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Abstract-FalconSat-3 is a 25 kg microsatellite being 
designed and built by cadets at the USAF Academy as part 
of on-going scientific research sponsored by the Department 
of Defense. The biggest design challenge for this mission is 
the requirement for onboard 3-axis attitude determination 
and control (ADCS), a capability earlier USAFA-built 
satellites lacked. The added challenge is to develop such a 
system as part of a low-cost, undergraduate satellite 
program. This paper begins with a brief overview of the 
Academy satellite program. Specific ADCS requirements 
for the FalconSAT-3 mission are then presented, followed 
by a detailed discussion of the preliminary system design. 
This paper then focuses on the FalconSAT-3 method of 
attitude determination. Attitude conventions, satellite 
attitude motion, and extended Kalman filtering are 
presented in a format ideal for readers desiring an 
introduction to designing micro-satellite attitude 
determination. The paper concludes with preliminary 
simulation results, a discussion of the current program 
status, and a description of future work. 
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1. INTRODUCTION 
Falconsat-3 is the fourth microsatellite developed at the 
USAF Academy Small Satellite Research center. Prior 
satellites have conducted research such as GPS signal 

measurements outside the constellation and spacecraft wake 
charging studies. The flight model of the most recent 
satellit~FalconSAT-2-has been assembled and is 
currently awaiting launch. It carries a device to measure 
ionospheric plasma. None of these platforms have required 
three-axis attitude determination or attitude control to meet 
the mission requirements. 

FalconSAT-3 will fly three new payloads for the Air Force. 
This ambitious mission will collect fundamental data on the 
low-Earth orbit plasma environment using two, 
revolutionary micro-sensors called FLAPS and PLANE as 
well as serve as a test bed for new class of micro-actuators 
using pulse plasma thrusters. 

With only 25 cadets and a dozen faculty members who 
work part time with FalconSAT coupled with the small 
budget of the program, system design must concentrate on 
using commercial off-the-shelf (COTS) technology. The 
mission is all the more challenging given there is nearly 
100% turnover of cadets every year. The program has a 
goal of designing and building satellites in an aggressive 
two-year cycle. 

USAFA has developed a relationship with the Surrey Space 
Center and Surrey Satellite Technology Ltd in Guildford, 
UK. FalconSAT-2 will fly Surrey-developed systems for 
power, communications, and computing. FalconSAT-3 will 
add ADCS to that list. SNAP-1 (Surrey Nanosatellite 
Applications Platform) was launched June 28", 2000. The 
mission was to develop nanosatellite architecture that could 
be adapted for future platforms. At an impressive 6.5 kg, 
SNAP-1 is currently the smallest satellite to have flown 
with 3-axis active attitude control. By using a miniaturized 
magnetometer, momentum wheel, and three magnetorquers, 
SNAP-1 was able to achieve less than 1" knowledge 
accuracy and 3" pointing accuracy. 
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Manufacturer 

Quantity 

Type 

Range 

Resolution/ 

Accuracy 

Mass (gram) 

Size (mm) 

Power (mW) 

SSTL 

1 

Fluxgate 

f60 VTesla 

f60 nT 

117 

35~32x83 

150 

Sun Sensors 

AeroAstro 

6 
Four- Quadrant 
Photo-Diode 

136" FOV 

1.0" 

36 

1Oxm9 
0 

SSTL 

3 

Nickel-alloy core 

f O .  127 Am' 

10 msec min. 
pulse 

75 each 

165xm8 

100 

SSTL 

1 

Brushless DC 
Motor 

0-5000 rpm 

0-0.01 Nms 

f 5  rpm 

80 

4OxQ47 

100-500 

Table 1 - FalconSAT-3 Engineering Model ADCS Components 

FalconSAT-3 will fly the same basic hardware as SNAP-1 
with the addition of sun sensors. Nevertheless, FalconSAT- 
3 will have nearly four-times the mass and all-new attitude 
determination and control algorithms must be developed for 
the on-board computer. Undergraduates must develop an 
attitude determination scheme consistent with our software 
limitations and technical experience-which is precisely 
what this paper addresses. 

2. FS3 ADCS SYSTEM DESIGN 
FalconSAT-3 must exploit as much as possible the 
capabilities offered by the COTS Surrey hardware to meet 
its attitude determination and control requirements. 

