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Abstract 

This paper addresses complexity and coupling issues 
in cooperative decision and control of distributed au- 
tonomous UAV teams. In particular, the recent results 
obtained by the inhouse research team are presented. 
Hierarchical decomposition is implemented where team 
vehicles are allocated to subteams using set partition 
theory. Results are presented for single assignment 
and multiple assignment using network flow and auc- 
tion algorithms. Simulation results are presented for 
wide area search munitions where complexity and cou- 
pling are incrementally addressed in the decision sys- 
tem, yielding radically improved team performance. 

1 Introduction 

In the operations research and weapon target assign- 
ment literature, fast and efficient static linear alloca- 
tion algorithms are available for hundreds, even thou- 
sands of vehicles (n) and tasks (m). These are globally 
optimal algorithms and require that the complete cost 
matrix be centrally available. The auction algorithm, 
discussed in a later section, is a distributed form of 
these static linear algorithms. Sheer size is one form of 
complexity. 

However, coupling induced complexity, and not nec- 
essarily size, dominates the wide area search munition 
problem: The problems addressed to date are of modest 
size, n 5 8, but there are m = 4 tasks (search, classifi- 
cation, attack, verification) per target and an arbitrary 
number of targets (< 10 to date). The vehicles each 
have a default task of performing cooperative search, 
which introduces extensive coupling in their search tra- 
jectories. When an object is detected it needs to be 
classified. Once a target is attacked, the vehicle is de- 
stroyed. After attack, the target is viewed by another 
vehicle to ensure it has been destroyed. The tasks must 
be correctly ordered and sequenced in the shortest time 
due to severe fuel constraints. 

To address this complexity, a hierarchical decomposi- 
tion is used 111. Figure 1 illustrates a general architec- 
ture for cooperative control and task apportionment 
among multiple vehicles. 

Sub-teams collapse the complexity of the overall team 
optimization problem so that only those vehicles that 
have benefit in servicing the objects are considered. 
The partitioning uses a limited horizon minimum 
weight spanning tree [2]. The smaller single or mul- 
tiple assignment problem can then be addressed. 

Multiple assignment removes much of the myopic 
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penalties of single assignment. A longer planning hori- 
zon is essential for good performance in highly coupled 
systems. Iterative network flow [4], binary linear pro- 
gramming, and auction [5] are addressed in the paper 
as algorithms for multiple task assignment. 

The paper is organized as follows: decomposition into 
sub-teams is addressed in 52; 53 addresses multiple as- 
signment; 54 presents simulation results; and 55 the 
conclusions. 

2 Sub-Teams 

A set of UAVs can be clustered into a team if they 
service the same target, or a set of targets are close to 
one another. A finer assignment of which UAV should 
be assigned to which task may be made by considering 
the maneuvering constraints of the UAVs. 

Suppose Si is an ordered subset of tasks {ri,, . . . , I ’ i p i } ,  

then we refer to Si in the context of UAV Vj performing 
the tasks in Si in the order in which they appear in Si. 
The first and last tasks performed by Vj are ril and 
ripi respectively. One can associate a cost with V, 
performing tasks in Si .  A feasible partition of tasks is 
an allocation of disjoint subset of tasks for each of the 
UAVs to perform, so that every task is performed by 
some UAV and all timing (coordination) constraints on 
the tasks are met. The problem of resource allocation 
may be posed as finding the minimum cost partition 
of the set of tasks, where P is any feasible partition of 
tasks. 

2.1 Graph Approach 
This approach combines the ideas of iterative resource 
,allocation with those from graph theory. 

The resource allocation is performed in two stages: 

0 In the first stage, a classical assignment is per- 
formed to allocate resources to m l  tasks that 
must be serviced/performed as soon as possible. 
To proceed with the classical assignment, targets 
requiring multiple services are replicated an ap- 
propriate number of times and treated as distinct 
targets that are collocated. For the purpose of 
replication, classification followed by attack will 
be considered a composite task requiring only one 
vehicle and will be treated as a terminal task. To 
avoid distinguishing between the replica and the 
original target, we refer to the replica by it’s task. 
The procedure is as follows: 

1. Suppose there are m l  tasks to  be serviced 
and n UAVs with (n 2 m), where binary 
linear programming solves the classical as- 
signment problem: 

n m. 

min Tij x i j  , where 

n ml 

C”ij = 1, CXij 51, 
i=l j=1 

2. There is inefficiency in this assignment, 
since, of the ml tasks, only m2 are termi- 
nal. This implies that more than one task 
of the set of m l  -mz tasks can be assigned to 
a UAV resulting in a faster servicing of the 
tasks. This leads to multiple assignment. 

