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Abstract—This paper presents a novel battery health 
management system for electric UAVs (unmanned aerial 
vehicles) based on a Bayesian inference driven prognostic 
framework. The aim is to be able to predict the end-of-
discharge (EOD) event that indicates that the battery pack 
has run out of charge for any given flight of an electric 
UAV platform. The amount of usable charge of a battery for 
a given discharge profile is not only dependent on the 
starting state-of-charge (SOC), but also other factors like 
battery health and the discharge or load profile imposed. 
This problem is more pronounced in battery powered 
electric UAVs since different flight regimes like 
takeoff/landing and cruise have different power 
requirements and a dead stick condition (battery shut off in 
flight) can have catastrophic consequences. 

Since UAVs deployments are relatively new, there is a lack 
of statistically significant flight data to motivate data-driven 
approaches. Consequently, we have developed a detailed 
discharge model for the batteries used and used it in a 
Bayesian inference based filtering (Particle Filtering) 
technique to generate remaining useful life (RUL) 
distributions for a given discharge. The results section 
presents the validation of this approach in hardware-in-the-
loop tests.12 
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1. INTRODUCTION 

Electric UAVs (unmanned aerial vehicles) have become the 
new face of green aviation. They are being increasingly 
deployed in military, civilian and scientific missions all over 
the globe. There are many benefits of electric propulsion. 
An electric UAV has no exhaust noise and can temporarily 
minimize prop noise to tactical advantage. The control 
bandwidth available to the motor can be used to improve 
roll axis stability for sensing and targeting. Electric 
propulsion systems usually have fewer moving parts than 
conventional internal combustion engine (ICE) based 
systems, and hence are more reliable.  

However, like ground vehicles, battery powered electric 
UAVs suffer from uncertainties in estimating the remaining 
charge and hence most flight plans are highly conservative 
in nature. Usually ICE based powertrains run within narrow 
bands of RPMs with metered fuel delivery. This combined 
with a known volume fuel tank allows reasonably accurate 
predictions of remaining use time or travel distance. 
Batteries on the other hand, decrease in capacity with time 
and usage. Various factors like ambient storage 
temperatures and the state-of-charge (SOC) at which the 
battery was stored affects capacity fade.  

Additionally, the amount of usable charge of a battery for a 
given discharge profile is not only dependent on the starting 
SOC, but also other factors like battery health and the 
discharge or load profile imposed. This is because in most 
battery powered propulsion systems, the battery shut off 
criteria are based on the terminal voltage. This voltage is 
related to the SOC of the battery, but it is a highly non-
linear relation, which is further complicated by a sharp drop 
off of the terminal voltage as the battery SOC nears empty. 
This problem is more pronounced in battery powered 
electric UAVs since different flight regimes like 
takeoff/landing and cruise have different power 
requirements and a dead stick condition (battery shut off in 
flight) can have catastrophic consequences. 
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In this paper our application platform is a subscale aerobatic 
UAV, the Edge 540, powered by four 18.5V 6000mAh 
Lithium-polymer (Li-Poly) battery packs and our goal is to 
develop prognostic algorithms to predict the end-of-
discharge (EOD) event that indicates that the battery pack 
has run out of charge for any given flight. The Battery 
Health Management (BHM) system is fabricated out of 
Commercial-off-the-Shelf (COTS) systems. A TERN 
SensorCore board is used for digital signal acquisition, and 
a Gumstix OVERO with a SUMMIT expansion board is 
used for recording data and real-time implementation of the 
prognostic algorithm.  An auxiliary signal conditioning 
board was custom designed and fabricated to handle inter-
board signal voltage processing.   

For prognostics, a detailed discharge model was developed 
for the Li-Poly cells and verified using hardware-in-the-loop 
tests of the Edge 540. This model was then used in a 
Particle Filter (PF) based prognostic framework that 
combines state estimation with model adaptation to 
accurately predict the remaining battery charge. This 
information is used in conjunction with stochastic estimates 
of future usage to give remaining run time for the UAV. 
This paper also discusses how these predictions may be 
used to increase operational safety, optimize mission plans 
and extend battery life. 

