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Abstract— In this paper, we present a new application
of the so-called phi-mixing coefficient between two random
variables. Using the phi-mixing coefficient, as well as
an analog of the well-known data processing inequality
from information theory, we present a new algorithm
for reverse-engineering gene interaction networks (GINs)
from expression data, by viewing the expression levels
of various genes as coupled random variables. Unlike
existing methods, the GINs constructed using the algorithm
presented here have edges that are both directed and
weighted. Thus it is possible to infer both the direction
as well as the strength of the interaction between genes.
Several GINs have been constructed for various data sets in
lung and ovarian cancer. One of the lung cancer networks
is validated by comparing its predictions against the output
of ChIP-seq data.

I. INTRODUCTION

Recent advances in experimentation, coupled with
dramatic reductions in cost, now permit the biological
research community to generate data at an unprece-
dented pace. One of the most common types of data
consists of so-called ‘gene expression data’, in which
a very large number of genes are excited by a mixture
of DNA from cancerous and normal tissues. See [1] for
a tutorial introduction to this experimental technique,
which is also referred to as microarray analysis. The
outcome of such an experiment is a set of ‘expression
levels’, one for each gene, that roughly corresponds to
the activity level of that particular gene in the cancerous
tissue. If the gene is more active in the cancerous tissue
than in the normal tissue, then it is said to be ‘over-
expressed’, whereas if the situation is reversed, the gene
is said to be ‘under-expressed’. The expression study is
repeated for several cancerous tissues, all coming from
the same type of cancer, so that the scientist is able
to generate a pattern of expression behavior for each
gene across multiple tumor samples. This multiplicity
of measurements compensates, to some extent, for the
noisy nature of the measurements that is inherent to
microarray analysis. At the end of the study, the data
at hand can be viewed as an array of real numbers
{xij , i = 1, . . . , n, j = 1, . . . ,m}, where n is the
number of genes under study and m is the number of
tumor tissues that are analyzed. If the number of genes is
close to the total number of genes in the human genome
(roughly 22,000), then the study is said to be ‘genome-

wide’. The number of samples m ranges between several
dozen to a few hundred.

There are many possible analyses that can be per-
formed on such genome-wide expression data. One
analysis that is potentially the most useful is to infer
the manner and extent to which the various genes in the
study interact with each other within a cell. Often these
interactions are represented in the form of a directed
graph, where the nodes represent the genes in the study,
and the edges correspond to direct influences of one
gene (the source of the edge) on another (the sink of
the edge). Ideally, it would also be desirable to assign
weights in the form of real numbers to each edge, so
that the analysis sheds light not only on the direction of
influence but also its strength. Such a network is often
referred to in the literature as a ‘gene regulatory net-
work’ (GRN). From a biologist’s standpoint, the phrase
‘regulation’ encompasses not only the conclusion that
gene A influences the behavior of gene B, but also some
physical and/or chemical explanation of the manner of
the regulation. However, methods based on statistical
analysis, such as those surveyed in the literature review
below, and also the present paper, do not lead to such
‘mechanistic’ or ‘cause and effect’ explanations, only an
observation that interactions seem to be present. For this
reason, we prefer to use the expression ‘gene interaction
network’ (GIN) to denote the networks generated here.

The most common approach to reverse-engineering
GINs is to view the expression level of each gene as
a random variable, and the measurements of the gene
expression levels of all genes in a single tissue as inde-
pendent samples of the collection of random variables.
As before, let n represent the number of genes and
m the number of samples, and let X1, . . . , Xn denote
the random variables corresponding to the expression
values of genes 1 through n. Then for a fixed index
j, the vector (x1j , . . . , xnj) (which is the outcome of
a single genome-wide expression level measurement)
is viewed as a realization of the joint random vari-
able (X1, . . . , Xn). The assumption is that if j and k
are distinct indices, then the realizations (x1j , . . . , xnj)
and (x1k, . . . , xnk) are statistically independent. Notice
however that it is not assumed that the random variables
Xi are independent of each other. Indeed, the objective
of the exercise is to infer their interdependence from the
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available data.
As number of samples (in the hundreds) is two orders

