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Planar Near-Field Scanning in the Time Domain, 
Part 2: Sampling Theorems and 

Computation Schemes 
Thorkild B. Hansen, Member, IEEE, and Arthur D. Yaghjian, Fellow, IEEE 

Abstract-In Part 1 of this work planar near-field measure- 
ments were formulated in the time domain for acoustic and 
electromagnetic fields. In this paper (Part 2), two computation 
schemes for calculating the far-field pattern in the time domain 
from sampled near-field data are developed and applied. The 
sampled near-field data consists of the values of the field on 
the scan plane measured at discrete times and at discrete points 
on the scan plane. The first computation scheme is based on 
a frequency-domain near-field to far-field formula and applies 
frequency-domain sampling theorems to the computed frequency- 
domain near field. The second computation scheme is based on 
a time-domain near-field to far-field formula and computes the 
time-domain far field directly from the time-domain near field. 
A time-domain sampling theorem is derived to determine the 
spacing between sample points on the scan plane. The computer 
time for each of the two schemes is determined and numerical 
examples illustrate the use and the general properties of the 
schemes. For large antennas the frequency-domain computation 
scheme takes less time to compute the full far field than the 
time-domain computation scheme. However, the time-domain 
computation scheme is simpler, more direct, and easier to pro- 
gram. It is also found that planar time-domain near-field antenna 
measurements, unlike single-frequency near-field measurements, 
have the capability of eliminating the error caused by the finite 
scan plane, and thus can be applied to broadbeam antennas. 

I. INTRODUCTION AND SUMMARY OF RESULTS 
HIS paper is the second part of a series of two papers T on the subject of time-domain planar near-field scanning. 

The first paper [l] derived the necessary formulas for cal- 
culating acoustic or electromagnetic fields in a half space in 
terms of their values on a plane. This paper derives sampling 
theorems and presents two different computation schemes 
to numerically calculate the time-domain far-field pattem 
from sampled time-domain near-field data. The sampled time- 
domain near-field data is obtained by measuring the near-field 
at discrete points on a finite scan plane at discrete times. We 
derive sampling theorems and present computation schemes 
for the corresponding probe-corrected time-domain planar 
near-field formulas in the report [ 2 ] .  This work on probe 
correction has recently been submitted for publication [3]. 

The first scheme of this paper, called the frequency-domain 
computation scheme, is based on the frequency-domain formu- 
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lation in [l, sec. 21. This frequency-domain scheme consists 
of the following three steps: 1) use the Fourier transform 
to calculate the frequency-domain near field from the time- 
domain near field, 2) calculate the frequency-domain far field 
from the frequency-domain near field, and 3) use the inverse 
Fourier transform to calculate the time-domain far field from 
the frequency-domain far field. This scheme makes use of 
well-known frequency-domain far-field formulas, sampling 
theorems, and the fast Fourier transform (FFT). 

The second scheme, called the time-domain computation 
scheme, is based on the time-domain formulation in [l, sec. 
31. This time-domain scheme simply uses the formula that 
directly gives the time-domain far field in terms of the time- 
domain near field. A time-domain sampling theorem is derived 
to determine how small the sample spacing between points on 
the scan plane has to be in order to calculate the far field 
accurately. 

The use of the two computation schemes is illustrated 
by calculating the time-domain far-field pattem of a simple 
acoustic point-source antenna from sampled near-field values 
taken on a finite scan plane. 

The time-domain computation scheme is much simpler 
to program and use than the frequency-domain computation 
scheme. However, because the frequency-domain computation 
scheme uses the FFT it is much faster for large antennas than 
the time-domain computation scheme when the full far field is 
calculated for all times. When only part of the far field is calcu- 
lated, the difference in computer time for the two computation 
schemes becomes smaller and the time-domain computation 
scheme therefore becomes more advantageous because of its 
simplicity. Furthermore, the time-domain computation scheme 
has the capability of being able to calculate the far-field pattern 
at early times from near-field measurements taken at early 
times only. This capability is not possessed by the frequency- 
domain computation scheme because the near field is required 
for its entire duration to calculate its Fourier transform. 