2. BATTERY BEHAVIOR 

Batteries are energy storage devices that facilitate the 
conversion, or transduction, of chemical energy into 
electrical energy, and vice versa [3]. They consist of a pair 
of electrodes (anode and cathode) immersed in an 
electrolyte and sometimes separated by a separator. The 
chemical driving force across the cell is due to the 
difference in the chemical potentials of its two electrodes, 
which is determined by the difference between the standard 
Gibbs free energies the products of the reaction and the 
reactants. However, the theoretical open circuit voltage, Eo 
is not available during use. This is due to the various factors 
like Ohmic loss, work function at the solid electrolyte 
interface, resistance to ion transfer through the electrolyte, 
etc.    

The output current plays a big role in determining the losses 
inside a battery and is an important parameter to consider 
when analyzing battery performance. The term most often 
used to indicate the rate at which a battery is discharged is 
the C-Rate [2]. The discharge rate of a battery is expressed 
as C/r, where r is the number of hours required to 
completely discharge its nominal capacity. So, a 2 Ah 
battery discharging at a rate of C/10 or 0.2 A would last for 
10 hours. The terminal voltage of a battery, as also the 
charge delivered, can vary appreciably with changes in the 
C-Rate. Furthermore, the amount of energy supplied, related 
to the area under the discharge curve, is also strongly C-
Rate dependent. Figure 1 shows the typical discharge of a 
battery and its variation with C-Rate. Each curve 

corresponds to a different C-Rate or C/r value (the lower the 
r the higher the current) and assumes constant temperature 
conditions. 

 

Figure 1 – Schematic drawing showing the influence of 
the current density upon the discharge curve 

(Reproduced from [2]) 

There are several rechargeable battery technologies 
available on the market right now, each having distinct 
characteristics. However, Li-ion batteries are becoming 
increasingly popular for a variety of applications, from 
consumer electronics to power tools, to electric vehicles and 
even to space applications. Li-ion batteries have a number 
of important advantages over competing technologies [2]. 
Some of these advantages are:  

• The electrodes of a Li-ion battery are made of 
lightweight lithium and carbon. This translates into a 
very high energy density for Li-ion batteries as 
compared to other chemistries like lead-acid or NiCd 
(nickel-cadmium) or NiMH (nickel-metal hydride).  

• They have a low self-discharge rate, meaning that they 
hold their charge for longer periods of time.   

• Li-ion batteries have a long cycle life. They can handle 
hundreds of charge and discharge cycles without 
significant degradation of their capacity.  

With these significant advantages in mind Li-Poly batteries 
were chosen as the power source for our application. Li-
Poly battery packs have the same chemical processes as Li-
ion cells, except that the electrolyte is in gel form. Modeling 
a Li-ion battery from the first principles of the internal 
electrochemical reactions can be very tedious and 
computationally intractable. Hence, we take the approach of 
analyzing the way the impedance parameters change with 
charge depletion during the discharge cycle.  

Since the impedance parameters are essentially 
representations of electrochemical reactions and transport 
processes inside the battery, they are strongly affected by 
the internal temperature of the battery, the current load and 
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the ionic concentrations of the reactants. We postulate that 
as discharge progresses the heat generated by the reactions 
and the current flow causes the internal temperature to go 
up, effectively increasing the mobility of the ions in the 
electrolyte, thus decreasing the Warburg resistance, RW. 
Decreasing RW, however, increases the self-discharge rate, 
effectively increasing the electrolyte resistance, RE, of the 
battery. Also, the increase in temperature results in faster 
consumption of the cell reactants resulting in an increase in 
the charge transfer resistance, RCT, and a sharp drop in the 
cell voltage. EOD is reached when the output voltage hits 
the minimum safe voltage threshold, EEOD. For a cell current 
I, the output voltage E is given by: 

         E = Eo – I(RE + RCT + RW).                     (1) 