FalconSAT-3 
Launch: Boeing 

Delta N 
MLvo5 

Date: Mar-06 
Adapter: ESPA 

Delivery: Sep-05 

Size 50 cm (20") 
cube 

Mass: 25 kg 
cost: $1.75M 
Inclination: 35" 

Design Life: 6 months I Altitude 540 km 
Table 2 - FalconSAT-3 Design Details 

FalconSA T-3 Mission 

FalconSAT-3 has three core mission requirements. First, it 
will carry three experimental payloads to conduct DoD 
research. For the cadets involved, the program will 
"establish and sustain a cadre of space professionals" by 
providing an opportunity for USAFA cadets to ''learn space 
by doing space." Finally, the satellite will continue to 
validate subsystem design for future FalconSAT missions. 

ADCS Module 

SSTL 

1 

C515 CAN 
pcontroller 

300 

168x122~20 

250 

Plasma Local Noise Environment (PLNE)-The PLANE 
payload will carry two sensors. They will measure ambient 
plasma levels to help characterize the ionosphere. The 
spacecraft facet with the instruments must be kept in the 
ram (velocity-vector) direction. 

Flap Plasma Spectrometer (FLAPS)-The FLAPS payload 
will provide scintillation data, differential in angle and 
energy, in order to gain a better understanding of the 
ionosphere and scintillation conditions. Both PLANE and 
FLAPS will provide valuable data that can be used to 
forecast ionospheric satellite communication and navigation 
outages caused by plasma. These temporary outages have 
adversely affected DoD missions around the world. The 
experiments and hardware were designed and built by 
cadets and faculty of the USAF Academy Department of 
Physics 

Micro-Propulsion Attitude Control System (MPACS)-The 
WACS payload will be the first on-orbit demonstration of 
a new class of reduced-sized micro pulsed plasma thrusters 
developed by the Air Force Research Laboratory for attitude 
control. Two of these tiny actuators can provide up to 25 
pN of thrust each with 8-1OW of power. The current design 
envisions four clusters of three micro-PPTs each, which will 
allow for 3-axis attitude control when placed at opposite 
corners of the spacecraft. AFRL is providing the MPACS 
hardware to USAFA. 

W A C S  will not be operating while the other scientific 
payloads are collecting data, because the plasma released in 
the exhaust plume is not differentiable fiom the ionospheric 
plasma and would contaminate the data. However, for that 
very reason the scientific instruments aboard FalconSAT-3 
will be useful in confirming the current models of the 
vacuum exhaust plume of the micro-PPTs. 
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Engineering Model Integration during Spring 2003-The 
USAF Academy currently uses a design, test, and 
evaluation process that manufactures three models of each 
spacecraft-an engineering model, qualification model, and 
flight model. In addition to providing a thorough test 
campaign to evaluate the performance of spacecraft 
subsystems, this allows each graduating class of cadets to 
build a deliverable model. Integration for the FalconSAT-3 
Engineering Model will commence in February 2003 with 
the test campaign sequence planned for April 2003. The 
goal for completing the final integration of the flight model 
will be summer 2004. Based on hrther analysis and 
engineering model results, the qualification and flight 
models of FalconSAT-3 may include sensors and actuators 
different from the engineering model. 

ADCS Requirements 

The driving requirements for FalconSAT-3 ADCS are given 
by FLAPS and MPACS. FLAPS requires 1" of attitude 
knowledge and 5" of attitude control. MPACS requires 1" 
of attitude knowledge as well-the better accuracy that can 
be provided, the more significant the scientific results. 

There are no slew requirements for FalconSAT-3 once the 
spacecraft has attained a velocity-vector oriented attitude. 
The only need for the actuators is to offset disturbance 
torques such as aerodynamic drag, residual magnetic dipole, 
and gravity gradient. The maximum disturbance torques 
have been calculated as follows: 

I Disturbance Torques 1 Worst Case Magnitude 
Magnetic Torque (D=O. 10) 5.1468~ Nm 
Drag Torque (q,,-c,=l cm) 

Table 3 - FalconSAT-3 Worst Cases Disturbance Torques 

Currently, FalconSAT-3 is planning for a 540 km, 35"- 
inclination orbit based on an opportunity for launch with 
EELV Secondary Payload Adapter (ESPA) on a Boeing 
Delta IV rocket in late 2006. However, the experiments are 
still able to provide valuable scientific data at a variety of 
altitudes and inclinations, and thus there are no orbit 
requirements other than the satellite be launched into low- 
earth orbit. Ultimately, the orbit depends solely on any 
launch FalconSAT-3 can get as a secondary payload. 

FalconSAT-3 ADCS Hardware 

Magnetometer-A standard Fluxgate magnetometer will 
measure the magnetic field vector in the spacecraft body 
fiame. The usefulness of the magnetometer also depends on 
the accuracy of the local magnetic field vector propagated 
by the OBC with the most current International 
Geomagnetic Reference Field. 