of magnitude smaller than the number of genes (in the
tens of thousands), it is not possible to infer the joint
probability distribution of all random variables. There-
fore we simply ask whether, for two distinct indices i
and j, the corresponding random variables Xi and Xj

are independent. Thus if Xi and Xj are independent
random variables, then genes i and j do not interact
at all, and there does not exist any path between the
associated nodes i and j in the GIN. However, this is
far too coarse a representation. At the next level of detail,
one can choose three indices i, j, k and ask whether
Xi and Xj are conditionally independent given Xk,
henceforth denoted as (Xi ⊥ Xj)|Xk. If the answer
is ‘yes’, then this would mean that in the associated
GIN, the removal of node k and associated edges would
disconnect nodes i and j. Therefore all paths from
node i to node j and vice versa must pass through
node k. Or to put it another way, if Xi and Xj are
conditionally independent given Xk, then gene i does
indeed interact with gene j, but in an indirect fashion,
via gene k. It is therefore meaningful to ask: Given a
set of whole-genome expression data, what is a minimal
interaction network that is consistent with the data, in
terms of faithfully reproducing the all the conditional
independence properties implied by the data? In the
present paper, we present an algorithm that answers this
question.

To date we have used our method to reverse-engineer
several GINs for lung cancer and ovarian cancer. In order
to validate the reverse-engineered lung cancer GIN, we
have used so-called ChIP-seq data from our collabo-
rators to determine potential target genes around three
specific genes, namely ASCL1, PPARG and NKX2-1.
These three genes are well-known ‘transcription factors’,
that is, genes that are expected to regulate many other
genes. See [2] for a tutorial introduction to the ChIP-
seq technology. In a nutshell, the output of a ChIP-
seq experiment and subsequent analysis results in a
fairly large number of genes that could be directly
downstream of the transcription factor in the ‘true but
unknown’ GIN. Our collaborators could identify 226
potential downstream target genes of ASCL1, 221 po-
tential downstream target genes of PPARG, and 684
potential downstream target genes of NKX2-1. In the
case of ASCL1 our results are truly spectacular, with
the P -value (likelihood of getting the match purely
through chance) being below machine zero. The P -
values of obtaining our predictions purely by chance
are about 0.0688 for downstream neighbors of PPARG
and about 0.0465 for all neighbors of NKX2-1. The P -
value for all neighbors of PPARG is about 0.0858 while
the P -value for downstream neighbors of NKX2-1 is
quite unimpressive at about 0.2057. Thus, except for
the downstream neighbors of NKX2-1, the remainder
are enriched at or near the 0.05 level of P -value, which

is widely used in biology. As a further ‘sanity check’,
we tested the neighborhood of ASCL1 in the ovarian
cancer GIN; it was not in the least enriched for ChIP-
seq genes identified for lung cancer. This is as it should
be, and lends further credence to our reverse-engineered
GIN for lung cancer.

II. BACKGROUND ON INFORMATION THEORY AND
THE PHI-MIXING COEFFICIENT

A. Mutual Information
Suppose X,Y are random variables assuming values

in finite sets A,B respectively. Let θ denote their joint
distribution, so that

θij = Pr{X = i&Y = j}.
Let µ,ν denote the marginal distributions of X and Y
respectively. Thus

µi = Pr{X = i}, νj = Pr{Y = j}.
It is of course well-known that

µi =
∑
j

θij , νj =
∑
i

θij

Let
H(θ) = −

∑
i,j

θij log θij

denote the Shannon entropy of the probability dis-
tribution of the joint distribution H(θ). We shall also
write H(X,Y ) in place of H(θ). In other words, we
do not distinguish between the entropy of a probability
distribution, and the entropy of a random variable having
that probability distribution. With these definitions, the
quantity

I(X,Y ) = H(X) +H(Y )−H(X,Y )

= H(µ) +H(ν)−H(θ)

is called the mutual information between X and Y .
The following facts are well-known in the information
theory literature; see for example [3]:
• The mutual information is symmetric; thus
I(X,Y ) = I(Y,X).