The variations in Eo with internal temperature [2] are not 
explicitly modeled, but accounted for by the adaptive 
powers of the PF framework described later. For the 
empirical charge depletion model considered here, we 
express the output voltage in terms of the effects of the 
changes in the internal parameters: 

 E(t) = Eo – ΔEsd(t) – ΔErd(t) – ΔEmt(t),                 (2) 

where, t is the time variable during a discharge cycle, ΔEsd 
is the drop due to self-discharge, ΔErd is the drop due to cell 
reactant depletion and ΔEmt denotes the voltage drop due to 
internal resistance to mass transfer (diffusion of ions). These 
individual effects are modeled as: 

  ΔEsd(t) = α1 exp(– α2/t),                     (3) 
  ΔErd(t) = α3 exp(α4t),                      (4) 
  ΔEmt(t) = ΔEinit – α5t,                     (5) 

where, ΔEinit is the initial voltage drop when current I flows 
through the initial value of the internal resistance RE at the 
start of the discharge cycle, and α = {α1,α2,α3,α4,α5} 
represents the set of model parameters to be estimated from 
the data. 
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Figure 2 – Decomposition of the Li-ion discharge profile 

in to different components (Reproduced from [4]) 

 Figure 2 shows how the different voltage drop components 
defined in eqns. (3)-(5) combine to give the Li-ion discharge 
profile. 

3. PROGNOSTIC FRAMEWORK 

The formulation of a model, though, is just a part of the 
solution. As mentioned above there are a number of 
unknown parameters that need to be identified. Even after 
identification, they may not be directly applicable to the test 
set since the values may differ from one battery to another, 
or for the same battery from one cycle to the next. 
Furthermore, for any given cycle the parameter values may 
be non-stationary. In general, given a model, the task of 
tracking a state variable and predicting future values is 
usually cast as a filtering problem. The variety of filtering 
techniques published in literature is enormous with each 
having performance advantages over others depending upon 
the application. For our task of battery prognostics, 
comprising the prediction of EOD and EOL (end-of-life), 
we need to reconcile our method with non-exact non-linear 
non-stationary models with non-Gaussian noise. Particle 
Filtering provides us a viable framework that allows us to 
explicitly represent and manage the uncertainties inherent to 
our problem. 

Particle Filters [1] are a novel class of non-linear filters that 
combine Bayesian learning techniques with importance 
sampling to provide good state tracking performance while 
keeping the computational load tractable. The idea is to 
represent the system state (in this case the battery SOC or 
voltage or capacity) as a probability density function (pdf) 
that is approximated by a set of particles (points) 
representing sampled values from the unknown state space, 
and a set of associated weights denoting discrete probability 
masses. The particles are generated from an a priori 
estimate of the state pdf, propagated through time using a 
nonlinear process model, and recursively updated from 
measurements through a measurement model. The main 
advantage of PFs here is that model parameters can be 
included as a part of the state vector to be tracked, thus 
performing model identification in conjunction with state 
estimation [4]. After the model has been tuned to reflect the 
dynamics of the specific system being tracked, it can then be 
used to propagate the particles till the failure (e.g. EOD or 
EOL) threshold to give the RUL pdf [4]. In the case of our 
application, the EOD estimation problem is cast in the PF 
framework as follows: 

        State transition model ≡     
 αj,i+1 = αj,i + ωj,i ,∀j = 1,…,5, 
 Ei+1 = Ei – {α1,i α2,i exp(– α2,i /ti)/ti

2  
      – α3,i α4,i exp(α4,i ti) – α5,i}/fs + ωi ,           (7) 
 
         Measurement model ≡  Ẽi = Ei +νi,              (8) 

where, i is the time index, fs is the sampling frequency, Ẽi 
denotes the measured cell voltage at time index i, and ωj,i 
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(∀j = 1,…,5,), ωi and νi are independent zero-mean 
Gaussian noise terms.  