3. We are concerned with multiple verifica- 
tion assignments for a UAV that results 
in smaller total service time. Timing con- 
straints do not appear at this stage, since 
UAVs that are not assigned in the first stage 
arrive necessarily later at a target than their 
counterparts in the first stage. 

0 In the second stage, some inefficiency in resource 
allocation is weeded out using graph theory. 

2.2 Graph Construction 
Let Di be the distance traveled by a UAV to arrive 
at the i th of the m - ml targets under the classical 
assignment. 

To specify a graph, one provides the set of nodes or ver- 
tices and the set of edges/arcs connecting the nodes. 
The targets (or verification tasks) are nodes of the 
graph. 

We first construct a fully connected symmetric graph 
in such a way that the weight of an edge/arc connecting 
ri and rj is the Euclidean distance, d i j ,  between the 
nodes. We then construct a benefit graph as follows: 
The benefit bij is the weight of an arc/edge connecting 
nodes ri and rj and is defined to be Dj - d i j .  The 
benefit, bij represents the saving in distance traveled 
in having a UAV that visits J?i also visit rj. Clearly, 
it will be beneficial to have a UAV that visits ri also 
visit rj only if bij > 0. Clearly, the benefit graph is 
asymmetric, since Di may not necessarily be equal to 
Dj,  although dij = dji .  

The problem of sub-teaming can be thought of as par- 
titioning the directed benefit graph into subgraphs so 
that: 1) every node is covered by one and only one 
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subgraph; 2) no two edges of a subgraph either start 
from the same node or end in the same node; and 3) 
the sum of the benefits of all edges in all subgraphs is 
maximum. 

2.3 Preliminary Results 
We used a minimum weight spanning tree in (21 to solve 
this problem. This algorithm decomposes the graph 
into isolated nodes and/or directed unary subgraphs 
where no two edges in the subgraphs share the same 
in-node or out-node. 

The results are shown in Figure 2 which indicates how 
the verification tasks are partitioned and allocated to 
different UAVs. In the plots, the numbers in black 
indicate the index of the UAV and its location is given 
by its coordinates in the plot. The numbers in blue 
indicate the index of the target requiring verification 
and its location is specified by the coordinates in the 
plot. There is a line starting from a UAV and joining 
different targets. UAVs that are not connected to any 
targets are released for search operations. 

3 Multiple Assignment 

The three criteria to which the chosen assignment 
should conform are: 1) no task should be assigned to 
more than one UAV; 2) no task should be assigned un- 
less any prerequisite tasks are also assigned; and 3) the 
estimated time at which a task is accomplished should 
not be before the estimated time of the immediately 
prerequisite task. Also, attacking a target is a terminal 
task. The assignment meeting all of these criteria with 
the minimum cost (or maximum benefit) is desired. So- 
lutions using enumeration, BLP, relative benefit, and 
iterative network flow are discussed below. 

3.1 Enumeration 
A simplified problem may be solved with an exhaustive 
search. The distribution of feasible assignments and 
their values was calculated using a representative ob- 
jective function. For each combination of two to three 
targets with two to four UAVs, the optimal assignment 
had a value about three times the mean value of fea- 
sible assignments. The distributions were qualitatively 
normal with a standard deviation approximately equal 
to the mean. As this would suggest, many feasible as- 
signments had negative value. Figure 3 shows the dis- 
tribution of values for a three-target, three-vehicle sce- 
nario, and the statistics for similar distributions with 
two targets. These findings demonstrate two ways in 
which the problem is difficult. First, the number of fea- 
sible assignments is drastically smaller than the num- 

ber of possible assignments. Second, most feasible as- 
signments have far less value than the optimum, so a 
random search over feasible assignments is not likely to 
find a near-optimal solution with a small sample size. 

3.2 Binary Linear Programming 
In [3] a Generalized Assignment Program framework 
was used to assign multiple identical UAVs to targets. 
A Binary Linear Programming (BLP) framework can 
encode all of the same information in a much smaller 
problem which is faster to set up and to solve. The 
general form of a BLP is as follows: 

Optimize A. 2 

Subject to (1) xj E (0,l) V j 
(2) ( F  . x) i  5 di  V i 
(3) (Feq . x)i = deqi V i 

The optimal solution to the Binary Linear Program- 
ming problem will optimize the objective function 
among all feasible assignments in which no UAV is as- 
signed more than the predetermined number of tasks. 
There are general solvers for BLPs, but a specialized 
solver is needed. The problem does not scale as effi- 
ciently as the Generalized Assignment Problem. The 
number of columns each scale with the product of the 
number of UAVs and the number of possible tours, 
though with a smaller coefficient. The number of 
constraints scales only with the number of tasks or 
the number of UAVs. A formulation with tours of 
three tasks would have more variables than a formu- 
lation with tours of two tasks, but the same number 
of constraints. As before, some possible tours could be 
heuristically eliminated in the formulation stage. 