• 0 ≤ H(X,Y ) ≤ min{H(X), H(Y )}.
• X and Y are independent random variables if and

only if I(X,Y ) = 0.
Another very important fact about mutual information

is the so-called ‘data processing inequality’; see [3, p.
34]. Suppose X,Y, Z are random variables and that
(X ⊥ Z)|Y . Then

I(X,Z) ≤ min{I(X,Y ), I(Y, Z)}.
As described in the literature survey, the notion of
mutual information and the data processing inequality
can be used to reverse-engineer undirected, unweighted
GINs from expression data. However, our objective is
to reverse-engineer directed and if possible weighted
GINS. So we look for alternate measures of dependence
between two random variables that are directional. This
leads us to the φ-mixing coefficient.
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B. The φ-Mixing Coefficient: Definition

The φ-mixing coefficient was introduced in [4] as a
measure of the asymptotic long-term independence of
a stationary stochastic process, and was used to prove
laws of large numbers for non-i.i.d. processes. See [5,
(2.5.3)] for the general definition. This definition can
be readily adapted to define a quantitative measure of
the dependence between two random variables; see [6].
From the standpoint of reverse-engineering GINs from
expression data, the most appealing feature of the φ-
mixing coefficient is its directionality. Unlike mutual
information or Pearson correlation, the φ-mixing coeffi-
cient distinguishes between the dependence of X on Y
and that of Y on X .

If X and Y are random variables assuming values
in possibly distinct finite1 sets A = {1, . . . , n} and
B = {1, . . . ,m} respectively, the φ-mixing coefficient
φ(X|Y ) is defined as

φ(X|Y ) := max
S⊆A,T⊆B

|Pr{X ∈ S|Y ∈ T}−Pr{X ∈ S}|.
(1)

Thus φ(X|Y ) is the maximum difference between the
conditional and unconditional probabilities of an event
involving only X , conditioned over an event involving
only Y . Specifically, the φ-mixing coefficient has the
following properties:

1) φ(X|Y ) ∈ [0, 1].
2) In general, φ(X|Y ) 6= φ(Y |X). Thus the φ-

mixing coefficient gives directional information.
3) X and Y are independent random variables if and

only if φ(X|Y ) = φ(Y |X) = 0.
4) The φ-mixing coefficient is invariant under any

one-to-one transformation of the data. Thus if f :
A→ C, g : B→ D are one-to-one and onto maps,
then

φ(X|Y ) = φ(f(X)|g(Y )).

It is evident that φ(X|Y ) measures the degree of inter-
dependence between X and Y . Thus, unlike with mutual
information, if φ(X|Y ) < φ(W |Z), then it can indeed
be said that X depends less on Y than W does on Z.

C. The φ-Mixing Coefficient: Computation

The material presented above is all standard. Now we
review two new results from [7] that are crucial for the
algorithm being proposed here.

While (1) is suitable for defining the quantity φ(X|Y ),
it cannot be directly used to compute it. This is be-
cause (1) requires us to take the maximum over all
subsets of A and B, and would thus require 2|A|+|B|

computations. However, in the special case where the
marginal distribution of Y is the uniform distribution,

1The assumption that both random variables are finite-valued is
made purely for convenience in exposition. In the general case, the
sets S and T would have to belong to the σ-algebras generated by
the random variables X and Y respectively, and the maximum would
have to be replaced by the supremum.

then it is quite easy to compute the associated coefficient
φ(X|Y ). Specifically, let Θ ∈ [0, 1]n×m denote the joint
distribution of X and Y written out as an n×m matrix.
Define Ψ ∈ [0, 1]n×m as the outer product of the two
marginal distributions µ and ν; thus

ψij = µiνj , ∀i, j.

Then Ψ is a rank one matrix, and is the joint distribution
that X and Y would have if they were independent.
Define Λ ∈ [−1, 1]n×m by

λij = θij − ψij , ∀i, j.

Thus Λ would be the zero matrix if X and Y were
independent. Define

‖Λ‖i1 := max
j=1,...,m

n∑
i=1

|λij |

to be the matrix norm of Λ induced by the `1 vector
norm. With these definitions, the following facts are
established in [7]:

Theorem 1: With the notation as above, it is the case
that

0.5‖Λ‖i1
maxj νj

≤ φ(X|Y ) ≤ 0.5‖Λ‖i1
minj νj

. (2)

In particular, if ν is the uniform distribution so that
minj νj = maxj νj = 1/m, then

φ(X|Y ) = 0.5m‖Λ‖i1. (3)
The most important property of the φ-mixing coef-

ficient is given next. Again, the proof can be found in
[7].

