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Abstract-This paper considets the performance of a two- 
axis gimbal system, which is typical of surface-to-air, air-to- 
air, and air-to-surface tactical missiles, when Sliding Mode 
Control is utilized. A representative gimbal system 
consisting of a flat planar antenna, pitch/yaw gimbals, 
connecting push rods, and separate armature controlled DC 
drive motors for the pitch and yaw gimbals is utilized to 
develop the theory and to serve as a testbed for digital 
simulation. The equations describing the gimbal system 
under consideration are highly nonlinear and include tern 
which are not accurately known or can not be accurately 
measured during the missile's fight. It is shown that the use 
of variable suuchue control or sliding mode control can he 
used to provide robust seeker performance in the face of 
non-linearity's and uncertainties. 
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1. INTRODUCTION 
The majority of contemporary tactical missile systems utilize 
a gimbaled seeker. The control technique used for the 
gimbal system on a tactical missile must provide rapid and 
accurate tracking of boresight error signals generated by the 
missile's signal processing unit. Demands on the control 
system are most severe during the endgame portion of the 
missile's flight. Poor performance during endgame will 
result in large miss distances and a corresponding low 
probability of mission success. 

The equations describing the gimbal system under 
consideration are highly nonlinear and include terms which 
are not accurately known or can not be accurately measured 
during the missile's flight. It is shown that the use of 
variable structure control or sliding mode control can be 
used to provide robust seeker performance in the face of 
non-linearities and uncertainties [ I  2 1 .  
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2. BACKGROUND 
The "Antenna Servo" unit positions the antenna in response 
to control signals, which may be provided either by 1) 
search scan circuiny in the indicator, or by 2) the angle 
tracking system [3]. A separate servo channel is provided 
for each gimbal. The voltage obtained from a transducer on 
the gimbal is subtracted from the control signal, thereby 
producing an error signal proportional to the error in the 
antenna's position. Classical control theory has been used 
for antenna control with system response improved by the 
following basic categories using frquency domain 
techniques [4]: series (cascade) compensation, feedback 
(parallel) compensation, and load compensation. 
Contemporary control theory has been applied to 
stabilization of a three-axis inertial platform in [SI. 

3. PROBLEM FORMULATION 
Figure l(a) illustrates the problem under consideration. The 
antenna receives some signal from the target and after 
processing by the missile's signal processing unit, a 
boresight error signal is produced. It is the job of the gimbal 
control unit to drive this error to zero. Depending on the 
guidance law used by the missile (pursuit, proportional 
navigation, etc.) the orientation of the missile in inertial 
space will also be changed. However, in this paper the 
closed loop perfonnance of the missile is not evaluated. 

The overall objective of the gimbal control system is to 
follow a desired trajectory developed in real-time as rapidly 
as possible with minimum steady state error. A side view of 
the gimbal system is shown in Figure l(b). Figure l(b) 
shows rotation about the Y, axis, which is referred to as the 
pitch channel. The antenna plate is rotated about the YG 
axis by an armature controlled DC motor through a push rod 
assembly. The length 1 in Figure 10) is held constant by 
allowing the point (P) to slide along the antenna plate as 
required. The yaw channel is identical to the pitch channel, 
but with rotation about the Z ,  axis. In other words, it is 
orthogonal to the pitch channel. The antenna does not rotate 
about the XG axis, i.e. there is no roll. One set of axes is 
fixed to the top of the gimbal support post and 
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Figure ~ l(a) Two Axis Gimbal Problem. M o m  and GcarJ 

Figure 1@) Pitch Channel of Gimbal 
System. 

Figure 1 Missile Seeker Gimbal System 

another to the antenna. When the antenna is at its home 
position the gimbal support (XG YG, q) and the antenna 
(X,, Y,, Z,) axes are in alignment. 

