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Abstract 
This paper summarizes the enabling technologies for 
an autonomous tactical UAV. Current technologies 
are adequate for semi-autonomous UAVs that operate 
in a relatively structured environment. For tactical 
UAVs in a rapidly changing uncertain environment 
the present techniques are inadequate. The essence 
of autonomous control is rapid in-flight replanning 
under uncertainty. This is cast as a large optimiza- 
tion or decision problem. Monolithic and decomposi- 
tion techniques are discussed for the solution of large 
decision problems. Hierarchical decomposition is the 
most promising approach, but suffers from an inad- 
equate theoretical basis. Finally, research areas are 
proposed to address the decomposition problem. 

1 Introduction 
The study objective was to determine what the re- 
search issues were in developing autonomous control 
systems for tactical UAV’s. Specifically, what ar- 
eas need further basic/applied research and what the 
thrust of this research should be. 

The problem areas identified were not specifi- 
cally control related, and none were concerned with 
inner-loop feedback stability and control. For ex- 
ample, the SAB summer study[l] identifies man- 
machine interface and loss of positive control as 
the primary issues in autonomous tactical UAV’s. 
An AGARD study[%] cites the following issues: 1) 
communicationssecure, unjamable data link; 2) 
coordination-Army, AWACS, JSTARS, etc.; 3) tar- 
get identification; 4) target assignment; and 5) de- 
confliction. 

Other references cite automated decision aid- 
ing/decision making[3, 4, 51 as one of the most diffi- 
cult problems leading to autonomy. Man-machine in- 

terface, communications, and target identification are 
real and difficult issues, but not readily addressable 
by control or systems theory. The decision/control 
problem was selected for this investigation. 

Saridis[G] has defined the next step beyond adap- 
tive/learning control as intelligent control. This is 
the intersection of control, artificial intelligence (AI), 
and operations research (OR) as shown in Fig. 1. AI 
in this case can be looked at as a knowledge base, 
expert system, learning, or simply heuristics. What 
is more noteworthy is the strong role of OR, specif- 
ically planning, which can be viewed as the essence 
of decision making. Pilot’s Associate[3], Integrated 
Control Avionics Air Superiority[4], and Control Au- 
tomation & Task Allocation[5] are dominated by the 
planning/management function. The first two sys- 
tems are designed as pilot aids. It is only logical that 
an autonomous control system would have to per- 
form all of the functions identified, but rather than 
only offering advice, the advice would be acted upon 
as decisions, as in[5]. 

Decision making through planning (and planning 
management) appears to be the essence of the au- 
tonomous control problem, and the focus of the in- 
vestigation. 

2 In-flight Replanning 
A typical planning problem is shown in Fig. 2. The 
task is to determine a path through a defended en- 
vironment that satisfies all the constraints as well as 
the mission objectives. As can be seen, there are 
many levels of planning. There is pre-mission plan- 
ning where all the information is static. This is the 
best plan that can be made based on the available 
information. There is the near term plan, which is 
executed in the air, which involves the physical flying 
of the aircraft, normally done by the pilot. This can 
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be looked at as ii trajectory tracking task which can 
be completely automated through inner loop control, 
autopilot design, tracking, and short term on-line tra- 
jectory generation. It is the intermediate level of 
planning where the desired capability of autonomous 
control is achieved. Near real time in-flight replan- 
ning is needed as new sensor information, commands, 
or intelligence is recieved by the UAV. The challenge 
is to optimally update the off-line plan as new in- 
formation is received and/or unforseen events occur. 
The optimization problem is dominated by size, com- 
plexity, and uncertainty. 

The computational approach to decision making 
as planning can be grouped as optimal or heuristic. 

Optimal Heuristic 

enumeration heuristic search 
dynamic prog. neural networks 
mathematical prog. simulated annealing 
gradient methods genetic algorithms 
Newton methods expert systems 

machine learning 

The basic problem with optimal approaches is that 
the computation time explodes exponentially with 
problem size. Pm important result from planning 
theory[7] is that most general planning problems be- 
long to the class TJP-hard, which means that there are 
no known polynomial time algorithms to solve this 
class of problems. An alternative is to concentrate 
on Suboptimal solutions using heuristic techniques. 

