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A Novel Principle for Optimization of the Instantaneous 
Fourier Plane Coverage of Correlation Arrays 

T. J. CORNWELL 

Abstract-A novel principle for the design of correlation arrays is 
introduced, based upon the maximization of the distance between 
samples. A relatively new optimization technique, simulated annealing, is 
applied to the problem of finding solutions for moderate numbers of 
elements: up to 12. The resulting arrays have beautiful, symmetric 
crystalline structures. 

INTRODUCTION 

One very important part of the design of radio-interferometric 
(i.e., correlation) arrays is the choice of the optimum layout of the 
receiving elements. The set of element separations as seen by a 
celestial object, and tracked over some period of time, determines the 
sampling of the Fourier transform of the sky brightness performed by 
such an array, and, in turn, the sampling determines the fidelity of 
image reconstruction possible [7]. Over the years, many different 
design principles have been proposed: for example, minimum 
redundancy [ 11, [3], [6],  pseudorandomness [5], power laws [2], and 
minimization of holes in the sampling [8]. This communication 
describes a new principle motivated by the desire to spread samples 
across the Fourier plane as evenly as possible. This principle, which 
has an interesting relationship to minimum energy configurations in 
electrostatics, leads to beautiful, symmetric crystal-like sampling of 
the Fourier plane, arising from simple circular configurations of 
elements. The methodology used to find solutions is based upon 
simulated annealing [4]. Note that this methodology applies only to 
correlation arrays, which must be used for the imaging of incoherent 
objects, rather than arrays in which the signals are sampled directly. 

In the next section, the problem is summarized. In the subsequent 
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two sections, the optimization strategy used and its application to this 
problem are discussed. Finally, some results for moderate numbers 
of array elements are given. 

SUMMARY OF THE PROBLEM 

Radio interferometers are correlation devices: they sample the 
time-averaged product of the electric field at two widely separated 
points. Each sample is an estimate of the Fourier transform of a 
region of the sky brightness [7]. A given pair of elements in an array 
will sample the Fourier plane at a point given by the projected vector 
separation of the elements measured in wavelengths, where the 
projection is onto a plane perpendicular to the line of sight. For a 
general source location, a given pair of elements will trace out an 
ellipse in the Fourier plane as the earth rotates. However, for fast 
imaging, the instantaneous coverage is more important, and so we 
will concentrate on it, rather than the full coverage. To simplify the 
analysis further we will concentrate on arrays seen face-on. This is 
not really a significant restriction since, for instantaneous coverage, 
any obliquity can be corrected easily in the layout of the elements on 
the ground. 

We wish to find positions for N elements within some area such 
that a measure of the Fourier plane coverage is optimized. The form 
of the measure could be very complicated, e.g., rms sidelobes, mean- 
square separation of Fourier plane points, geometric mean separation 
of Fourier plane points, number of empty cells in a grid of 
appropriate size, etc. Before describing the choice for this measure, 
we will outline the method used to find the solution. 

Let r, be the vector position of the ith element, and let K be the set 
of allowed positions for elements: it may consist of a grid, a compact 
region, or a number of disconnected regions. Let the measure of 
Fourier plane coverage be m(rl, r2, * e ,  rN).  The problem is then to 
optimize globally the value of m(rl ,  r2, * a ,  rN)  such that (r, E K i 
= 1, N ) .  

Although this seems a simple optimization problem, derivatives 
may thus be difficult to obtain, or simply not defined, and there may 
also be multiple extrema which could trap a gradient-based optimiza- 
tion algorithm. A recently developed alternative to conventional 
methods, simulated annealing [4], can be used to attack this problem. 

OPTIMIZATION STRATEGY 

Simulated annealing is essentially a statistical approach: configura- 
tions are tried at random and accepted according to the following 
rules. Let E be the function to be minimized, and let T be a user- 
controlled “temperature” (the meaning will become clear). 

If E, < Er-l ,  then the new, rth configuration is always 
accepted. 
Otherwise, accept the configuration with some probability: 
computep(E,) =e-Er’T, and E,, a random number drawn from 
a uniform distribution ranging from 0 to 1. If p(E,) < X ,  then 
accept the new rth configuration; otherwise, reject it. 

By the analogy with annealing, p(E,) is the probability of this 
change being consistent with random fluctuations. This latter aspect 
is crucial; it allows the algorithm to go uphill occasionally. Some 
fraction of the time, depending upon the temperature, the algorithm 
can therefore escape from local minima if the temperature is varied 
sufficiently slowly. The art of this algorithm consists in choosing the 
appropriate “annealing schedule”; many of the usual statistical 
mechanics tricks can be used to aid in this choice [4]. For example, 
the specific heat can be monitored for signs of the onset of freezing. 
We have not found such sophistication to be necessary for this 
problem and so we resorted to a simple cooling law: multiply T by 
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Fig. 1 .  Solutions for N = 3-12. Element positions and separations are plotted in adjacent diagrams. All separations for given set of 

element positions are shown. Scale is arbitrary. 

some factor g, e.g., g = 0.9, after a given number of new 
configurations have been accepted at any given temperature. 

APPLICATION TO THE OPTIMIZATION OF INSTANTANEOUS COVERAGE 

Simulated annealing is a powerful technique for performing 
optimization of functions which are poorly suited to conventional 
gradient methods. In this application, the energy function E is to be 
identified with the measure function rn(r,, r,, * a ,  rN), and the 
element positions r, are to be varied. 