3.3 Graph Methods 
An intermediate approach, between single assignment 
and exhaustive search, is to start with the single as- 
signment result and look for nearby assignments with 
relatively better objective values. When the objective 
function is Euclidean distance, the marginal benefit of 
one UAV assuming the duties of another UAV in ad- 
dition to its own has a simple form. If Target i is 
separated from Target j by a distance d i j ,  and the cost 
associated with servicing Target j by single assignment 
is Dj, the benefit of the UAV assigned to Target i sub- 
sequently servicing Target j is Dj - d i j .  A matrix of 
benefits can be readily constructed according to 

i f i = j  bij := { O’ 
Dj - d i j ,  otherwise. 

Any of several algorithms can operate on this matrix. 
One method investigated uses an auction mechanism to 
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make the temporary assignment resulting in Dj,  uses 
another auction to produce a permutation of targets, 
evaluates the cost for each UAV to service each of the 
resulting loops, then uses one more auction to assign 
UAVs to these loops. Another method uses a greedy 
algorithm. At each stage, Target j ,  is designated to be 
serviced by the UAV servicing Target i. The ordered 
pair of targets chosen at each stage maximizes bij over 
all ordered pairs of targets satisfying the conditions. 
The process is repeated until the maximum such bij 

is negative, or no such bij exists. The assignment by 
either of these algorithms could be used directly, or as 
a guide to partitioning targets into groups for service 
by sub-teams. 

Good results were produced by an algorithm that does 
not preserve the order of targets when one UAV as- 
sumes the assignment of another, but chooses the or- 
der in a myopic manner as in Section 3.4. The ordered 
pair of UAVs maximizing the marginal benefit is chosen 
at each stage until the benefit is negative or only one 
UAV is assigned. This heuristic allows for general ob- 
jective functions of a UAV assigned to a set of targets. 
Furthermore, inclusion of dummy UAVs will allow the 
assignment algorithm to leave some targets unserviced, 
if the benefits do not outweigh the cost. 

3.4 Iterative Network Flow 
Tours can be compiled by an iteration of the linear 
transshipment algorithm [3]. At each stage, UAVs have 
a planned position and heading for the end of their as- 
signed tour of multiple tasks. The transshipment algo- 
rithm makes a temporary assignment of these UAVs to 
subsequent tasks. Of these temporary assignments, the 
one with the earliest estimated time is fixed, and the 
planned UAV position and target state are updated. 
The process repeats until all target tasks are fully as- 
signed. Fixing ‘the earliest estimated time at each stage 
discourages, but does not prevent, non-feasible assign- 
ments. The authors also implemented the iterative al- 
gorithm as an auction, then addressed the issue of con- 
flicting task order. One method is to associate a large 
cost with any potential assignment which would create 
a conflict. The other method is to adjust the cost of 
a potential assignment to include loitering, so that the 
dependent task occurs at the earliest admissible time. 
The implementation of the latter adjustment currently 
addresses only the order of the completion of the tasks. 

4 Simulation Results 

The authors have developed a MatLab Simulink based 
multi-UAV simulation of a wide area search munition 

scenario with a hierarchical distributed decision and 
control system as depicted in Figure 1. The vehicles 
cooperatively search for and destroy high value targets. 
The vehicles low maneuverability and endurance are 
critical constraints. 

The scenario, shown in Figure 4, has 8 vehicles fol- 
lowing a preset serpentine search pattern. Figure 4 is 
a snapshot 98sec into the scenario where the vehicles 
path and footprint are color-coded. There are 3 high 
value rectangular targets in the search space that have 
an arbitrary orientation on the ground. When these po- 
tential targets pass completely through the footprint, 
the object is declared detected. The object cannot be 
attacked until it has been classified, with sufficiently 
high confidence. The probability of classification is a 
function of the aspect angle at which it is viewed. Ad- 
ditional views by the same, or other vehicles, may be 
necessary. These views are then combined statistically. 
More details of the cooperative classification are cov- 
ered in [6]. 

