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Abstract’ 

This paper addresses the problem of task allocation for 
wide area search munitions. The munitions are required to 
search for, classify, attack, and perform battle damage 
assessment on potential targets. It is assumed that target 
field information is communicated between all elements of 
the swarm. A network flow optimization model is used to 
develop a linear program for optimal resource allocation. 
Periodically re-solving this optimization problem results in 
coordinated action by the search munitions. The network 
optimization model can be initialized such that multiple 
vehicles can be assigned to service a single target. Memory 
of previous task assignments is included in the task benefit 
calculations to reduce churning due to frequent 
reassignments. Simulation results are presented for a 
swarm of eight vehicles searching an area containing three 
potential targets. All targets are quickly classified, attacked, 
and verified as destroyed. 

1.0 Introduction 

Autonomous wide area search munitions (WASM) are 
small, powered air vehicles, each with a turbojet engine and 
suMicient fuel to fly for a short period of time. They are 
deployed in groups, or “swarms,” from larger aircraft flying 
at higher altitudes. They are individually capable of 
searching for, recognizing, and attacking targets. 
Cooperation between munitions has the potential to greatly 
improve their effectiveness in many situations. The ability 
to communicate target information to one another will 
greatly improve the capability of future search munitions. 

In this paper we describe a time-phased network 
optimization model designed to perform task allocation for 
a group of powered munitions each time it is run. The 
model is run simultaneously and independently on all 
munitions at discrete points in time, and assigns each 

’ This paper is declared a work of the U. S. Govemment 
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vehicle a task each time it is run. The model is solved each 
time new information is brought into the system, typically 
because a new target has been discovered or an already- 
known target’s status has been changed. A network model 
for task allocation was studied in [6], but the present work 
improves on that in [6] in two ways. One limitation of the 
work in [6] is that only one vehicle can be assigned to each 
target at a time. This is inefficient, because it does not make 
use of all available information. When an attack is 
performed, a BDA task will be needed after the attack. 
Knowledge of this additional task was not used, in [6], until 
the attack had been completed. In the present work, the 
network optimization model is modified so that multiple 
vehicles can be assigned to a single target at one time. 
When a target is classified, both the attack and the BDA 
tasks for that target are included in the next task allocation, 
resulting in two vehicles being assigned and the target 
being serviced more quickly. Another limitation of the 
previous work in [6] is that no memory is included of 
previous task assignments. This means that successive task 
assignment calculations could result in a searching vehicle 
being initially assigned to service a target, and then being 
reassigned back to search before completing the previous 
task, resulting in wasted time and fuel. The previous 
assignment of a vehicle is now a factor in the task benefit 
calculations, with a slightly increased weight on servicing 
the target to which the vehicle is presently assigned. A 
small increase in the relevant benefit has been found to 
greatly reduce churning, while still allowing vehicles to 
change assigned tasks if new information, such as a new 
target being found, becomes available. 

The cooperative control algorithm is being implemented in 
a simulation with up to ten wide area search munitions and 
ten potential targets. This simulation has six degree-of- 
freedom dynamics for the search munitions and the 
capability to include a variety of target types. This paper 
presents simulation results for a swarm of vehicles 
searching an area containing a cluster of targets. The 
vehicles have limited flight times due to fuel constraints, 
and have an ATR capability. The vehicles are assumed to 
be able to communicate target state information to each 
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other, as well as the calculated “benefits” for each vehicle 
performing each possible task. 

2.0 Scenario 

We begin with a set of N vehicles, deployed 
simultaneously, each with a life span of 30 minutes. We 
index them i = 1, 2, ...., N. Targets that might be found by 
searching fall into known classes according to the value or 
“score” associated with destroying them. We index them 
with j as they are found, so that j = 1, 2, . . .M and Vj is the 
value of target j. We assume that at the outset there is no 
precise information available about the number of targets 
and their locations. This information can only be obtained 
by the vehicles carrying out searches and finding potential 
targets using Automatic Target Recognition (ATR) 
methodologies. The ATR process is modeled using a 
system that provides a probability that the target has been 
correctly classified. The probability of a successful 
classification is based on the viewing angle of the vehicle 
relative to the target. At this time, the possibility of 
incorrect identification is not modeled, but targets are not 
attacked unless a 90% probability of correct identification is 
achieved. Further details of the ATR methodology can be 
found in [2], and a detailed discussion is available in [3]. 