It must be noted that for a given discharge run, we are using 
terminal voltage as an indicator of battery life instead of the 
SOC. There are two main reasons for this. Firstly, most 
battery powered systems have a cut-off based on battery 
voltage, not SOC. For most prediction tasks, it is 
advantageous to track the variable that the system EOL (in 
this case the battery EOD) is expressed in. Secondly, the 
relation between terminal voltage and SOC, as given by the 
manufacturer, does not hold throughout the full life of the 
battery or under extreme load and temperature conditions. 
Other variables like the internal impedances can also 
indicate when a battery is depleted, however costly 
measurement techniques like electrochemical impedance 
spectroscopy (EIS) are required to estimate those 
impedances, which make them impractical for onboard 
deployment. 

4. UAV PLATFORM 

The test vehicle used for this research is a COTS 33% scale 
model of the Zivko Edge 540T.  The Edge 540T, pictured in 
Figure 3, is 96 inches long with a 100 inch wing span.  It 
has 1881 square inches of wing surface area.  It is powered 
by dual tandem mounted electric out-runner motors capable 
of moving the aircraft up to 85 knots using a 26 inch 
propeller.  It is instrumented primarily for structural fault 
diagnosis and mitigation research with accelerometers on 
the wings and fuselage as well as strain gauges on the wings 
and wing joiner tube.  Other sensors include sensors to 
monitor power plant and navigation parameters.  Its 
relatively low cost makes it suitable for use as a rapid 
evaluation prototype for airframe damage experiments.   

 

Figure 3 – 1: 33% Edge 540 test aircraft 

The gas engine in the original kit specification was replaced 
by two electric out runner motors which are mounted in 
tandem to power a single drive shaft. The motors are 
powered by a set of 4 Li-Poly rechargeable batteries.  The 
batteries are each rated for 6000 mAh discharge current. A 
12 channel JR radio system is used to control the airplane.  
The system communicates in the 2.4 GHz band using a 

proprietary DSM2 protocol. Control surfaces are 
manipulated by seven actuators.  The tandem motors are 
each controlled by separate motor controllers. 

 

Figure 4 – Electric out runner motor 

The airplane is equipped with a number of sensors to collect 
structure, propulsion, and navigation. The health of the 
structure is monitored using a series of strain gauges and 
accelerometers. Navigation data consist of GPS location, 
ground speed, altitude, true heading, and magnetic heading.    
Power plant data are intended to help assess adequacy of the 
thrust from the motors and 26 inch propeller, the relevant 
parameters being motor RPMs, currents, battery voltages 
and temperatures. 

Data from sensors are logged by 2 separate data systems.  
The asynchronous systems are identified as RCATS and 
PC104. The RCATS is a turn-key system with proprietary 
software that creates an ASCII log of connected sensors.  It 
also telemeters data to a laptop receiver which displays the 
data for callout to the pilot.  It measures flight related 
parameters such as motor RPM, motor temperature, 
airspeed, z-axis acceleration at 10 Hz and interleaves GPS 
position and altitude data at 1 Hz.  The PC104 stack consists 
of a CPU board, a DC/DC converter, an IO card, and a 
signal conditioning card for strain gauges.  It runs 
MathWork’s xPC Target operating system.  The data in this 
release is acquired using a Simulink model that is compiled 
to an xPC target OS.  This system records strain, 
accelerometer, battery temperature, and motor current at 200 
Hz.  It also outputs a 0.5 Hz sine wave to the RCATS 
system for synchronizing data. 

5. BATTERY HEALTH MANAGEMENT 

HARDWARE 

The BHM system is designed to be a relatively low cost 
analog-to-digital data acquisition system.  The design 
philosophy behind the first BHM system is to use COTS 
solutions which would have a light weight compact 
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footprint.  A second BHM system will then be designed 
around a custom printed circuit board (PCB) layout, which 
would yield an even smaller and lighter package.   

