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Detection of a Spatially
Distributed Target in White Noise
Karl Gerlach,Member, IEEE,Michael Steiner,Member, IEEE,and F. C. Lin

Abstract—A detector of a spatially distributed target in white
Gaussian noise is developed. A reasonable distribution for the
a priori target scatterer density is assumed, and a detector that
incorporates this a priori knowledge is given. A simple detector
form results, whose detection performance is robust over different
scattering densities.

I. INTRODUCTION

A HIGH resolution radar (HRR) can spatially resolve a
target into a number of scattering centers depending

on the range extent of the target and the range resolution
capability of the radar [1]. Range resolution is normally
inversely proportional to the radar’s transmitted waveform’s
bandwidth. Radars that are designated as wideband (WB)
or ultrawideband (UWB) inherently have a range resolution
capability such that a range profile (or spatial distribution) of
the amplitude returns from a target can be formed. Normally,
the detection of the presence of a target using all of the target’s
energy found in the range profile is performed first. Thereafter,
classification of the target can be attempted using the target’s
range profile.

For this development, we assume that the radar transmits
only one pulse. On receive, this pulse is match filtered (or
pulse compressed) so that individual scatterers on a target
are resolved. There are a total of range cells that the
target scattering can occur in. Either an in-phase/quadrature-
phase (I/Q) or a real representation of the received signal
could be used depending on the appropriateness of using
either representation. For this development, we choose a real
representation. However, we also give the form of the I/Q
detector. It is also assumed that additive zero-mean white
Gaussian noise is present on each return of therange cells.

Quite often, some knowledge of the spatial distribution of
the desired target is knowna priori. For example, it may
be known that over the target’s range extent, only a small
specified number of scattering centers occur. We develop
a detection scheme whereby thisa priori knowledge can
be incorporated. It turns out that a simple detector form
results that significantly enhances the detection of a sparsely
distributed target. Related research is given in [3]–[7].
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II. SPATIAL DENSITY DEPENDENT DETECTOR

In this section, we develop a detector of a spatially dis-
tributed target in white noise that incorporatesa priori knowl-
edge about the spatial scattering densities of the target scat-
terers. We assume that the received signal is matched filtered
with the transmitted waveform to generate a-length vector

, which represents returns in contiguous range cells across
some range extent. The range cell’s range width is equal to the
radar range resolution. Thus, there arepossible range cells
that the target’s scatterers can occupy. There would actually
be many more than range cells on receive. We choose
to look for a target over a range window of range cells
and assume the target is completely contained within these
range cells. The probability that there aretarget scatterers
where is denoted by . We assume that
if there are target scatterers, each scatterer occupies only
one of the possible range cells and any combination of the

scatterers occupying the range cells is equally likely. Let
denote the target’s output of the matched

filter and denote the indices of the elements of
(numbered ), which contain target scattering. Let
denote the noise output of the matched filter whereis a

-length vector.
We wish to find the generalized likelihood ratio test (GLRT)

detector for the hypotheses (noise only) versus
(signal plus noise). For the GLRT [2], the

unknown parameters under each hypothesis are found via
maximum likelihood (ML) estimation. Thereafter, the ML
estimates under each hypothesis are substituted into their
respective probability density functions (pdf’s) for each hy-
pothesis. The resultant ratio ( to ) of these altered pdf’s
is called the GLRT. For the present assume that the noise
power, , is known.

The hypothesis is a composite hypothesis since for
a given scattering combination, the desired signal elements,

, are unknown. The hypothesis is simple.
If these quantities were known for each scattering combination,
the optimal detector is given by

(1)

where denotes the set of out of scattering com-
binations, is the binomial coefficient ,
and is the likelihood ratio of the
hypothesis test conditioned on knowing and

.
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Fig. 1. f�(u) versusu and �.