For many antennas fed by short pulses, the time dependence 
of both the near field and far field consists of an early-time 
part, which contains most of the power, and a late-time part, 
which is oscillatory and contains little power. The duration of 
the early-time part may be much smaller than the duration of 
the entire field. If only the early-time part of the far field is 
of interest, one can use the time-domain computation scheme 
to determine this part from near-field measurements taken 
for early times only. Thereby one can significantly reduce 
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acoustic point-source antenna is that its near field is given 
by a simple closed-form scalar expression that is easy to 
compute. Although this acoustic point-source antenna is 
very simple, it illustrates the general properties of the two 
computation schemes very well. For different types of 
antennas we also compare the convenience and the computer 
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t time of the two computation schemes. Most of the formulas 
of this section are derived for electromagnetic fields, and 
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the corresponding results for the acoustic fields are very 
similar and can be found in [4, ch. 41. 

Fig. 1 .  Planar scanning geometry. 

the number of near-field time samples needed for the far- 
field calculation. If instead the frequency-domain computation 
scheme is used, the number of near-field time samples cannot 
be reduced because time samples taken over the entire duration 
of the near field are needed. 

For both schemes, the duration of the computed far-field pat- 
tern is extended erroneously due to the finite-size scan plane, 
and this longer time duration has to be taken into account in 
the frequency-domain calculation scheme. Specifically, the fre- 
quency spacing in the frequency-domain computation scheme 
must be chosen small enough so that significant time-domain 
aliasing is avoided in the calculation of the time-domain far- 
field pattern. The problem of choosing the frequency spacing 
small enough does not occur for the time-domain computation 
scheme because no frequency spacing is used. 

No matter which scheme is chosen, planar time-domain 
near-field antenna measurements can eliminate the error in the 
far-field pattern due to the finite scan plane because this error 
is separated in time from the correct far-field pattern. This 
makes it possible to use planar scanning in the time domain to 
compute the far field of broadbeam antennas in both the time 
and frequency domains. 

11. A TIME-DOMAIN SAMPLING THEOREM AND 
NUMERICAL FAR-FIELD CALCULATIONS 

The geometry under consideration is shown in Fig. 1, where 
the arbitrary finite source region is located in the half space 
z < 0 and the values of the fields are measured on the plane 
z = 0. The part of space not occupied by the sources is 
lossless free space with permeability p and permittivity E .  

In addition to the rectangular coordinates (2, y, z ) ,  the usual 
spherical coordinates ( r , 0 , 4 )  defined by z = rcos4sin0,  
y = r s in4s in0 ,  and z = rcos0 will be used. Throughout 
the paper e-iwt time dependence is suppressed in all the 
time-harmonic equations. 

The first scheme, which is presented in part A of this section, 
is based on the frequency-domain formulation of [l, sec. 2.31, 
and the second scheme, which is presented in part B, is based 
on the time-domain formulation of [I ,  sec. 3.31 and on a time- 
domain sampling theorem that will be derived in this section. 

In part C, the two computation schemes are compared 
and used to calculate the far-field pattern of a simple acoustic 
point-source antenna from near-field data. The reason for 
illustrating the use of the two computation schemes with an 

A. Frequency-Domain Computation Scheme 
The frequency-domain computation scheme consists of first 

calculating the frequency-domain near field by taking the 
Fourier transform of the measured time-domain near field 

and then using the frequency-domain far-field formula [ 1, (17)] 
to get the frequency-domain far-field pattern 

The time-domain far-field pattern is then found by Fourier 
transforming the frequency-domain far-field pattem 

+oo 
~ ( e ,  4, t )  = S_, .F,(B, 4)e-iwtdw. (3) 

We will now show how the integrals (1)-(3) can be calculated 
using the fast Fourier transform (FFT). 