Mugnetorquers-Three magnetorquers will provide an 
external control torque for FalconSAT-3. The engineering 
model will be built with the SNAP-1 torque rods. As 
shown in Table 2, we calculated that the residual magnetic 
dipole disturbance torque is the most significant. Both 
magnetorquer torque and magnetic disturbance are based on 
Earth's local magnetic field. Therefore it is crucial that the 
magnitude of each torque rod dipole be significantly greater 
than our expected residual dipole, to ensure FalconSAT-3 is 
controllable. For this reason, USAFA had SSTL re-design 
the torque rods to provide approximately four times the 
torque as the rods on SNAP-1. FalconSAT-3 must also be 
engineered with great care to reduce the residual magnetic 
dipole to the lowest levels feasible. A relatively large 
residual dipole on SNAP-1 gave Surrey challenges when 
operating SNAP-1 [3], and USAFA hopes to avoid that 
situation. 

The magnetometer measurements will be invalid during the 
magnetorquer firing. The magnetorquers will be on a five 
second cycle with up to four seconds of operation and then 
a one second pause for an updated magnetometer 
measurement. 

Momentum Wheel-The momentum wheel will be placed in 
the pitch direction, to provide the satellite with inertial 
stiffness in the orbit normal direction. The wheel and 
magnetorquer combination will allow the satellite to provide 
control torques in any axis-something the magnetorquers 
cannot do alone. The wheel provides a momentum bias that 
is also necessary for attitude determination during eclipse. 

Sun Sensors-The current design is to have six sun sensors 
providing azimuth and elevation angles for attitude 
determination during the sunlight portion of the orbit. 
Virginia-based AeroAstro manufactures Medium Sun 
Sensors achieving 1.0" accuracy. The sun sensors are the 
four-quadrant photo-diode set inside a conical aperture with 
a 136" field-of view. They are engineering to prevent the 
entry of stray light such as albedo from entering the sensor. 
Approximately the size of a US nickel-they only require 
power for the analoddigital conversion. They will be 
mounted flush with the six sides of the cubic spacecraft. 

ADCS Module and On-Board Computer-FalconSAT-3 
will utilize the same Surrey-built ADCS module as SNAP- 
1. It provides the analog/digital interface between the on- 
board computer, sensors, and actuators-with the exception 
of the AeroAstro sun sensors that have a separate A/D 
interface. The OBC will execute the attitude determination 
and control algorithms for the satellite. 
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3. ATTITUDE CONVENTIONS AND DEFINITIONS local orbital. 

Coordinate Systems 
This document uses three coordinate systems-the body 
axis coordinate system, the local orbital coordinate system, 
and the inertial coordinate system. The body axis 
coordinate system (B) is defined with an origin at the center 
of mass and the +XB direction orthogonal to the +X facet of 
the satellite-the side with the scientific instruments that 
requires pointing in the velocity vector direction. The + Y B  

and +ZB are each orthogonal to those spacecraft facets, 
respectively. 

The local orbital frame used (0) is also known as the 
tangent-normal-radial (TNR) frame. The origin is at the 
spacecraft's center of mass. The primary axis +Xo is 
tangent to the orbit at the local horizontal. The second axis 
+Yo will be normal to the spacecraft's orbit. The third axis 
is the radial direction from the center of the earth to the 
spacecraft. 

The inertial frame (I)-known as the earth-centered inertial 
coordinate system-is defined with the origin at the center 
of the earth, the primary axis +XI toward the first point of 
Aires, and the Xl-Yl plane in the equatorial plane, and the 
+ZI-axis through the north pole. 

I 7 
L O  

T 

I 
Earth 
YI I A p 2 ; o f t h e  (Based at the 

(Towards 
North 
Pole) XI  

Figure 1 - Coordinate Systems 

Earth Centered Inertial - Local Orbital Transformation 
This transformation is used to transform a vector from the 
inertial to local orbital frames. The direction cosine matrix 
is created by augmenting three unit vectors (U, V, W) that 
form an orthonormal basis for the local orbit coordinate 
f i m e  with respect to the inertial fiame [7]. The vector r 
and v are the inertial-referenced position and velocity 

vectors. C "/ 'is a transformation matrix from inertial to 

where 

u=[u, U, U J = V x W  

r x v  
r x v  

Euler Angle Representation of Attitude 
The attitude of a satellite is typically represented by Euler 
Angles. They represent an attitude change from the local 
orbit frame to the body axis frame. Several Euler angle 
rotations can be defined and used. Falconsat-3 will use the 
1-2-3 transformation, the same as used by Steyn [l]. This 
represents a transformation first rotation of angle 4 about 
the Xo-axis, then a transformation around the intermediate 
axis Y' by angle 0 and finally a rotation cy around the new 