The rotational motion of the antenna has been modeled 
using Euler's equations of motion [6] .  To simplify the 
analysis of the gimbal system, the equations of motion have 
been written relative to an inertial frame. However, to fully 
model the performance of a gimbal for a missile in fight, the 
equations of motion must be modified to take into account 
the missile's dynamics. A judicious reference frame choice 
allows the rotational motion of a rigid body to be modeled 
as 

z, = I,"], + ( I ,  - I y y ) W y W ,  

z, = I,"], + ( I ,  - I ,  )W,W, 
z, = I,bz + ( I y y  - I,)O,W, 

(1) 

The antenna is modeled as a circular plate so the moments 
of inertia are given as 

Noting that = 0 and using eq (2) in eq (1) results in 

z, = I,"],, 
z, = ID"], 
z, = 0 

From eq (3) it is seen that the pitch and yaw channels are not 
coupled. Taking into account viscous damping, friction, and 
the torques generated by the missile's motion eq (3) 
becomes 

z, = Le@ + f ,S, + F, + a t )  

z, = I D e n  + fXhm + F, + ( ,( t)  (4) 

z,=o 
where 

f,fy - viscous damping coefficients 
F, Fy - friction (static and sliding) 
MrJ, y t J  - torques produced on the antenna 

due to missile motion. 

The viscous damping coefficients (f, fy) are readily 
determined. The friction coefficients (Fx, Fy) and torques 
(&(t), cy@)) however, are dynamic and are not easily 
determined during the missile's flight. Therefore they will 
be aeated as unknown disturbances. It is assumed that only 
thek maximum values are known. 

A block diagram for an armature controlled DC motor is 
given in Figure 2(a). For our investigation we will assume 
that the "elecnical time constant" L/R is much smaller than 
the "mechanical time constant" .IS,,,. This is a reasonable 
assumption for many electro-mechanical systems and leads 
to a reduced order model as shown in Figure 2(b) [7]. In 
Figure 2(b) 'c1 is the torque caused by the gimbal system 
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(a) Block Diagram for a DC Motor System. 

(b) Block Diagram for Reduced Order System. 

Figure 2 Model of a DC Motor Used in the Gimbal System 

eq (4). In the time domain the differential equation 
describing the simplified motor model is 

where r is the gear ratio of the gear train between the motor 
and pusbrod. Equations for the dynamics of the antenna (4) 
and drive motor (5) are linked by the term g(t). The relation 
between 0, and Bg is given by 

1 

g, 
e, =-tm(e,) (6) 

where 
1 - is the length given in Figure 1 (b). 
g, - is the radius of the motor gear meshing 

with the push rod. 

Since the pitch and yaw channels are uncoupled and 
identical, only the pitch channel wiU be considered in the 
remainder of this paper. Equations for the yaw channel can 

be derived in a similar manner as those of the pitch channel. 
Subscript symbols for x and y have been dropped in the 
following derivations where possible. 

Substituting eq (4) in eq (5) gives 

K J m  . J,d, (0 + (B,  + -1% 0) 
(7) 

R 

= +)v(t) - r[l,eg + f e ,  + F + 5(t)l 
R 

To transform eq (7) so that it is only a function of Og, it is 
necessary to find the first and second derivatives of eq (6) in 
terms of Bp and use them in eq (7). The first and second 
derivatives of eq (6) are 
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Using eq (8) for the first and second derivatives of e,, in 
terms of Bg, in eq (7) results in the following relationship for 
the combined antenna and motor dynamics in terms of @ 

1 

g, 
[ J ,  - sec2 e, + r 1 ~ 8 ~  

+ [ ~ ~ , - e ~ s e c ~ e ,  me, + ( B ~  + d ) - s e c Z e ,  +@]e8 

+ [ r ~  +rt( t ) l  = K"v(~)  

I .  K,K 1 

8, R g, 

R 
(9) 

The differential equation (9) can be transformed to a state 
variable description using the following relationships 

x1 =e* 
x, = e, (10) 