There are three major elements to the BHM system - a 
signal conditioning board, an analog-to-digital acquisition 
board, and an embedded processor board.  The signal 
conditioning board processes the analog sensor signals for 
the analog-to-digital acquisition board.  The analog-to-
digital acquisition board feeds the processed signal data into 
an embedded processor board, where the data are fed into 
the battery prognostics algorithm.  Finally the embedded 
processor board outputs the battery prognostics algorithm 
results on an RS-232 data stream. 

The signal conditioning board for the first BHM system was 
a board used in a past project, which was repurposed for the 
BHM system. As it was not specifically designed for the 
BHM purposes, these boards actually are larger than 
necessary, and cause the overall BHM system to be 
oversized and overweight.  The second BHM system, with 
its custom PCB, would be about half the size. 

The analog-to-digital acquisition board used in the BHM 
system is the SensorCore (SC) from Tern, Inc 
(www.tern.com).  Several extra options were selected, such 
as 256KW SRAM, a Real-time clock, a CompactFlash 
interface, three 16 channel 24-bit ADC chips, a Low-drop 
regulator, and an 80-Mhz CPU upgrade.  It was initially 
hoped that the SensorCore would be sufficient to run the 
battery prognostics algorithm, but it quickly became clear 
that a more powerful computing platform was necessary. 

Gumstix, Inc provides an embedded processor system in its 
Overo(™) computer-on-module (COM) which offers 
several attractive features for use in the BHM system – (i) it 
is very compact in size, (ii) it offers a reasonably powerful 
computing platform with its 600MHz Texas Instrument (TI) 
OMAP35x processor, (iii) it uses an open-source software 
development environment for low cost, and (iv) it can 
interface with the other BHM system components through 
industry standard RS-232 protocols.  For the BHM system, 
the Overo Water COM and the Summit expansion board 
combination are used. Figure 5 shows the system installed 
onboard the Edge 540 airframe.  

The Gumstix uses the openEmbedded development 
environment, which runs on an Ubuntu Linux laptop.  All 
code for the Gumstix is developed in C.  The Gumstix 
running environment is a custom boot image running on the 
onboard microSD card.  The Gumstix is configured to be a 
turnkey environment, with data logging and processing 
occurring immediately after the Gumstix finishes booting 
up.  The battery prognostic algorithm leverages POSIX 
threading for speed and efficiency.  The Gumstix records 
raw data on the microSD card for post-run retrieval. 

The first BHM system utilizes several small COTS boards 
to convert TTL signal voltages into PC RS-232 signal 
voltages.  The second BHM system will incorporate these 
features onto its custom PCB, thereby reducing space and 
weight. The first BHM system has been used for the data 
used in this paper, recording 12 channels of data (4 battery 
voltages, 4 battery currents, and 4 battery temperatures) at 
rates up to 30 samples per second.  The second BHM 
system is still being fabricated.  

 

Figure 5 – The BHM system installed onboard 

6. RESULTS 

The tests to demonstrate the BHM methodology have been 
planned in three stages: 

(1) Battery discharge characterization tests on individual 
Li-Poly cells at the NASA Prognostics Center of 
Excellence battery prognostics testbed. Figure 6 shows 
the PF prediction of the EOD event of a Li-Poly cell. 
The solid cyan line shows the actual cell voltage. The 
aim is to predict when this curve crosses the EOD 
threshold 2.7V (dashed white line) shown by the 
vertical dashed yellow line. The PF mean is shown in 
blue and the upper and lower uncertainty limits are in 
red and green respectively. The tracking phase is shown 
in solid lines and the prediction curve is shown in 
dashed lines. The EOD RUL pdf is shown in magenta 
in Figure 6(b). The plots show the high accuracy and 
precision of the prediction when the prediction are 
made half way into the discharge.   

(2) The next stage of testing involved hardware-in-the-loop 
discharge runs with the Edge 540 restrained on the 
ground. The PF prediction is shown in Figure 7. The 
Edge 540 motors are run halfway through the discharge 
run before the prediction is made. The mean and lower 
and upper 95% confidence bounds for the EOD event 
are shown in magenta while the actual event is shown 
in yellow.  