Z' axis. C% is a transformation matrix from the local 
orbital to body frames. 

sly 0 CB 0 - S B  1 0 
c%= [ -scy y ccy 0 ][ 0 1 0 ]I c4 ;4]m 

1 se o ce o -s4 c+ 

Multiplying these three matrices together, we arrive at the 
direction cosine matrix (DCM). 

where C and S correspond to sine and cosine functions 

(4) 

Euler angles can be used to propagate orbit on board a 
satellite. However, when the time derivative of the DCM is 
taken, there is a singularity when pitch angle 0 is equal to 
0" or 180". Another common way to represent attitude is 
with Euler symmetric parameters, also known as 
quaternions. In addition to being singularity fi-ee, no 
trigonometric functions are required when working with 
them-only additions and multiplications. Between any 
two coordinate systems, there exists a unique direction 
cosine matrix that will transform a vector fiom one 
coordinate to the other. Also, between any two attitude 
orientations there exists an Euler axis unit vector 
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e = [ex e, such that one orientation of angle 0 
around the Euler axis will transform a vector from the first 
coordinate system to the second coordinate system [2]. 
With this Euler axis vector and the rotation angle 0 we can 
define the four-element quaternion vector: 

s=[41 9 2  4 3  9 4 r  

where 
. @  . a  

q1 = eA.sin-, q - e 
2 - Y s l n T  

a a 
q; = e, sin-, q4 = cos- 

2 2 

( 5 )  

The following restriction exists on the quaternion. This can 
be confirmed with the above definitions. 

The quaternion transformation matrix is defined as: 

This represents the exact same attitude transformation as the 
one defined in (3) and (4). Later on, we will find it 
necessary to differentiate this matrix with respect to each 
quaternion. These partial derivatives can be found in 
Appendix A. The opposite transformation--from the body 
axis coordinate system to the local orbital system-is 
simply the transpose. 

(9) 

If the Euler angle representation or the unique DCM matrix 
is known, the four quaternions can be found using the 
following relations where C, is the (i j)  component of the 

matrix C% from (4) [2]. In the case that q4 is equal to 
zero, a singularity exists in the calculation of the other 
elements of the quaternion. In that case, another set of 
equations can be derived from (8) to calculate the 
quaternions from the transformation matrix [2]. 

q4 =-[l+C,, 1 +c** +cj,]05 
2 

Likewise, the three 1-2-3 Euler Angles are found fi-om the 
transformation matrix (8) by the following relations [l]. 
(arctan 2 is the four quadrant arc-tangent function.) 

8 = arcsin(c,,) 

ry = arctan 2( +) 
4. EQUATIONS OF MOTION 

Falconsat-3’s dynamics will be modeled using Euler’s 
moment equation. Three body torques will be included in 
this analysis-the magnetorquer control torque, the 
momentum wheel angular acceleration torque, and an all- 
encompassing disturbance torque term. All variables are 
written in the body frame. 

IO’, =N, + N ,  +N,  -wL x(Iwi  + h , ) + h ,  (12) 

where, 
I = the 3x3 moment of inertia tensor 
N,, = [Nbnx N ~ , ,  N,, f = magnetic torque vector 

N, = environmental disturbance torque vector 
N, = thruster control torque vector 

w’, = [cox my w z p =  inertially-referenced body angular 
rate written in the body frame 
h, = [0 h, O r  = momentum wheel angular momentum 

h, = [0 h, O r  = pitch momentum wheel torque 

Falconsat-3 is expected to have a moment of inertia tensor 
with three large diagonal terms that are nearly the same and 
off-diagonal elements which are zero or very small. When 
estimating attitude, the actual moment of inertia will be 
used. 

The attitude update of the satellite will be done using 
quaternions. The quaternion equation of motion is 
represented using the following set of differential equations 
represented in matrix form. 

5 
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with 

R =  

and 

oi = [mm 
angular rate written in the body frame 

wq, warp‘= local orbital 

(14) 

:ferenced body 

This vector can be found using the inertially referenced 
body rates and the orbital-referenced orbital rate vector by 
the following equations: 

a;=a:,-c % a, 

where 

o, = [0 w, 
written in the orbital fiame. 

O r  = inertially referenced orbital angular rate 

If we can assume that the satellite has a circular orbit, then 
we can find w, with the equation for mean motion: 

where GMis the earth's gravitational parameter and U is the 
satellite's semi-major axis. 

