter-
native, sequential, and parallel compositions, respectively.
The mission plan formed by alternatively composing a + b
assigns either task a or task b, but not both; the sequential
composition a · b assigns task a followed by task b; and
the parallel composition a ‖ b assigns tasks a and b in an
interleaved manner, i.e. it assigns both task a and task b but
in no particular order. A process algebra specification then
describes all possible ways in which tasks can be assigned.
We emphasize that in this work, assignment refers to the
allocation of a task to a UAV, and that the order in which
tasks are allocated are not necessarily the same as the order
in which they are actually executed during the mission if they
are assigned to different UAVs. For example, let us annotate

a task a with a subscript ui if it is eligible to be performed
by UAV i. Then for instance, if tasks a and b could both be
performed by either UAV u1 or u2 and we want to assign
task a before task b, we could specify this through the process
algebra string (au1 + au2) · (bu1 + bu2). Task a could then
be assigned to UAV 1, followed by task b being assigned to
UAV 2. However, if UAV 2 is closer to task b, task b might
actually start and complete first.

Recall that most tasks have multiple options. For instance,
the Point Inspect, Line Search, and Area Search tasks may
each be associated with several possible angles. If our
mission includes multiple UAVs, then each task could also be
associated with a list of eligible vehicles. Suppose we have
an Area Search task AS50, with three eligible UAVs u1, u2,
and u3 and 6 possible sweep angles χ = [0◦, 30◦, . . . , 150◦].
Then we could represent these options in process algebra as

AS50 = (AS50u1,0 +AS50u2,0 +AS50u3,0 + . . .+

AS50u1,150 +AS50u2,150 +AS50u3,150).

We can similarly express the options for several Point Search
tasks PS10, PS11, PS12, and PS13; Line Search tasks
L10, L20, L30; and a Sector Search task SS61. If we do
not have any strict constraints on the order in which these
tasks are assigned, we can write a mission specification in
process algebra using the ‖ composition as

PS10 ‖ PS11 ‖ PS12 ‖ PS13 ‖ L10 ‖ L20 ‖
L30 ‖ AS50 ‖ SS61. (4)

The set of possible task assignments permitted by (4) can be
represented as a tree [12]. We then use a depth-first search
with a limited search depth after the first found solution
to generate mission plans that meet additional constraints
beyond those encoded in the process algebra string, e.g. that
keep task paths within “Keep In” zones and out of “Keep
Out” zones, and that minimize a cost function, e.g. maximum
distance traveled by any of the UAVs. A solution for this
example is shown in Figure 11, whose computation time is
on the order of a few seconds.

V. CONCLUSIONS

In this paper, we have described the development of a set
of UAV search tasks that automate planning of waypoint-
based paths and sensor steering commands for common
search and surveillance patterns, taking into account factors
such as dynamics of the UAV, geometry of the sensor
footprint, and quality of the sensor imagery. Each task has
certain parameters that can be used to tailor the generated
path, e.g. to use a particular angle of approach, view angle,
standoff distance, shape, or search extent. These search tasks
provide a level of automation that is higher than that found in
most UAV ground control stations, which will guide a UAV
between waypoints but generally require users to generate
waypoint-based flight plans themselves.

We briefly mention that development of a user-friendly
interface to provide fast and easy access to these tasks is
underway [13]. The general concept starts with an interface
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Fig. 11. A mission plan derived from a process algebra string. The solution
algorithm attempts to minimize the maximum distance traveled by the UAVs
while constraining paths to remain inside the “Keep In” zones and stay out
of the “Keep Out” zones.

similar to those found on standard UAV ground control
stations – one that shows an overhead view of the map, cur-
rent positions of the UAVs, planned UAV paths, waypoints,
labeled zones, etc. – and adds icons for each task so that
a user can select a task along with a point, line, or area to
search and a UAV to execute it. Additional menus provide
text fields for entering specific parameters for the tasks if
desired.

In the future, we plan to implement and test additional
tasks. Consider a task for tracking a moving target. Though it
was not discussed in Section III, we have developed a task to
track a target using a desired view angle and standoff distance
that works by placing a continuously updated waypoint at
the appropriate point relative to the target. However, this
implementation does not account for certain factors, e.g.
differences in speeds between the two vehicles, which can
lead to undesirable curves in the UAV’s path; more sophis-
ticated approaches exist that would have better performance
[14]. Similarly, we have developed a task that uses one UAV
as a relay to extend the effective communication range of
another; however, the current implementation is based on
the assumption that the communication range can be simply
modeled as a circle with a particular radius around each UAV.
This is not an accurate assumption in practice, and a more
realistic approach is needed [15]. Other multi-vehicle tasks
could also be developed, e.g. to implement formation flying
[16].

We are also interested in using these tasks as a basis for
higher levels of autonomy. As an example, we are working to
design slightly higher-level automated tasks that are reactive,
i.e. they can switch between lower-level tasks in reponse to
specific events events. For instance, a higher-level automated
task might switch from a search task to a target tracking
task when a moving target is detected in the sensor footprint
[17]. These tasks have also been used in conjunction with
an “Intelligent Agent” that chooses which UAV should be

assigned to a task by considering factors such as a UAV’s
sensor type, stealth level, speed, and fuel efficiency in the
context of the needs of the mission [14]. These tasks could be
used in a similar manner by any number of classic planning
and scheduling approaches to implement higher levels of
autonomy [18].
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