Another dimeiision of the problem is monolithic 
versus decomposition. There is a hierarchical decom- 
position of the problem into smaller problems that 
can be more easily solved. These two dimensions 
are illustrated in Table 1. Generally, the mission 

Optimal Heuristic 

Monolithic small size medium size 
coarse grain medium grain 

Decomposed medium size large size 
coarse grain fine grain 

Table 1: Planning Dimensions 

planning problem can be decomposed spatially, as 
in Fig. 2, or temporally, as in Fig. 3. The size and 

granularity are key determinants of the practicality of 
solving a realistic problem in near real time. In Table 
1 the upper left corner represents problems that can 
be solved by optimal algorithms. The coarse grain 
signifies that the events of importance are relatively 
far apart in time or space. Linear programming may 
be a reasonable choice here. The upper right corner 
signifies problems of medium size that allow a big- 
ger search space due to the heuristics. A reasonable 
choice here would be simulated annealing. The bot- 
tom row is quite different. It depends on the feasibil- 
ity of decomposing the problem. If the problem can 
be decoupled, or nearly decoupled, the sub-problems 
can be solved independently without worrying about 
interactions with other sub-problems, as in the lower 
left corner of the table. This is rarely the case in plan- 
ning because most decisions are interrelated. The 
lower right represents how a realistic planning or de- 
cision problem could be addressed. This is the ap- 
proach taken by PA, ICAAS, and CATA. 

A decomposed planning problem will generally 
have significant coupling. Accounting for the cou- 
pling or coordinating the sub-problems is the essence 
of the difficulty. Unless adhoc rules or engineering 
judgment is to be used to decompose the problem, 
this requires a theory of hierarchies. 

3 Hierarchical Decomposition 
A three echelon organizational hierarchy is typical 
of nearly all decision and planning systems-Pilots 
Associate for example. The lower echelon is the only 
one that interacts with the plant-physically control- 
ling the aircraft and its systems. This would be the 
actual feedback control law. The upper levels are 
abstractions and represent the decision making hier- 
archy. These levels coordinate the efforts of the lower 
levels. There are feedback loops between the levels, 
but not within a level. The essence of the problem 
is determining an appropriate description or abstrac- 
tion at higher and higher levels, finding a decision or 
cost function for each of the levels, and deriving a 
coordination signal that corrects the performance of 
sub-levels to satisfy the overall or highest level objec- 
tive. This is the critical problem-the sub-problems 
are being solved perfectly, but the overall objective is 
not being achieved. A theory of coordination is pre- 
sented in [9], but little guidance is given on how to 
derive the coordination function. 

Rigorous decomposition principles which enable 
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the off-line (and possibly, on-line) solution of large 
linear programming and convex quadratic program- 
ming problems are currently available - see, e.g., 
[lo, 11, 121. These decomposition principles exploit 
the special structure of the constraint matrix, such as 
the application area of economics, where the concept 
of “shadow prices” is evoked [12]. Similar decomposi- 
tion principles will have to be derived for large plan- 
ning optimization problems. It is expected that some 
structure can be found in large problems since these 
often arise from a linking of subproblems in either the 
temporal or spatial domains. Efficient modern paral- 
lel computing also rests on the proper decomposition 
of large-scale problems. 

A heuristic optimization approach of proceeding 
through the solution of a hierarchy of models of vary- 
ing granularity, or the application of multigrid meth- 
ods, present interesting possibilities. Also, a promis- 
ing approach for the solution of large scale optimiza- 
tion problems is advantage learning applied to local- 
search-based optimization [13]. 

One must, however, guard against the adverse 
effects of coupling. Simple minded decomposition 
approaches which hinge on the over-optimistic pre- 
sumption of minimal coupling of the subproblems are 
doomed to failure. Conversely, the decomposition of a 
large-scale problem into a large number of simple sub- 
problems does not guarantee that the large-scale sys- 
tem’s dynamics are captured. One should also warn 
against the use of high gain linear feedback control 
to achieve decoupling, for this could cause saturation, 
windup, and instability. 