5. THE EXTENDED -MAN FILTER 

A Kalman filter is an optimal. recursive, data processing 
algorithm. It is a blend of statistics and matrix algebra 
where multivariable calculus is used to develop 
representations of non-linear systems such as spacecraft 
attitude. Vallado [SI, S t e p  [I], and Wertz [2] all address 
Kalman filtering more extensively than here. 

The underlined description of the algorithm is very 
important. By data processing algorithm, it is meant that it 
is a set of equations used to transform a large amount of 
data into results. The filter is an algorithm. &tima1 means 
that this particular solution or algorithm was developed 
through matrix algebra and calculus and results in the best 
interpretation of the noisy data. Recursive means that each 

step is based off variables from the previous step rather than 
all previous steps. The advantage of a Kalman lies with 
interpreting a continuous stream of noisy data. It stores 
information hom previous measurements and information 
about the variability of the system in one small matrix. The 
extended Kalman filter is a variation of the traditional 
discrete Kalman filter that is more useful in extremely non- 
linear systems such as spacecraft attitude. 

With any filter, we are estimating a state. In the case of 
Falconsat-3 attitude determination, the state we seek to 
estimate is the four elements of the quaternion and the three 
elements of the inertially referenced body angular rate. 

Since we are using an extended Kalman filter, when we 
propagate forward to the next state, we can use a nonlinear 
state propagator between steps. This may include 
disturbance torques or the moment of inertia. 

k+l 

' k + l  'k + f f ( x k : t k ) d t  (18) 
k 

We also assume that there exists a linearized model of the 
system dynamics that can relate the state estimate at one 
step to the state estimate at the next step. This requires us to 
make a few assumptions but we can represent the update 
fiom one step to the next with a matrix called the state 
transition matrix. The state vector xk is assumed to be ftee 
of noise or error. 

' k + l  = @ k X k  (19) 

At each time step, we take a measurement z k .  There also 
must exist a matrix Hk that relates the state vector to the 
error-fkee value of the measurement. 

x k  =Hkz ,  (20)  

To develop the filter, we assume that the measurement 
vector contains zero-mean uncorrelated white noise. Finally 
we define a residual matrix bk that is the difference between 
the measurements and the expected value of a measurement 
at the predicted state. 

The Extended Kulmun Filter Algorithm 

1. Calculation of the Kalman Gain 

2. State Update Estimate 

A%, =K,b, 
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3. Error Covariance Estimate 

Pk =(l, -KkHk)PL 

4. State Estimate 

5. Project ahead (Predict the next step’s estimate and error 
covariance matrix) 

k t l  

Xi.+, = + sf 2tk >dt (22e) 
k 

This process is repeated for each step (each measurement 
from the sensors). For FalconSAT-3, this will be every 5 
seconds. 

Further elaboration of Kalman Filter Variables 

At each step tk: 
2, = The calculated state estimate for this step (using 
measurement data from this step) 
x k  = The predicted state estimate from the previous step. 
The superscript is read as “super-minus.?’ 
x= The actual value of the state. We never know this 
value but seek to estimate it. 
Pk- = Predicted error covariance matrix from the previous 
step 
Pk = Calculated error covariance matrix 
H, = Measurement matrix. 
b ,  = Measurement Residual vector 

1 -  

k+l sf ( x k  ,tk >dt = Nonlinear State Propagation Term-This 

term represents the numerical integration of the nonlinear 
propagator. If all the assumptions that we made for the state 
transition matrix were valid, it could be used to propagate 
the state. However, in a real system we can model known 
nonlinear effects such as disturbance torques and a non- 
principal axis moment of inertia. These two factors are 
what makes the nonlinear state propagation different than 
the state transition matrix. 

k 

mk =State Transition Matrix (7 x 7 matrix)-The state 
transition matrix or system matrix, represents the ideal 

linearized relationship between the state estimation at one 
measurement and the state estimation at the next 
measurement. Its formulation is based on the dynamics of 
the satellite. It must be calculated at each time step from the 
quaternions, the Euler rates. the At between measurements, 
and other factors such as the momentum wheel speed. 

Pk = Error Covariance Matrix (7 x 7 matrix)-The error 
covariance matrix is the filter’s way of estimating the 
variability of its previous predictions. The diagonal element 
stores the estimated variance in each state estimate (i.e. the 
estimated variance 042, ... 0: of our estimates for ql.. .az). 
The non-diagonal elements store the estimated covariance 
between different elements of the state. This is the matrix 
variable that “stores” information about all previous 
measurements. When the filter receives several 
measurements that are very close to what it expected to 
receive, the values in the covariance matrix are likely to be 
relatively small. If the filter receives a measurement that 
very different than what it expected, it will respond much 
differently than if the covariance values had been relatively 
high. Smaller covariance matrices will make the filter put 
more faith in outlying measurements. 