(3) The final test involved profiling the energy 
consumption in various flight regimes and making in-
flight EOD predictions.  
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(a) 

 

(b) 

Figure 6 – (a) Particle Filter based EOD prediction; (b) 
zoomed in view of the EOD event 
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Figure 7 – Hardware-in-the-loop EOD prediction

 

Figure 8 – Typical flight profile 

Figure 8 shows a typical flight profile for the Edge 540, 
while Figure 9 shows the typical current loads in different 
flight regimes (x-axis in secs). This is a simulated flight test 
carried out on the ground using the UAV airframe. Actual 
flight tests are scheduled to be carried out in early 2011 
dependent on weather. Figures 10 – 12 show further 
prediction results for this ground test.  
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Figure 9 – Simulated flight current loads 

Figure 10 shows the battery voltages measured during the 
ground test in solid lines, while the predicted voltage 
trajectories are shown in dotted lines. Although predictions 
can be made throughout the test, for the sake of clarity, we 
analyze one prediction made at the 13 minute mark. For this 
test, we found that the aft motor voltage channels had bias 
errors, so we used the forward (fwd) motor channels for 
making the EOD predictions. 
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Figure 10 – Predicting EOD with average current loads 

 
Figure 11 – Predicting EOD with known future current loads 
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For the predictions made in Figure 10, we use average flight 
currents loads and run the PF predictions until the forward 
motor batteries reach the cutoff voltage threshold of 17.5 V. 
This threshold is set by the electronic speed control (ESC) 
hardware in the UAV airframe. As seen from the plot in 
Figure 9, the test simulates some low power glide modes 
after the 13 minute mark. This means that the UAV has 
more flight time left than if it were consuming average 
power. Consequently, the EOD pdf shown in Figure 10 is 
conservative. On the other hand, if the future load profile is 
known, the PF model can account for the changes in load 
levels and make more accurate predictions, as shown in 
Figure 11. 

It should be noted, however, that the future profile may not 
always be known, but even if a statistical distribution of 
future load levels is known, the PF framework can sample 
from it to produce more accurate predictions than those 
produced by assuming average load levels. Also, if the 
intended flight profile is known, then the cumulative 
probability of the EOD distribution occurring before the 
intended mission profile ends (red area in Figure 12) gives 
the failure probability of the mission. For this example, if 
the intended mission ended on the broken line shown in 
Figure 12, then the EOD pdf gives a failure probability of 
37%, i.e. a mission success probability of 63%. This 
information may then be used for mission replanning. 

 
Figure 12 – Calculating mission failure probability from EOD pdf 

7. CONCLUSIONS 

In summary, this paper lays out a novel battery health 
management technique for application onboard an electric 
UAV. This technique is also applicable to other electric 
vehicles, like electric cars. Electric cars are not new; they 
were more popular and reliable at the turn of the twentieth 
century as compared to their gasoline powered rivals. 
However, the uncertainty in determining battery life plagued 
electric vehicles then as it does now. A recent report by the 
Consumer Electronics Association, “Electric Vehicles: The 
Future of Driving”, indicates that although these vehicles 
are increasing in popularity, running out of battery power on 
the road is the top concern for consumers (71% of adults 
surveyed). Thus developing advanced battery health 
management techniques is very important.  

The approach presented here is model-based where the form 
of the model has been linked to the internal processes of the 
battery and validated using experimental data. 
Subsequently, the model has been used in a PF framework 
to make predictions of EOD effectively.  Since the 
prediction result is in the form of a pdf, it is easy to integrate 
the BHM routine into a higher level decisioning algorithm 
that can provide advance warning about when to land the 
aircraft.  

By profiling the power required for different flight regimes 
like cruise segments, banked turns and landings, we can 
estimate the mission completion probability by calculating 
the RUL pdf. This in turn can motivate and inform mission 
replanning activity. The PF prognostic framework can also 
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be used to evaluate the effectiveness of possible mitigation 
actions, thus improving operational safety and optimizing 
battery power. 
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