The use of eq (10) transforms eq (9) into the following state 
variable form 

x1 = xz 

where y is the output of interest. For the following 
computations let 

U = V( t )  (12) 

which results in the following formnlation for eq (1 1) 

xz = v', (xt . xz)+ AV,(.% 3 xz) 

+{bo (Xl J,) + fib(X1, X,)V 
Y = x1 (13) 

The quantity rp0(xI.x2) is the nominal value of g'xl,xd given 
in eq (12). This is the value assuming all of the motor 
parameters, moments of inertia, and other values are known. 
The parameters F and #tj of eq (12) are not included in 
po(xl.x2). The variable Ag'xl,xz) represents deviations in the 
nominal values of g'xl,xd and the disturbances F and #t). 
The definitions of bo(xl,xz) and Ab(x,,x2j are similar where 
bo(xI,x2) is the nominal value of b(xl,x2j in eq (12) and 
db(x142) represents the unknown variations in the nominal 
values. 

4. S D I N G  MANIFOLD AND 
CONTROL DESIGN 

A sliding mode controller design consists of two steps. In 
the first step a sliding surface is chosen such that the closed 
loop system motion on this surface exhibits a desired 
behavior regardless of plant uncertainties and disturbances. 
In the second step a control function is chosen to provide 
reaching of the sliding surface in k i t e  time and to guarantee 
system motion in this surface thereafter. 

Sliding Manifold Design 

The system (13) is in regular form and the terms ~ ~ x l . x z j  
and dg'x,,X,,x2j are treated as matched disturbances [SI. If the 
desired output is denoted as y* then the system can be 
written in errors as 

e = y  - y  

z1 = x; - XI 

; ; ,=x;-x,  (14) 

Assuming the sliding manifold is of the form 
o = 2, + c1Zl then the system on the sliding surface can 
be witten as 

The coefficient e, can be found by noting that the settling 
time of this first order differential equation is approximately 
equal to: 

A x, = x, 
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U,, = [b + Ab]-' .[y *-Q -AV+ ~ , L . - j b - ' b ~ ]  (23) If a desired settling time of 0.1 sec is desired then c1 = 40. 
This results in thi equation for the sliding &old of 
U = F, - 40Z1 in error terms. We must utilize an estimate of U,, denoted as 0, in the 

Control Function Design 
control law since U, contains the uncertain terms Ab and 

AV. The estimated equivalent control is given by 
The equation for cr in the original basis is given as o,, = b-l(y*-p+c,e-$b-LbO) (2.4) 

O= y* +40y* -xz -4ox, = 0 (17) 
The value of f i  in eq (22) is given by 

The control law is designed using a Lyapunov based 
approach. The crdynamics are derived as follows 

(25) /5 2 (L, /b-+p)/( l -a)  

where the explicit dependence on x1 and x2 has been 
dropped in eq (18) for q, AV, b, Ab. A review of b(x,,xZ) in 

L, t -AV - b-'Ab (y * - p+ c,e - 3b-l bo) 
IY > h-'Ah - _  -I 

eq (12) reveals that its value is always positive. Therefore, 
the candidate to the Lyapunov function b- - minimum value of b(xl,xz) 

z, - desired reaching time 

Q = ~ b - ' ( x , , x , ) ~ ~  (19) The description of the system (13) with sliding mode control 
is given as 

is positive definite and its derivative is given by 
x, = xz 

x, = qo + A V  + (bo + &). IO,, + p sign(q)l 

Y = X I  

Q = b-'~[y*-p-Ap+c,e-(b+Ab)U 

-3b-l b 03 (20) 

In order to provide asymptotic stability to the origin of the 
system in eq (18) the following format for the derivative of 
the candidate to the Lyapunov function is required 

Q < -p,lol, pl>o (21) 

It is well known that if the inequality in eq (21) holds m e  
then the sliding surface defined by eq (17) will be reached in 
a fmite amount of time. 