If the time-domain near field is effectively bandlimited, such 
that E, can be set equal to zero for Iw1 > wma,, the sampling 
theorem [5, sec. 5.41 can be applied to convert (1) to the 
summation 

i x E,(ro) = - 1 +cc 
i x E(rO,mAt)eiwmAtAt, 

2r m=-m 

IwI < wmax (4) 

where At = r/wmax is the time sample spacing determined 
from the sampling theorem. In practice, the time signal begins 
at some time t o  (which may depend on the position in the 
scan plane) and ends approximately at some time that can be 
expressed as t o  + ( N ,  - 1)At. Then (4) can be written as 

According to Nussbaumer [6, p. 881, if N ,  is chosen 
such that N,  = 2 I ,  where I is an integer, the FFI re- 
quires hl = f Nu log, ( N,) complex multiplications and 
A = N, log,(N,) complex additions to calculate (5) for the 
following N ,  values of w: w = n A w ,  n = 0 ,1 ,2 , .  . . , N, - 1 
with A w  = 2wma,/N,. (There appears to be no significant 
reduction in the number of complex multiplications if E, is 
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calculated only for n = 0 to R = N,J2.) Since complex mul- 
tiplications takes considerably longer than complex additions, 
the required computer time is approximately proportional to 

Having calculated the frequency-domain near field, we 
can now use (2 )  and the two-dimensional FFT to calcu- 
late the frequency-domain far-field pattem. According to the 
frequency-domain sampling theory [7, Fig. 101, one must 
sample the near field (outside the reactive zone of the radiator) 
with a sample spacing of approximately AZO = A y 0  = 
Amin/2, where Amin = 27rc/wma, is the minimum effective 
wavelength occurring in the time-domain field. The double 
integral in ( 2 )  is thereby replaced by an infinite double 
summation. For actual measurements, the scan area is finite 
and the infinite double summation is given by 

M = +NU log,(N,). 

where Tomn = m A z o 2  + nAyoij is a sampling point on the 
scan plane. The integers Nx and NY are determined by the 
size of the scan plane and are proportional to kma,r,, where 
kmax = 2r/Amin = wmax/c  and r, is the radius of the circle 
circumscribing the scan plane. 

From [6, p. 1031 the number of complex multiplications 
it takes for the two-dimensional FFT to calculate the full 
far-field pattem (6) for a fixed w at 4N,Ny far-field points 
is M = 2NxNylog,(4NxNy), which is proportional to 
(kmaxr,)’ logz(kmaxrs). (Again it is assumed that N, and Ny 
are chosen equal to 2 raised to an integer.) If we are interested 
only in a single principal-plane far-field cut (4 = 0 or go”), 
the number of operations for large scan planes is dominated by 
the 4NxNy complex additions needed to collapse [8] the data 
in one of the rectangular coordinates before performing the 
FFT in the remaining rectangular coordinate. Thus the number 
of operations required to compute the far field in a principal 
plane is proportional to (kmaxr,)2.  

Now that the frequency-domain far-field pattern is calcu- 
lated, (3) can be used to calculate the time-domain far-field 
pattem. The integral in (3) is converted to 

Nul2 

F(Sl 4, t )  = FmAw(B, q5)e-imAwtAw, 
m=-N,/2 

(7) 

by means of the sampling theorem if the far field F(e,$, t )  
has about the same duration as the near field ,??(TO, t ) .  The 
values of F, for negative w is obtained from the equation 
Fu = 3:,, where * indicates complex conjugation. If the 
time duration of the far field is longer than that of the near 
field, one must decrease the frequency sample spacing A w  
(by increasing N, in the FFT’s used to compute (5) and (7)) 
to avoid significant time-domain aliasing. Specifically, if the 
duration of the far field is T f ,  the frequency sample spacing 
A w  should be chosen less than or equal to 27r/Tf according 
to the sampling theorem. (This is seen by shifting the far- 

field pattem such that it is symmetric around t = 0 and then 
noting that the shifted far-field pattern is zero for (ti > i T f .  
In part C of this section, it will be shown that T f ,  in general, 
depends not only on the near field but also on the size of 
the scan plane. The reason for this is that the artificial edges 
of the scan plane produce a diffracted field, which will make 
the time duration of the far-field pattern calculated from (6) 
longer than that of the exact far-field pattern. In the frequency 
domain, this diffracted field produced by the artificial edges of 
the finite scan plane cannot be separated from the true radiated 
fields. For broadbeam antennas, this finite scan-plane error 
can be large enough to prevent the accurate determination of 
their radiation patterns from frequency-domain planar near- 
field measurements [9] (see Part C ) .  The FFT calculation 
of the summation (7) for N, different values of t requires 
M = ;Nu log,(N,) complex multiplications. 