Figure 4 uses the decision and control structure of Fig- 
ure 1 where there all the vehicles and objects are al- 
ways assigned to one sub-team. The sub-team agent 
here solves a static binary assignment problem using 
a network flow analogy (41. The n vehicle by m task 
matrix includes the costs for every surviving vehicle to 
perform a task that transitions each object to the next 
state (detect, classify, attack, verify). The vehicle agent 
calculates these costs by generating minimum time tra- 
jectories that satisfy kinematic constraints with speci- 
fied terminal position and heading. 

Figure 4 shows the typical consequences of a single step 
look ahead decision and control system. Following their 
pre-specified waypoints, vehicles 1,2 detect targets 1-3. 
Vehicles 5-7 are assigned to classify targets 1-3 respec- 
tively. These vehicles have the lowest cost (time) to 
view the objects at aspect angles that have the high- 
est probability of classifying the objects. Once classi- 
fied, the classifying vehicles are assigned to attack the 
target. The 3 “racetracks” are a consequence of the 
single assignment binary optimization and the policy 
of returning the vehicles to the point of search depar- 
ture. The optimization is triggered only when an object 
changes state or a task is completed. The near circular 
trajectory of vehicle 1 is an example of a vehicle being 
reassigned and not completing a task. This “myopic” 
optimization uses 6 vehicles to service 3 targets. 

Iteration 2 of the design process is shown in Figure 5 
where the full 3 level decision hierarchy in Figure 1 is 
used. Here, the team agent allocates resources to an 
attack sub-team or a search sub-team. Initially, all the 
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vehicles are assigned to the search subteam. As more 
objects are detected, vehicles are allocated to the at- 
tack sub-team for a maximum of 4 vehicles, which is 
the minimum needed to attack and verify 3 high value 
targets. Which vehicles are assigned is based on time 
to target. The graph based set partition with flyable 
trajectories yielded vehicles 4-8 as klosest” . At the 
sub-team level, the binary network flow assignment al- 
gorithm is sequentially applied as resources are allo- 
cated to the sub-team. Now, a maximum of 4 vehicles 
are considered for each task, yielding a more tractable 
problem. Vehicle 8 does the verification for all 3 tar- 
gets. 

Iteration 3 of the design uses multiple assignments to 
remove the trajectory inefficiency, but at an apprecia- 
ble increase in complexity. Here, the generalized as- 
signment, graph based, and the iterative network, all 
with tours of maximum length 3, have been used. The 
iterative network assignment is by far the most compu- 
tationally efficient, but though not guaranteed to yield 
the optimal, the results have been very good. Figure 6 
shows the 3 task planning horizon for the same 4 vehi- 
cle attack sub-team. Now, vehicle 8 has been assigned 
a 3 task verification tour. The coupling of target tasks 
with search tasks is also seen in this scenario. 

5 Conclusions 

The primary attack upon coupling-induced complex- 
ity is hierarchical decomposition. This yields a subop 
timal solution, but the optimal solution can only be 
found by direct enumeration, which is computationally 
prohibitive. The graph partition technique with fly- 
able trajectories is promising for determining sub-team 
composition. 

The solution of the binary linear program for the sin- 
gle assignment problem is the starting point for much 
of what has been done. Network flow solvers, auction 
implementations, and binary linear programming al- 
gorithms all yield the optimal solution for the binary 
linear single assignment problem. All are fast, but the 
auction mechanism is more readily implemented in a 
distributed fashion. 

Multiple assignment extends the planning horizon and 
yields significant improvements in performance and ro- 
bustness. The iterative network flow optimization al- 
gorithm is a short planning horizon heuristic that has 
been found to work well in practice. Robustness and 
feasibility are issues, and the algorithm could occasion- 
ally give poor performance. Task order can be enforced 

in the generalized assignment problem, the graph par- 
tition, and binary linear programming, but timing is 
problematic. Auction algorithms may be devised as 
well, but share the same issues. However, all these al- 
gorithms are more computationally intensive. 
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Figure 2: Illustration of team decomposition and verifi- 
cation assignments when UAVs and targets are 
interspersed 
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Figure 3: Distribution of values of feasible assignments 
for a particular scenario with three unclassified 
targets and three UAVs. 

Figure 4: Decision Hierarchy with no Sub-Teams 

-.- 

Figure 5: Decision Hierarchy with Sub-Teams 

Figure 6: Decision Hierarchy with Sub-Teams and Mul- 
tiple Assignment 