Theorem 2: Whenever (X ⊥ Z)|Y , the following
inequality holds:

φ(X|Z) ≤ min{φ(X|Y ), φ(Y |Z)}. (4)
Note that (4) is entirely analogous in appearance to

([3], pg 34). For this reason, we will refer to (4) as the
data processing inequality for the φ-mixing coefficient.
The observation that the φ-mixing coefficient satisfies
an analog of the DPI is new, and a proof of (4) can be
found in [7].

III. LITERATURE SURVEY

The problem of inferring GINs from expression data
is obviously not new, and several researchers have
attempted to study this problem. Most existing methods
can be grouped into one of two categories, namely:
those based on mutual information, and those based on
Bayesian networks. Papers such as [8], [9], [10], [11]
are representatives of methods based on mutual infor-
mation, while [12], [13], [14], [15] are representatives
of methods based on Bayesian networks. Both classes of
methods impose some biologically unrealistic conditions
mainly to facilitate the statistical analysis. Specifically,
methods based on Bayesian networks require the graph
to be acyclic, while methods based on mutual informa-
tion will result in graphs that are undirected. Neither
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assumption is justifiable on biological grounds. The
Bayesian paradigm, with its information flow restricted
to be in one direction, is useful for hierarchical decom-
position of GINs into ‘clusters’ of genes where each
cluster of genes controls lower-level clusters. This is a
much coarser picture of a GIN than the ones obtained
by using mutual information-based methods. For this
reason, we do not discuss Bayesian-based methods here-
after, and confine ourselves to discussing methods based
on mutual information. Please see [3] for a thorough
treatment of all information-theoretic concepts.

Apparently the first paper to use the concept of mutual
information to construct GINs is [8]. In that paper, the
authors compute the mutual information between every
pair of genes, and introduce an undirected edge between
nodes i and j if and only if the mutual information
I(Xi, Xj) between the corresponding random variables
Xi and Xj is positive.2 Actually, they select a small
threshold ε and introduce an undirected edge between
nodes i and j if and only if I(Xi, Xj) ≥ ε. They
refer to the resulting (undirected) graph as an ‘influence
network’. Indeed, in their framework, the presence of
an (undirected) edge between two nodes i and j makes
no distinction between gene i influencing gene j or
vice versa. Also, no distinction is made between direct
and indirect influence. As a consequence, the influence
networks produced by the method in [8] are overly
dense.

In [9], the authors develop a method referred to
as ARACNE to distinguish between direct and in-
direct influence by making use of the data process-
ing inequality [3, p. 34]. Specifically, for each triple
i, j, k, they compute all the three mutual informations
I(Xi, Xj), I(Xi, Xk) and I(Xj , Xk). Since the exact
probability distributions are not known and only samples
are available, they use Gaussian kernel approximations
for the various joint distributions. Then they identify
the smallest amongst the three numbers and discard the
corresponding edge. Thus if

I(Xi, Xk) ≤ min{I(Xi.Xj), I(Xj , Xk)},

then they discard the edge between nodes i and k.
Thus the network produced by ARACNE tells us only

that nodes i and j interact, but does not give further
information as to the directionality of the interaction.
It would be highly desirable to develop an algorithm
that is able to identify the directionality of interaction
between genes. Moreover, it is explicitly stated in [8]
(and implicitly assumed in [9]) that mutual information
can be used as a measure of the strength of interaction
between two random variables. But this statement is
only partially true. It is true that if I(X,Y ) < I(X,Z),

2It is not mentioned in the paper how precisely they compute the
mutual information from the samples. As shown in [7], it makes a
difference whether they use the samples ‘as given’ and construct a
stair-case like joint distribution, or use some smoothing as in [9], or
bin the samples as in [16] or as we do here.

then Z tells us more about X than Y does. So in this
sense X depends more on Z than on Y . However, if
I(X,Y ) < I(W,Z), it is not correct to conclude that X
depends less on Y than W depends on Z. The algorithm
presented here addresses both of these limitations.