Kk = Kalman Gain Matrix (7 x 3 matrix)-The Kalman 
gain matrix-also known as the blending factor-is the 
optimal solution to blend the data from the previous 
estimate of the current state (2;) and the current 
measurement (zL). A new Kalman gain matrix is calculated 
at each step. The optimization derivation can be seen in 
Vallado [ 5 ] .  Its values are not intuitive and the best 
appreciation comes from looking at the actual filter 
algorithm itself. 

R ,  =Observation Noise Matrix (3  x 3 matrixFThe 
observation noise variance matrix is a diagonal matrix with 
values that are the engineer’s estimated variance of the 
sensor measurements. Even though it is denoted as &, the 
observation noise matrix during our attitude determination 
is constant, so it can also be denoted as R. 

Q k  = Process Noise Matrix (7 x 7 matrixhThe process 
noise covariance matrix estimates the total variance caused 
by the factors not modeled in the state transition matrix. 
For attitude determination, this includes disturbance 
torques, uncertainties in the hardware, and non-symmetric 
moments of inertia. 

6. EKF APPLICATION TO FALCONSAT-3 

FalconSat-3 State Transition Matrix 
The first matrix that we need to define is the state transition 
matrix, which relates one estimated state to the next, as in 
(19). The next step is equal to the previous step plus the 

7 
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time rate of change of the state vector-a function 
F(x) = X .  Since F(x) is a function of all seven state 
variables, we can get the matrix form of this function by 
differentiating with respect to each state variable. 

ax + -At ax dX 
# k  = 17x7 +- aF(x) At = 

(23) 2 51 At = 17x7 + [Fll At 
ab; a& F21 F22 

= 1 7 x 7  + 
-- 

Recall equation (13)-the quaternion rate equation. This 
equation is the first four rows of F(x). 

We will find it convenient to define another matrix 
corresponding to the same differential equation. 

q 4  -9; 9 2  1' - q 2  (25) 

-91 - 9 2  -4 ;  

Recall that the equation for the attitude motion of 
FalconSAT-3 is: 

IO; = N, +N, + N T  -CO;  IO', +h,)+h,  (27) 

The N, term of the equation of motion includes all the 
non-linearities that the satellite experiences. We cannot 
easily predict most of these torques and others produce 
coupled, non-linear differential equations that cannot be put 
into matrix form. When developing the state transition 
matrix, we will assume that this term is zero. However, 
when propagating the attitude we will include these factors. 
Also recall that we are only dealing with one momentum 
wheel aligned with the spacecraft body kame y-axis. That 
simplifies the equation further. 

To model the dynamics of the satellite for the Kalman filter, 
we will assume that the principal axes of the satellite are the 
XB, YB, and ZB axes and that the moments of inertia around 
each axis are identical. 

I =  I' 0 I1  O :] 
0 0 I1 

With the above assumptions about the dynamics, equation 
(27) reduces to: 

I,hx = NAKs + NTs + hwwz 

'I"? = NMTv + N T y  + hWy (29) 
I l h z  = N ,  + N ,  - hN,Wx 

Thus, with equations (26) and (29), we have defined X and 
we can derive the four component matrices of @ --F11, F ~ z ,  
Fzl, and FZ2, according to equation (23). 

4 x 4 FII  Matrix Computation 
Using equation (24) with substitutions from equations (26) 
and (15), the Fll matrix takes shape as follows [7]: 

Thus the matrix is computed by evaluating 

1 ac% 
where y, =--A-a0 

2 aq, 

4 x 3 F12 Matrix Computation 

The partial derivative of qwith respect to a', can be 
derived as follows. Again, it requires a substitution of 
equation (1 5) [7]. 

3 x 4 F2, Matrix Computation 
Recall the equation for h from (29). The only term on the 
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right side of the equation that is dependent on the attitude is 
the magnetorquer control torque. Thus the matrix Fz1 can 
be computed by evaluating: 

(34) 

Note that if the magnetorquers are not firing, it will reduce 
to: 

F2, = [ O ; J  (35) 

However, if the magnetorquers are actively correcting 
attitude, we must take into account how the magnetorquer 
torque varies with respect to each quaternion 

N ,  = M, x B, (36) 

It is convenient to use the [Mx] cross product operator 
when computing this value. Note that m,, m.”, and in, are the 
magnetic dipoles of each torque rod while that torque rod is 
firing. 

0 - m z  m,  
(38) 

- 

Now we can differentiate this value with respect to each 
quaternion. 