3.0 Network Optimization Model 

Network optimization models are typically described in 
terms of supplies and demands for a commodity, nodes that 
model transfer points, and arcs that interconnect the nodes 
and along which flow can take place. To model weapon 
system allocation, we treat the individual vehicles as 
discrete supplies of single units, tasks being carried out as 
flows on arcs through the network, and ultimate disposition 
of the vehicles as demands. Thus, the flows are 0 or 1. We 
assume that each vehicle operates independently, and 
makes decisions when new information is received. These 
decisions are determined by the solution of the network 
optimization model. The receipt of new target information 
triggers the formulation and solving of a fresh optimization 
problem that reflects current conditions, thus achieving 
feedback action. At any point in time, the database onboard 
each vehicle contains a target set, consisting of indexes, 
types and locations for targets that have been classified 
above the probability threshold. There is also a speculative 
set, consisting of indexes, types and locations for potential 
targets that have been detected, but are classified below the 
probability threshold and thus require an additional look 
before striking. Figure 1 provides an illustration of this 
model. 

. 

The model is demand driven, with the large rectangular 
node on the right exerting a demand-pull of N units (labeled 
with a supply of -N), so that each of the munition nodes on 
the left (with supply of +1 unit each) must flow through the 
network to meet the demand. In the middle layer, the top M 

nodes represent all of the targets that have been identified 
with the required minimum classification probability at this 
point in time and thus are ready to be attacked. An arc 
exists from a specific vehicle node to a target node if and 
only if it is a feasible vehicleharget pair. At a minimum, 
the feasibility requirement would mean that there is enough 
fuel remaining to strike the target if tasked to do so. Other 
feasibility conditions could also enter in, if, for example, 
there were differences in the onboard weapons that 
precluded certain vehiclekarget combinations, or if the 
available attack angles were unsuitable. The bottom R 
nodes of the middle layer represent all of the potential 
targets that have been identified, but do not meet the 
minimum classification probability. We call them 
speculatives. The minimum feasibility requirement for an 
arc to connect a vehicle /speculative pair is sufficient fuel 
for the vehicle unit to assume a position in which it can 
deploy its sensor to assist in elevating the classification 
probability beyond threshold. The lower tier models 
altematives for battle damage assessment for targets that 
have been struck. Finally, each node in the vehicle set on 
the left has a direct arc to the far right node labeled sink, 
modeling the option of continuing to search. The capacities 
on the arcs from the target and speculative sets are fixed at 
1. Due to the integrality property, the flow values are 
constrained to be either 0 or 1. Each unit of flow along an 
arc has a “benefit” which is an expected future value. The 
optimal solution maximizes total value. 

The network optimization model can be expressed as: 

max J = Ccgxg (1) 

c x i j + x j k  =I ,  7 v i = 1 7 . . . 7 n  (2) 

Cxis  + c X j k  = n, ,n  =#UAVs (3) 

x 2 0  (4) 

i , j  
Subject to: 

i , j  

2 j 

This particular model is a capacitated transshipment 
problem (CTP), a special case of a linear programming 
problem. Constraint (2) enforces a condition that flow-in 
must equal flow-out for all nodes. Constraint (3) forces the 
number of assigned tasks to be equal to the number of 
available vehicles. Constraints (4) and ( 5 )  help enforce the 
binary nature of the problem. Any particular flow is either 
active or inactive (0 or 1). Restricting these capacities to a 
value of one on the arcs leading to the sink, along with the 
integrality property, induces binary values for the decision 
variables x,,. Due to the special structure of the problem, 
there will always be an optimal solution that is all integer 
[l]. Solutions to this problem pose a small computational 
burden, making it feasible for implementation on the 
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processors likely to be available on disposable wide area 
search munitions. 

The goal of the optimization problem is to maximize the 
value of the tasks performed by the vehicles at the time the 
model is solved. Solving the model whenever new target 
information is available attempts to maximize the value of 
the targets destroyed over the life of the munitions. 