Proceeding further, in all the mutual information-
based approaches, the most computationally intensive
step is the computation of the pairwise mutual infor-
mations. In [17], the authors take the given sample
pairs {(xil, xjl), l = 1, . . . ,m} for each pair of indices
i, j, and then fit them with a two-dimensional Gaussian
kernel. Then they apply a copula transformation so that
the sample space is the unit square, and the marginal
probability distribution of each random variable is the
uniform distribution. In [18], the authors propose a
window-based approach for computing the pairwise mu-
tual informations. It is claimed in this paper that the
proposed method results in roughly an order of mag-
nitude reduction in computing effort. Finally, in a very
recent paper [16], the authors bin the samples into just
three bins irrespective of how many samples there are,
and propose a highly efficient parallel architecture for
computing the pairwise mutual informations. While the
proposed architecture is very innovative, it appears to the
present authors that quantizing the expression values into
just three bins could result in misleading conclusions,
because the gene expression level is essentially a real-
valued random variable. In the method proposed here,
we also discretize the samples by percentile binning.
However, in our case the number of bins increases as
the number of samples increases, thus giving a more re-
alistic discretized representation of a real-valued random
variable.

IV. ALGORITHM FOR REVERSE-ENGINEERING GINS

In the present subsection we present the algorithm,
assuming that we know the actual coefficient φ(Xi|Xj)
for each pair of indices i, j. However, in actual imple-
mentation, these values are estimated using (2), after
percentile binning of a finite number of sample data
points. Percentile binning is chosen as it ensures that
the joint distribution of the discretized pairs (Xi, Xj)
remains invariant under any monotonic transformations
of the data. It is important to note here that the invariance
property holds even if different monotone transforma-
tions are applied to different expression variables.

So we begin with estimated value of all n(n − 1)
coefficients φ(Xi|Xj) for each pair of indices i, j, i 6= j.
Then we proceed as follows: Start with a complete graph
of n nodes, where there is a directed edge between every
pair of distinct nodes (n(n− 1) edges). For each triplet
i, j, k, check whether the DPI-like inequality

φ(Xi|Xk) ≤ min{φ(Xi|Xj), φ(Xj |Xk)} (5)

holds. If so, discard the edge from node k to node i, but
retain a ‘phantom’ edge for future comparison purposes.
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This step is referred to as ‘pruning’. Note that the
pruning operation can at best replace a direct path of
length one (i.e. an edge) by an indirect path of length
two. Hence the graph that results from the pruning
operation is still strongly connected. Also, since any
discarded edges are still retained for the purposes of
future comparisons, it is clear that the order in which
the triplets are processed does not affect the final answer.
Note that the complexity of this operation is cubic in n.

At this stage, one can ask whether the graph resulting
from the pruning operation has any significance. It is
now shown, by invoking the Occam’s razor principle
(giving the simplest possible explanation), that the graph
resulting from pruning is a minimal graph consistent
with the data set. For this purpose, we define a partial
ordering on the set of directed graphs with n nodes
whereby G1 ≤ G2 if G1 is a subgraph of G2, ignoring
weights of the edges. For a given triplet i, j, k, it is
obvious that (Xi ⊥ Xk)|Xj if and only if every directed
path from node i to node k passes through node j, and
also every directed path from node k to node i passes
through node j. Now, it follows from the DPI that if
(Xi ⊥ Xk)|Xj , then (5) holds. Taking the contrapos-
itive shows that if (5) is false, then (Xi 6⊥ Xk)|Xj .
Consequently, if (5) is false, then there must exist a path
from node i to node k that does not pass through node
j. Given the sequential nature of the pruning algorithm,
when (5) is checked for a specific triplet (i, j, k), there
already exist edges from node i to node j and from node
j to node k; that is, there exists a path of length two
from node i to node k. Now, if (5) is false, then there
must exist another path from node i to node k that does
not pass through node j. It is of course possible that this
path consists of many edges. However, by the Occam’s
razor principle, the simplest explanation would be that
there is a shorter path of length one, i.e. a directed edge
from node k to node i.