The following control law can be utilized to asymptotically 
stabilize a=Oineq(18)  

U = Oeq+/5.sign(o) (22) 

.. 
Where U,, is an estimate of the equivalent control function 

U ,  that makes the derivative of the candidate to the 
Lyapnnov function, eq (20) equal to zero. The equivalent 
control function U,, is obtained from eq (20) and is given 

by 

(26) 

5.  GIMBAL SYSTEM SIMULATION 

The pitch axis of the gimbal system with sliding mode 
control is defined by eq (26) and has been simulated using 
an all-digital simulation. Table 1 lists the values used for 
system simulation. The gimbal is limited to +45 deg. of 
travel and the maximum value for xz is 90 deg/sec. Gimbal 
stops of +45 deg insure that there is not a singularity 
condition for Q ( x l , x 2 ) ,  b(x1,x2) and the maximum 
value for angular velocity xz (4 is useful for determining the 
maximum value of p(nl, x,) . 

It is assumed that the position (0, ) and angular velocity 

(e ,  ) of the antenna plate are measured perfectly and are 
available for use by the sliding mode cnutroller for the 
simulation. A desired trajectory y used for evaluation of 
the developed sliding surface and control is given in Figure 
3. The chosen trajectory is realistic of what a missile's 
seeker would encounter in nying to track a maneuvering 
target. At a long range from the target the boresight errors 
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would be relatively small however, as the missile 
approaches the target the boresight errors will rapidly grow. 
Figure 4 contains y*,)i*,mdy'which are utilized by the 

control function. It should be noted that y*,y',mdy* 
must be measuredlcalculated in real-time during the 
missile's flight. The predetermined values given in this 
paper are for illustrative purposes. 

m a W J  
fr 

-l5(0) 
J ,  

B, 
K. 

Variable 
0.551 Kg 

0.5 Nm 
9.45 Kgmz/s 

0.01 Nm 
1 .O Kgm' 

1.ONs 
n ~ i  vr 

K," 
R 

1 

R. 

r 

75.0 N d A  
0.5 R 

0.06 m 
0.00635 m 

1 .o (ratio) 

-. 
15.0 r d s  B 

Nominal Case (No DisturbancesJ 

The first set of simulation runs is for the nominal case, i.e., 
A? and Ab are zero. This is to establish a reference case to 
determine the degradation in system performance when 
disturbances are added. The state variables x, and x2 for 
this case are given in Figure 5. The antenna was given an 
initial displacement of 20 deg and no initial angnlar velocity. 
The switching surface (U) versus time is shown in Figure 6. 
For the case under consideration, once the sliding surface (a  
= 0) is reached the system stays in the sliding mode, a 
desirable result. The motor voltage, designated the control 
U in the previous section, is given in Figure 7. Once the 
system reaches the sliding surface at approximately 1 sec, 
the voltage begins high speed switching. The culmination of 
the simulation is shown in Figure 8, which compares the 
actual antenna trajectory to the desired antenna trajectory. 
Figure 8 shows that once the initial displacement of the 
antenna with respect to the desired trajectory is 
compensated, the actual and desired trajectories are identical 
when there are no disturbances present. 

System with Disturbances 

One of the primary features of sliding mode controllers is 
their ability to operate. in the presence of unknown 
disturbances. Figure 9 shows the A q  disturbance that was 
introduced to the nominal case. In addition to the 

disturbance shown in Figure 9 a Ab disturbance was added 
by reducing the motor parameter K, by 10% five seconds 
into the simulation. Figure 10 shows that the disturbances 
did not effect the systems ability to reach the sliding surface 
or its ability to stay on the surface. Figure 11 shows the 
control U (motor voltage) for the system with disturbances. 
A comparison of Figures 7 and 11 reveals that the 
disturbances do not greatly change the character of the 
control signal. It is clear from Figure 12 that the 
disturbances do not effect the gimbal systems ability to track 
the target The system is able to operate satisfactorily for 
reductions in K, up to 20%. Beyond a 20% reduction the 
system is unable to track the reference profile. 