One can argue for any number of different choices for the measure. 
For radio-astronomical applications, e.g., [7], it is desirable to 
optimize the imaging ability of the array. However, if one simply 
requires that the sidelobe level be minimized, then it can be shown by 
Parseval's theorem that the only requirement on the Fourier plane 
samples is that no two samples be redundant. Many different 
configurations will obey this rule, and so to get a unique solution, a 
stronger principle is required. To carry the nonredundancy one step 
further, it was decided to maximize the distance between the Fourier 

plane points for the instantaneous coverage. To concentrate more on 
closer points, we use the logarithm of the distance between Fourier 
plane points rather than the square. 

For observations of a source at the north pole, the instantaneous 
sampling is given by the set of difference vectors: 

(u i , j=r j - r j : i ,  j =  1, N ) .  

The measure is thus 

m(ri, r2, .... rN)= log ( \ ~ i , j - u k , , l )  

i J M  

where self-terms are ignored in the sum. One can regard this measure 
as allowing a generalization of nonredundancy : the resulting arrays 
will certainly be nonredundant if possible, but, in addition, whatever 
samples are present will be spread evenly over the Fourier plane. In 
this form of the measure, equal weight is given to all elements, 
corresponding to the case where all elements are equally sensitive to 
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TABLE I 

N 

3 0.0 
4 28.0 
5 0.0 
6 39.7 
7 0.0 
8 0.0 
9 0.0 

10 0.0 
1 1  0.0 
12 0.0 

120.2 - 120.0 
-28.0 123.1 

72.0 -71.9 
-39.1 80.2 

52.9 -53.1 
36.4 -36.2 
35.0 -35.6 
43.8 -43.6 
35.6 -35.4 
24.5 -24.5 

- 123.8 
144.0 
- 80.2 

98.2 
- 99.0 

84.4 
64.0 
66.1 
64.9 

- 144.0 
159.7 -159.8 

-98.4 158.8 -158.9 
99.2 126.6 -126.4 

-85.2 120.0 - 120.0 
-64.7 102.1 -101.2 
-66.0 93.8 -93.6 
-65.3 84.9 -85.4 

- 179.8 
154.9 -155.6 
151.0 -150.7 -179.6 
136.3 -136.3 160.5 -160.5 
126.2 -126.4 143.7 -144.2 179.9 

the incoming radiation. Differences in sensitivity can be easily 
accomodated by using a weighted sum in the measure. For the N 
elements, there will be N ( N  - 1) separation vectors, all of which are 
included in the summation. 

The elements were constrained to lie within a circle. This seems 
appropriate for the application at hand: the design of a small array to 
operate at millimeter wavelengths. For other applications, different 
boundary conditions would be appropriate and can be easily 
incorporated. Trial configurations may be constructed randomly, but 
we have found that it is best to change one element location at a time 
and by an amount 6ri such that the corresponding 6E is comparable to 
T. This does not affect the result obtained but merely the rate of 
convergence. To verify that consistent true minima had been 
obtained, all of the annealings were performed a few times with 
different random initial conditions. 

DISCUSSION 

Solutions were obtained for N ranging from three to 12. For larger 
numbers of elements, the computing effort required becomes 
prohibitive because the work per iteration goes roughly as the fourth 
power of N, and also because the minima become harder to locate. In 
all the annealings performed the elements migrated to the edge of the 
boundary, leading to configurations based upon the circle. It should 
be emphasized that this was not required a priori but rather arose 
naturally. The resulting arrays are listed in the Appendix and shown 
in Fig. 1. All have beautiful crystalline structure, with bilateral 
symmetry. The arrays are very redundant in rotation when seen face- 
on and may therefore be unsuitable for some uses such as spaceborne 
optical arrays. By design, these arrays will be of greatest use in 
correlation arrays for which the instantaneous coverage must be very 
good. The principles involved could be extended to noninstantaneous 
coverage provided that analytic forms for the measure can be 
calculated. The major disadvantage of these arrays, which is common 
to all minimum redundancy arrays, is the sensitivity to temporarily 
missing or nonfunctional elements. 

The chief virtue of the simulated annealing method in this 
application is its versatility. One could easily apply the procedures 
described here to more complicated measures, in the presence of 
complex boundary conditions. For example, geographical boundaries 
are easily incorporated, or one could produce “sedimentation” of the 
more important elements to the center of an array by changing the 
weight of each element. 

Finally, it should be admitted that .the choice of the measure 
function made here is somewhat arbitrary. However, it is interesting 
to note that it corresponds to an electrostatics problem in two 
dimensions, wherein each element is represented by an equal charge, 

and the minimum energy configuration is sought subject to a 
boundary condition that no charges may move outside a given region. 

APPENDIX 

LISTINGS OF THE ELEMENT POSlTlONS 

All elements lie on a circle. The position angles (in degrees) of the 
elements are as shown in Table I. 
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A Compensation Technique for Positioning Errors in 
Planar Near-Field Measurements 

OVIDIO M. BUCCI, SENIOR MEMBER, IEEE, G .  SCHIRINZI, 
AND G. LEONE 

Abstract-Probe positioning errors are among the major sources of 
inaccuracy in the planar near-field-far-field transformation technique, as 
their presence destroys the Fourier transform relationship between the 
tangential components of the near field and those of the plane-wave 
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