A quote from [9] gives additional motivation for 
studying hierarchical decomposition: 

“There is a lack of attention given to organi- 
zational theory as evidenced by the scarcity 
of researchers in the field. One would as- 
sume that at present there are more re- 
searchers worrying how to “optimally” ad- 
just parameters in feedback control systems 
(a problem which at best can bring marginal 
commercial improvement) than there are re- 
searchers worrying about quantitative as- 
pects of control and communication pro- 
cesses in organizational type systems.” 

Mesarovic 

In summary, rigorous hierarchical decomposition is 
key to solving large decision problems. 

3.1 Uncertainty 

Uncertainty is ubiquitous in decision system prob- 
lems. This uncertainty can be categorized as: 1) un- 
known parameters; 2) unknown dynamics; 3) distur- 
bances; 4) noise; 5) actions of non-coperative agents; 
6) actions of coperative agents; 7) unmeasured or un- 
measurable information; or 8) erroneous information. 
Thus, in an unstructured environment, decision mak- 
ing is performed with incomplete, and often mislead- 
ing, information. 

A significant increase in the degree of uncertainty 
is seen when a hierarchy of higher level control ob- 
jectives are postulated for the decision system, e.g.: 
the controlled object is required to optimally reach a 
prespecified waypoint, fly a specified trajectory, reach 
a (possibly moving, or evading) target, find a target, 
or complete a mission. The degree of uncertainty in- 
creases as one moves from the inner-loop to decision 
making. This is in part attributable to an adversary 
in military scenarios. Hence, the decision system is 
not only faced with random disturbances, but by a 
determined opposition. 

When one considers a path planning problem, the 
control horizon is extended and the level of ucertainty 
increases. Similar to navigation, the stretching of 
the optimization horizon accentuates prediction error 
and leads to feedback. Feedback brings about addi- 
tional uncertainty in the form of measurement noise. 
Moreover, in nonlinear estimation problems the use 
of control can couple into the estimation process. 

Uncertainty is not confined to stochastic decision 
problems. As has been mentioned above, uncertainty 
is introduced into deterministic decision problems 
where an adversary agent is at work. This is the 
domain of game theory and, in a dynamic setting, 
the theory of differential games. When a solution in 
pure strategies does not exist, then an approach to 
address the uncertainty introduced by the actions of 
an adversary agent is to randomize, namely, have re- 
course to a mixed strategy. This is a viable approach 
provided that one is planning to perform a repetitive 
task, e.g., fly out a multitude of (low cost) UAVs. 

4 Conclusions 
Autonomous control has been shown to require com- 
plex decision making under uncertainty. The solu- 
tion approach is predominently hierarchical decom- 
position. There are no detailed theoretical guidelines 
for hierarchical planning systems of three levels or 
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more. Such theoretical results as are available are for 
two level planners cast as a linear programming prob- 
lem that exploits a problem specific structure. There 
is not a “language of abstraction”, the issue of feed- 
back or coordination between levels has not been de- 
fined in detail, uncertainties are not adequately rep- 
resented in the models, and, most importantly, there 
is no proof that the decomposed decision system will 
solve the original decision problem. 

Following is a list of autonomous decision/control 
system research questions that were formulated in the 
course of the investigation: 

Can large monolithic optimization problems be 
solved in near RT using parallel computers? 
Can distributed control theory be brought to 
bear on the problem of hierarchical planning? 
Can one use organization theory to describe and 
quantify the higher levels of abstraction needed 
for decision making at the higher levels? 
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Can you control the coupling using some feed- 
back/coordination technique to achieve the over- 
all performance objective? 
Can one use multigrid methods to address large 
scale problems? 
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Figure 1: Intersection of Artificial Intelligence, Oper- 
ations Research, and Control Theory: (Saridis, 87) 
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