Smooth Control 

There are situations where high speed switching of the 
control signal is undesirable. The chattering can be 
removed by introducing a boundary layer about the sliding 
surface [9]. In this case, the system will not stay on the 
sliding surface but in some neighborhood about the sliding 
surface. The price paid for a smooth control signal is some 
loss in control system robusmess. To eliminate chattering 
the sign(@ function in eq (26) is replaced with the sut(oJ 
function. The sar function is shown in Figure 13 for 
reference. The size of the boundary layer about the sliding 
surface is determined by the choice of E in Figure 13. It 
should be noted that 

lim sat, ( x )  3 sign ( x )  
s 4  

For the gimbal system under consideration an E of 50msec 
was empirically found to produce a smooth control signal 
and to allow the system to perform properly. Udlizmg the 
sat function required an increase of /j from 15.0 d s  to 
30.0 m&s. Sigma versus time is shown in Figure 14 and V, 
versus time is shown in Figure 15 for the smoothed case 
with disturbances. The antenna trajectory is shown in Figure 
16 and it is clear that the control system allows the reference 
trajectory to be accurately tracked. 

It should be noted that integration step size and integration 
technique are important items to consider when simulating 
the high speed switching in a sliding mode controller. To 
ensure simulation stability in these examples an integration 
step of lmsec and a first order Euler integration technique 
was utilized. 
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1 2 3 4 5 6 7 8 9 10 
T i e  (sec) 

Figure3 Desired Antenna Trajectory @*) 

1 2 3 4 5 6 7 8 9 IO 
T i e  (sec) 

Figure 4 Desired Antenna Trajectory and its First Two Derivatives 
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0 
T i e  (sec) 

Figure 5 State Variables xl, x2 Versus Time {x,(O) = 20, x2(0) = O}. 

0 1 2 3 4 5 6 I 8 9 10 
T i e  (sec) 

Figure 6 Sigma Versus Time. 

464 



30 

25 

-25 I I 
0 1 2 3 4 5 6 7 8 9 10 

Tune (sec) 

Figure 7 Motor Voltage Versus Time. 
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Fiure 8 Desired and Actual Antenna Trajectories, Nominal Case. 
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0 1 2 3 4 5 6 7 8 9 10 
lime (sec) 

Fwre 9 Disturbance Signal Aq(x,&d. 

I .  

0 1 2 3 4 5 6 7 8 9 10 
Tme (sec) 

Figure 10 Sigma for the Disturbance Case. 
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Figure 11 Motor Voltage for the Disturbance Case. 

0 1 2 3 4 5 6 7 8 9 10 
Tme (sec) 

Figure 12 Antenna Trajectory for the Disturbance Case. 
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Figure 13 The suz(x) Function Used to Eliminate Chattering. 

0 1 2 3 4 5 6 7 8 9 
Tune (sec) 

Figure 14 Sigma for sut(o) Case and Disturbances. 
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Figure 15 Motor Voltage for sat(o) and Disturbance Case. 

Tme (sec) 

Figure 16 Antenna Trajectory for sat(@ and Disturbance Case. 
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6.  CONCLUSION 
A control scheme for a two axis gimbal system based on the 
sliding mode conuol technique has been designed and 
validated through simulation. The derived sliding mode 
controller provides excellent tracking in the face of U- 

known or ill-defined disturbances and system parameters. In 
addition, realization of the developed control system is 
relatively simple, a fundamental amibute of the sliding 
mode control technique. Addition of noise on the measured 
values Bg , Bg used for control will degrade antenna track- 

ing performance. The extent of this degradation is 
dependent on the severity of the noise. Areas for future 
study include: refined models for the antenna moments of 
inertia including effects of the push-rods, incorporation of 
parameters for a desired motor, impact of limiting antenna 
acceleration, gear non-linearities, and the impact of the 
antenna himng the gimbal stops. This paper has explored 
the theoretical groundwork for implementation of a sliding 
mode controller in a missile gimbal system. 
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