Due to the integrality property, it is not normally possible to 
simultaneously assign two vehicles to the same target. 
However; creating multiple instances of the same target 
allow this to be done. In the following results, whenever a 
target is classified and thus available for attack, two 
instances of the target are created in the network flow 
model, one needing to be attacked, and one needing BDA. 
In this way, two vehicles can be assigned to the target, with 
the first reaching it performing the attack and the second 
performing BDA. Normally the assignment will be made 
such that the classifying vehicle will subsequently perform 
the attack, but that will not always be the case, especially if 
the available vehicles have different remaining flight times. 
One potential hazard in this approach is that the sensor 
footprint of the vehicle performing BDA can overfly the 
target before the attack is performed. This will be a rare 
event, and can be avoided by comparing the vehicle ETA’S 
and modifying the BDA vehicle’s flight path at necessary. 

4.0 Simulation 

This network flow model has been implemented in our 
multi-vehicle, multi-target coordinated-control simulation. 
The scenario has eight Wide Area Search Munitions 
performing a search for targets in a rectangular area. The 
WASM are using a simple “moving the grass” search 
pattern. There are up to 5 different target types possible in 
the simulation, including a “non-target” target type for 
objects that appear similar to targets but which may be 
distinguishable as non-targets by the ATR. 

One of the critical questions involved in using the network 
flow model for coordinated control and decision-making for 
WASM is how the values of the weights c(i,j) are chosen. 
Different values will achieve good results for different 
situations. For example, reduced warhead effectiveness 
greatly increases the importance of battle damage 
assessment and potential repeated attacks on an individual 
target. A simplified scheme has been developed which 
does not attempt to address the full probabilistic 
computation of the various Expected Values suggested by 
(1)-(4) above. It is intended to assign the highest value 
possible to killing a target of the highest-valued type, with 
other tasks generating less of a benefit. The values of 
different tasks are calculated as follows: 

C(ij) = Expected value of vehicle I attacking target j 
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(Probability target type has been correctly 
identified)*(Probability of destroying target j)  * 
(Value of target j)*(Time weighting)*(Previous 
task weighting) 
Pia*Pk*V,*min,(ETAMatrix)/ETAMatrix(ij) *y 

Value of vehicle i continuing to search 
(Maximum Target Value)*(Remaining flight 
time)/(Maximum flight time) 
max( target values) * Tfl, 

Expected value of vehicle i assisting in classifying 
speculative k 
((Probability successful ATR)*(Expected value of 
target being attacked after classification) + Value 
of continued search after classification) *(Previous 
task weighting) 
(Patr*Pk*Vj+ max(target values)*(Tf - ’ 

TclassifyPm)*Y 

Expected value of vehicle i performing BDA on 
target g 
((Probability successhi BDA)*(ProbabiSty target 
was not killed)(F‘robability of correct target 
ID)(Value of target j) + Value of continued search 
after classification) *(Previous task weighting) 
(Pa*( l-Pk)*Pid*Vj + max(target values) *(Tf 
TwaPmg)*Y 

There are five possible target types with different values, 
and different ATR characteristics. Pid is an input based on 
the quality of the ATR recognition. ETAMatrix contains the 
required flight times for each vehicle i to fly to each target j 
. Tf is the remaining available flight time of a vehicle, and 
T, is the maximum flight time of the vehicle. For the 
following simulation results, some of the parameters were 
set as constants: Pk = 0.90, Pbda = 0.90. Tclssify and Twa are 
equal to the flight time to reach the specified target, plus the 
time needed to return to search after the task is completed. 
The additional weighting y is used to encourage vehicles to 
continue on to service targets to which they have already 
been assigned, and thus reduce the “churning” effect which 
can occur if vehicle-target assignments change frequently. 
We have found that ~ 1 . 0 5  greatly reduces the churning 
effect, while still allowing changes in task assignments 
when new information, such as a newly-discovered target, 
is available. 

The value of attacking a target is weighted with the time 
required for a vehicle to perform that attack, so that a higher 
value is assigned to a vehicle that can attack a target sooner. 
The value of continuing to search is set such that the value 
of searching is equal to the value of killing a high-value 
target initially, and degrades linearly with search time 
remaining. This will tend to result in vehicles with less 
flight time remaining being used to kill targets, and vehicles 
with more he1 left being used to search, classib, and 



perform BDA. Determining precise appropriate values for 
the probabilities of successful ATR and BDA is dificult, 
and requires substantial modeling of those processes, which 
this paper does not address in substantial detail. Simplified 
models giving reasonable values for these parameters are 
used. The value of all possible tasks, vehicle, and target 
assignment combinations are calculated and sent to the 
capacitated transshipment problem solver. The values are 
multiplied by 10,000 before being sent to the solver, as it 
only works with integers and rounding will result in poor 
results without the scaling factor. 