If the amplitudes of the scatterers are unknown, the
GLRT for this detection scheme is found by maximiz-
ing over for each
combination of the composite hypothesis. Thus

(2)

Since the elements of are independent, identically dis-
tributed (i.i.d.) zero-mean Gaussian random variables, it is
straightforward to show that

(3)

Now, is maximized with respect to
when . Thus

(4)

and

(5)

We now assume a scattering density for ,
which has utility in modeling a small number of scatterers
and which greatly simplifies the form of the GLRT given by
(5). Let

(6)

where is a constant that satisfies the
normalization condition and is a parameter chosen
to control the spatial density of the scatterers. We observe that

is approximately equal to the binomial distribution with
parameter . We choose the parameterbased on the expected

number of scatterers, . For the distribution given by (6), the
average number of scatterers is given by .
Thus, we set

(7)

and solve for . For . Hence, for a
small number of scatterers relative to will be small. If
any scattering combination is equally likely, , and for
a high density of scatterers where , then .

If given by (6) is substituted into (5), we can show that
(5) simplifies to the equivalent detector

Furthermore, since a monotonically increasing function of the
detection statistic is also an equivalent detector, an equivalent
GLRT is given by

(8)

where . It is seen that the spatial scattering
density (SSD) GLRT is the sum of identical functions of the
normalized power of each range cell return as

where and . A plot of
for various values of is given in Fig. 1. It is observed

that, as becomes large, is asymptotic with the linear
function: . Also, it is seen that the effect of the
parameter for sparse scattering ( ) is to suppress
the smaller returns. It is speculated that this detector form eases
the collapsing loss problems that occur when noise power only
range cell returns are summed with signal plus noise power
range cell returns in forming the detection statistic. We note
that as , the detector form becomes

(9)

which is expected because for , every range cell is
occupied by a scatterer. Thus, in the limit the SSD-GLRT
detector is an integrator.

We have assumed that the white noise power level,,
is known. If it were unknown, then it could be estimated
by averaging the squared amplitudes of range cells where
the target is assumed not to be present. Finally, if the I/Q
representation was used for the radar returns (i.e., the elements
of are complex), then it is straightforward to show that the
SSD-GLRT for this representation takes the form

(10)

where denote complex magnitude.
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Fig. 2. Comparison of the SSD-GLRT, integrator, andM out ofN detector;
J = 48; n = 48; PF = 10

�6;Mc = 1000.

Fig. 3. Comparison of the SSD-GLRT, integrator, andM out ofN detector;
J = 48; n = 2; PF = 10

�6;Mc = 1000.

III. RESULTS AND SUMMARY

In Figs. 2 and 3, we compare the detection performance
of the SSD-GLRT with two standard noncoherent detection
schemes: an integrator detector and anout of detector
(sometimes called abinary integrator). The integrator detector
has the form given by (9). The signal-to-noise power ratio
parameter (S/N) is defined as ratio of the sum of the signal
powers over the range cells to the noise power per range

cell ( ). The out of detector is optimized as follows.
For six cases of S/N we found the best for a given .
The performance of the out of detector for each S/N is
then plotted with the best . For both figures , the
probability of false alarm, , equals , and the number of
Monte Carlos, , used to estimate each detection probability
is 1000. We found the threshold of the test statistic of (5)
which achieves the desired using Monte Carlo simulation.
In Fig. 2, there are scatterers (each cell contains a
scatterer) and in Fig. 3, there are scatterers randomly
distributed among the range cells. For the SSD-
GLRT in Fig. 2, wea priori expected equally likely one to
48 scatterers ( ) and, thus, set or . For
the SSD-GLRT in Fig. 3, wea priori expected two scatterers
( ) and, thus, set or using (7).

From Fig. 2, in a dense scattering environment we see
that the SSD-GLRT significantly out performs the optimized

out of detector and almost equals the performance of
the integrator detector. From Fig. 3, we see that in a sparse
scattering environment that the SSD-GLRT out performs the
integrator detector while losing about 0.5 dB in S/N perfor-
mance versus the optimized out of detector. Hence,
the SSD-GLRT appears to be robust at the two extremes of
scattering density. Other performance curves were run (but not
presented here), which showed that the SSD-GLRT is robust
for many scattering densities.

In summary, we have developed a detector that incorporates
knowledge of the scatterer density. We found an SSD-GLRT
and compared its performance to conventional out of

detection and integrator detector. We showed through
simulation that the SSD-GLRT is a robust solution when the
scattering density parameter is known.
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