What has been shown is that, under the Occam’s
razor principle, the graph that results from pruning is
minimal in the following sense. First, it is consistent
with the φ-mixing coefficients, and second, any other
graph that is ‘less than’ this graph in the partial ordering
defined above would not be consistent with the φ-
mixing coefficients. Thus, if any edges are removed
from the graph that results from applying the pruning
step, then some other edges would have to be added
in order for the graph to be consistent with the φ-
mixing coefficients. Note that we are obliged to say a
and not the minimal graph, because there might not be
a unique minimal graph. Nevertheless, it is obvious that
the application of the algorithm will result in a unique
graph, irrespective of the order in which all the triplets
(i, j, k) are examined.

Since we estimate interval in which value of φ-mixing
coefficient lies, there are multiple ways of checking (5)
while pruning. Here presented results compare upper
bound of φ(Xi|Xk) with midpoint of intervals in which

TABLE I
NUMBER OF POTENTIAL TARGET GENES FOR VARIOUS

TRANSCRIPTION FACTORS

Item ASCL1 PPARG NKX2-1
Total no. of genes 19,579 19,579 19,579
Total no. of ChIP genes 226 221 684
Prob. of being a ChIP gene 0.0115 0.0112 0.0348

φ(Xi|Xj) and φ(Xj |Xk) lies.
Finally, a thresholding step is employed to elimi-

nate weak interactions represented by low-weight edges,
while still ensuring that the graph remains strongly
connected.

V. RESULTS AND VALIDATION

Using the algorithm presented here, we have reverse-
engineered several GINs for both lung cancer and ovar-
ian cancer. It is virtually impossible to validate an entire
GIN since there is no known and confirmed ‘absolute
truth’ against which predictions can be confirmed. After
considerable thought, we chose to use evidence from
so-called ChIP-seq tests for a few transcription factors.
ChIP-seq experiment produces a set of downstream tar-
get genes whose transcription is controlled by the given
transcription factor with high probability. We obtained
ChIP-seq data for three transcription factors in lung
cancer tissues, namely: ASCL1, PPARG, and NKX2-1.
Table I shows the number of experimentally determined
ChIP-seq genes for these three transcription factors.

The validation of the GIN consists of seeing whether
the set of first-order neighbors in the GIN is ‘enriched’
for ChIP-seq genes. For this purpose, we employ a hy-
pergeometric distribution model to calculate likelihood
of observing such an enrichment by chance. Thus, if N
denotes the total number of genes in the geome-wide
study, C denotes the number of ChIP-seq genes, Nd

denotes the number of downstream genes in the GIN,
and Cd denotes the number among the Nd that are in
the ChIP-seq list, then the likelihood of enrichment value
is computed using the Matlab command as

Ld = 1− hygecdf(Cd − 1, N − 1, C,Nd).

Table II shows the enrichment of ChIP genes amongst
the first-order downstream neighbors, and amongst all
neighbors, for these three transcription factors. In this
table, an entry of zero for the likelihood means that the
number is smaller than machine zero.

In biology, a likelihood (P -value) less than 0.05 is
considered significant. For ASCL1 our results for truly
spectacular, while for the other two genes the results
are decent but not spectacular. It should be mentioned
that for ASCL1, the ChIP-seq genes were determined
using the peak-calling routine GREAT [19]. However,
we are not aware of the manner in which the ChIP-seq
genes were determined for PPARG and NKX2-1. The
difference in performance of our algorithm can perhaps

1465



TABLE II
ENRICHMENT OF NEIGHBORS FOR CHIP GENES

Gene Downstream ChIP Ld

Name Neighbors Genes
ASCL1 690 84 0
PPARG 84 3 0.0688
NKX2-1 114 6 0.2057
Gene Total ChIP Lt

Name Neighbors Genes
ASCL1 766 87 0
PPARG 208 5 0.0858
NKX2-1 244 14 0.0465

be attributed to the differences between the peak-calling
routines employed.

VI. CONCLUSION

In this paper, we have presented a new algorithm for
reverse-engineering gene interaction networks (GINs)
from gene expression data that produces GINs that
have both directed and weighted edges. To validate the
algorithm, we constructed a GIN for lung cancer data set
and compared the neighborhood of three genes in this
network with experimental ChIP-seq data. Validation
results show that these neighborhoods are reasonably
enriched with ChIP-seq downstream target genes.
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