The resulting F2 1 matrix can be computed as follows: 

(41) 1 aw aw aw ah 
39, 892 8% a44 

21 -[ 

Magnetometer Observation Equation 
The expected magnetometer observation is as follows, with 
n as a zero-mean white noise vector. 

To find the observation equation for the magnetometer, we 
need to differentiate this with respect to the state vector. 

(45) 

where Bo =C%B, (46) 

Sun Sensor Obseivation Equation 

The azimuth and elevation measurements from the sun 
sensor can be converted into a body-frame sun vector. The 
sun sensor observation equation. therefore, is identical to 
the formulation of the magnetometer observation equation 
above. 

0 1  
where So = C / S I  = the local orbital sun vector (47) 

If the filter is running with just the magnetic field or sun 
vector measurements, then the measurement zk is equal to 
that vector and H = H, or H,. However, if there are both 
magnetometer and sun sensor measurements available, then 
both the measurements and observation matrices need to be 
augmented. 

3 x 3 F?? Matrix Computation 
Using equation (29), the partial derivative F22 matrix can be 
found as follows. 

(43) 
- hN, / I ,  0 

Process Noise Covariance Matrix 
The process noise covariance matrix is used to represent the 
uncertainty in the linearized model of the system and how 
that uncertainty is correlated between the states. Based on 
the design of a Kalman filter and probability definitions, the 
process noise covariance matrix Q for step k is defined as 
follows [6]: 
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For our state vector and process, this reduces to the 
following equation, where FI2 and F22 are parts of the state 
transition matrix defined earlier. The hll derivation is 
found in Appendix B. 

(At)’ (At)j  
Q, = Q , A ~ + Q ,  2+QS - 

3 

where: 

IJ; 0 0 
s =  0 0,’ 

[ o  0 ;] (54) 

The variances 0,’ ... 0,” are an estimated variance of the 
body rates. This is not a straightforward quantity and best 
determined by computer simulation. 

7. RESULTS 

At the time of this paper’s writing, only initial simulation 
results were available. Before attitude determination is 
complete for FalconSAT-3, there will likely be many more 
weeks of testing and tuning. Nevertheless, the results are 
very optimistic and demonstrate the Extended Kalman Filter 
method introduced in previous sections. 

These simulation results were all completed during sun-lit 
portions of orbit, when both the sun sensors and 
magnetometer were providing data to the filter. The 
simulation propagates the actual orbit of FalconSAT-3 and 
calculates the sun vectors. The local magnetic field is 
calculated using the International Geomagnetic Reference 
Field (IGRF) for the year 2000. The IGRF is a standard 
model of the earth’s magnetic field and is the one typically 
used on satellites such as FalconSAT-3. The IGRF allows 
the user to calculate an estimate of the local magnetic field 
fiom spherical harmonics and the current satellite and 
position vector in the inertial fiame. 

typically converge to the correct attitude from a very poor 
initial guess. All simulation measurements have the actual 
noise that we would expect from our sun sensors and 
magnetometers. 

Figure 2 - Convergence of Quaternions 

As shown in Figure 2, when given noisy data, the filter 
often tends to oscillate before finally converging on the 
actual quaternion. The following figure shows how the 
absolute error of each quaternion decreases fiom the initial 
guess until convergence. 

The following graph demonstrates how the filter will 
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Figure 4 - Tuning Scenario A: S = I3 * 0.01' 

When the quaternion estimate converges to the actual value, 
the filter finds an ever smaller difference between its 
estimated measurement and the actual measurement. 

Preliminary Results of Tuning the Filter 
As mentioned, engineers typically have to vary different 
parameters using simulations in order to obtain the optimal 
Kalman filter that minimizes attitude knowledge error and 
maximizes the capability of the satellite hardware. 
Typically these include the process noise matrix and the 
observation noise matrix-and the relative observation 
noise of different measurements (i.e. sun sensors and 
magnetometer). Figures 4, 5 ,  & 6 demonstrate how the 
variation of the S matrix from (54) affects the behavior of 
the filter. The S matrix is used to compute the process noise 
matrix Q. 

Figure 6 - Tuning Scenario C: S = 13 * 0.0001' 
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Over the short time period covered here, it is very easy to 
see how the changing one parameter affects the filter’s 
performance. Scenario B is certainly an advantage over 
scenario A. However, with scenario C it appears that you 
may be worse off than scenario B because it takes so long to 
converge. With a small S and thus small a Q matrix in the 
third scenario, the filter may become unresponsive to new 
measurements that reflect something such as an un-modeled 
disturbance torque. 