For the simulation results presented, eight vehicles are 
searching an area containing five targets of different types, 
and hence of different values. The target information is as 
follows: 

Target Type Value Location (X,Y) 
1 1 10 (9500,-500) 
2 1 10 (15000,-2500) 
3 2 7 (15000,-14000) 

The targets also have an orientation (facing) that has an 
impact on the ATR process and desired viewing angles, but 
this will not be discussed as it does not directly affect the 
task allocation. The search vehicles are initialized in a 
staggered row formation, with fifteen minutes of flight time 
remaining, out of a maximum thirty minutes. This assumes 
that the vehicles have been searching for fifteen minutes 
and then find a cluster of potential targets. 

As vehicles are assigned non-search tasks, the possibility 
arises of failing to locate targets, but that does not occur in 
this instance. We do not attempt to compensate for that 
possibility in this paper. Search issues are complex in and 
of themselves, and beyond the scope of this paper. Figure 2 
shows simulation results with y = 1 (no memory weighting). 
The colored rectangles represent the sensor footprints of the 
searching vehicles, and the numbers are the target locations. 
Colored lines show flight paths. Targets are numbered 1-5. 
As soon as each target is classified, one vehicle is assigned 
to attack it, and another is assigned to perform battle 
damage assessment on that target. Since the task allocation 
algorithm is performed each time a task is completed, the 
assignments are recalculated immediately after a target is 
struck. There are three instances where a vehicle is pulled 
off its search path to perform an attack task, and then 
reassigned to search before completing that task. This 
“churning” occurs due to small variations in the length of 
the path that is calculated for each iteration of the task 
allocation, and results in wasted vehicle fuel and potentially 
more gaps in the search pattern. All of the targets are still 
fully serviced (found, classified, attacked, and BDA’d) in 
this example. 

Simulation results with y = 1.05 (a small “memory” 
weighting) are shown in Figure 3. In this case, the small 

additional weight on servicing a target to which a vehicle is 
already assigned results in reduced wasted effort. Each time 
a vehicle is assigned to service a target it maintains that 
assignment during later assignment calculations. This could 
change due to new information, such as a new target being 
found, but the algorithm is no longer sensitive to minor 
variations in task values due to changes in the calculated 
path lengths. Combining both the use of multiple instances 
of a target in the task allocation computation and the 
memory weighting allows the immediate use of all 
available information about the targets and tasks to be 
performed. Monte Carlo runs with established 
performance metrics would be required to carefully 
evaluate the advantages of using this memory factor, but the 
initial results are promising. 

5.0 Conclusions 

In this paper we presented a solution to the problem of task 
allocation for wide area search munitions. The vehicles are 
capable of searching for targets, performing ATR to 
classify targets, attack targets, and perform BDA on targets. 
A linear program based on the capacitated trans-shipment 
problem is used to solve the task allocation problem. 
Simulation results are presented for eight vehicles searching 
and attacking three targets of different values within the 
search area. The network optimization results in an optimal 
allocation of vehicle resources to the required tasks. 
Multiple vehicles are simultaneously assigned to a single 
target, resulting in faster completion of BDA tasks after an 
attack. A memory factor is included in the task benefit 
calculations ton reduce churning due to frequent 
modification of task assignments. Further work is needed 
in this area, to refine the methods for computing the relative 
benefits of each task. The method is still limited, in that 
each vehicle can only be assigned one task at a time. 
Nonlinear or iterative methods, which will not have this 
limitation, need to be investigated. Metrics are also needed 
to allow more precise evaluation of competing techniques. 
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Figure 1 : Network Flow Model for Task Allocation 

-N 

1921 



0.5 

0 

-0.5 

-1 

-1.5 

-2 

-2.5 
-1.5 -1 -0.5 0 0.5 1 1.5 2 7 2.5 3 3.5 

Figure 2: Vehicle Flight Paths and Target Locations without Task Memory 
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Figure 3: Vehicle Flight Paths and Target Locations with Task Memory 

1922 