Meaning of the Results Thus Far 
The results contained above demonstrate that the theory 
developed in this paper does actually result in a filter that 
can converge to the correct attitude. With the sun-sensor- 
magnetometer filter, we have addressed a wide variety of 
initial conditions and the filter always converges to the 
correct attitude. Thus, we are confident that the sun sensor- 
magnetometer filter will provide FalconSAT-3 with robust 
attitude determination for 213 of the orbit. 

The magnetometer-momentum bias filter has shown 
promise as well. However, we are able to come up with 
certain cases where the filter will not converge or not 
converge to the correct attitude. Currently, we are doing a 
barrage of tests to quantify just how robust this filter is and 
under what conditions will it converge. Perhaps it just 
needs an accurate initial guess to converge (which can be 
provided by the sun sensor-magnetometer filter as the 
satellite travels into eclipse.) 

There are other changes to the simulation we will make to 
better approximate the actual conditions that our filter will 
operate in. First and foremost, the simulated motion of the 
satellite so far has been free of disturbance and control 
torques. Those must be added to achieve the best tuning of 
the filter. Also, FalconSAT-3’s on-board computer will run 
the attitude determination filter at step size of 5 second. All 
of the previous simulations have had a step size of 1 second. 

These changes and others are the next additions to the 
simulation, necessary to achieve the optimal attitude 
determination for FalconSAT-3. 

8. CONCLUSIONS 

After introducing the FalconSAT-3 attitude determination 
and control system design, this paper produces a relatively 
straightforward and proven method of satellite attitude 
determination-relying on a magnetometer, sun sensors, 
and an angular momentum bias. It also lays the foundation 
for further research in FalconSAT-3 attitude control. 

An important result was our inclusion of the momentum 
wheel dynamics in our full-spectrum attitude extended 
Kalman filter. Attitude determination is not possible during 
eclipse without this. The sun sensor provides a margin of 
redundancy during the sunlit portions of the orbit. The 

other alternative would to add an Earth or star sensor-but 
the additional mass, volume, and budget required would be 
inconsistent with our requirements for the FalconSAT-3 
program. 

Signifcance of Work 
As commercial, civil, and defense organizations find the 
advantages of using low-cost microsatellites to do the job of 
traditionally larger and more complex satellites, it is 
essential to provide capabilities such as three-axis attitude 
determination and control for a fraction of the cost, mass, 
volume of larger ADCS systems. The capability of such a 
system has already been demonstrated by Surrey Satellite 
Technology Ltd.’s SNAP-1 nanosatellite. 

The USAF Academy FalsoSAT-3 mission will also 
demonstrate the capability of undergraduate students in 
designing complex spacecraft navigation and control 
systems. 

Current Status of FalconSAT-3 
On December 10, 2002, FalconSAT-3 held its conceptual 
design review at the USAF Academy. Representatives fiom 
funding sources, the secondary launch provider, and other 
stakeholders attended. Engineering model integration will 
commence as scheduled in February 2003. 

Future Work 
The immediate task is to further refine the Kalman filter. 
By running simulations and characterizing the data, we can 
refine our estimate of the observation and process 
covariance matrix. We will also be able to evaluate the 
effectiveness of the assumptions made in developing the 
Kalman filter and troubleshoot any inconsistencies. Later, 
the primary author and FalconSAT-3 ADCS team will begin 
to look at specific attitude control strategies and algorithms. 
Ultimately the torch will have to passed to the next class of 
cadets in the late spring. 
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APPENDIX A PARTIAL DERIVATIVES OF DCM 

It is necessary to take the partial derivative of equation (8) 
with respect to each quaternion. 

-= ( S a )  

4 3  - 4 4  -41 

APPENDIX B: FS3 PROCESS NOISE DERIVATION 

Let ~ ( r )  and w(a) be two three-dimensional column 
vector representing the body rates from (29) at two different 
instants a and T between tk and tk+l. The process noise 
covariance matrix Q for step k is defined as follows [6]: 

@(tk+, , I )  = ( 17r7 + [''I '"]I) from (23) 
F2, F2, 

and we have 

where 6 is the dirac delta function and 6(0) = 1. The dirac 
delta function properties can be used to perform the 
integration over a, leaving us with the following: 

(60) 

By using the definitions for G and @, we arrive at the 
following integral to compute Q k :  

By multiplying through and collecting like terms, this 

13 



Vol. 6-2628 

reduces to: 
AI 

Q, = [(Q~ + Q ~ T + Q ; T ~ ) ~ T  (62) 
0 

where Q,. Q2, Q3 are the matrices previously defined in 
equations (50), (51), and (52). With a simple integration, 
this becomes what we saw before: 
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