Let us now calculate the total number of complex mul- 
tiplications required for the computation of the full time- 
domain far-field pattern at 4NxNy different angles of obser- 
vation and N,  different times. To calculate the frequency- 
domain near field from the summation (5) for 4N,N, near- 
field points and for N ,  different frequencies requires M I  = 
2 N x N y N ,  log, ( Nu)  complex multiplications. Furthermore, 
to calculate the frequency-domain far-field pattern from (6) 
for 4N,Ny different angles of observation and N,  different 
frequencies requires M2 = 2 N x N y N ,  log, (4N,Ny) complex 
multiplications. Finally, to calculate the time-domain far-field 
pattern from (7) for 4NxNy different angles of observation 
and N,  different times requires A43 = 2NzNyN,log,(N,) 
complex multiplications. Consequently, the total number of 
complex multiplications required for this FFT computation of 
the full far field is 

Mf =MI$Mz+M3 
= N,NyN,[410g2(N,) + 210gz(4NxNy)1 
N ( L z a r T s ) 2 N w [ l o g 2 ( N w )  + logz(kmazrs)].  (8) 

Similarly, the number of operations required to calculate a 
principal-plane far-field cut (for example, the q5 = 0 cut) at 
N, different times is dominated by the 

~c = = 2 ~ x ~ y ~ w  log,(Nm) N ( L a x T s ) ’ N w  log,(Nu) 
(9) 

complex multiplications required to calculate the frequency- 
domain near field at 4NxN, near-field points and N,  different 
frequencies. 

Part C of this section shows a numerical example that il- 
lustrates the use of the frequency-domain computation scheme 
and discusses some of its advantages and disadvantages. The 
formulas for the acoustic field can be obtained from the 
formulas of this section by replacing 5 x E with a, 7 with 
F, and ? x  with - cos 0, respectively. Having explained the 
frequency-domain computation scheme, the next part deals 
with the time-domain computation scheme. 

B. Time-Domain Computation Scheme 

The time-domain computation scheme consists simply of 
using the direct time-domain formula [ 1, (77)] for the far-field 
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pattern 

1 
F(O,f$,t) = --? x 

a -  
x - -E(To, t + i . Fo/c )dzodyo ,  ro = zo? + yo$ (10) dt  

which uses the time-domain near field directly. Assume for 
simplicity that we know the time derivative of the near field 
on the scan plane. (This is a realistic assumption because some 
probes actually measure the time derivative of the field [lo].) 

Equation (10) can be obtained by Fourier transforming the 
frequency-domain formula (2), which was converted to the 
double summation in (6)  by means of the sampling theorem. 
Therefore, (10) can be converted to a summation by Fourier 
transforming (6)  to get 

Nz Nv 1 
27rc 

F(B,f$,t) = --ex 1 
m=-N n=-N, 

where Fo,, = mAz& + nAyoy is a sampling point on the 
scan plane and Ax0 = Ay0 = X,;,/2. This formula rep- 
resents a time-domain sampling theorem that requires one to 
sample the time-domain near field at a spatial sample spacing 
of Xmin /2 ,  the same spacing required by the frequency-domain 
computation scheme. 

The direct time-domain formula (1  1) reveals a useful prop- 
erty of the time-domain computation scheme. If the source is 
turned on at t = t o ,  one can calculate the far-field pattem 
for times t < tl by measuring the near field only for t < tz. 
(This is not true for the frequency-domain computation scheme 
because the calculation of the frequency-domain near field 
requires the values of the time-domain near field over its entire 
duration.) To determine t2 as a function of tl and the angle of 
observation 0, we assume that the scan plane is large enough 
that the near field has not reached its edges at t = tz. Because 
the source is turned on at t = to, the near field E ( F o ,  t )  is 
zero for > c(t - t o )  when ro is far from the source region 
such that the minimum distance from the source region to 
Fo is approximately IFol. From the time-domain formula (1  l), 
it is then seen that the latest time t2 required to calculate 
the far-field pattern at the angle of observation 6’ and time 
tl is approximately given by t2 = tl + l F ~ ~ ~ ~ J c - ~ s i n O ,  
where (Fom,,I is the radius of the circle in the scan plane 
circumscribing the nonzero near field at t = t2. Consequently, 
IFomaX(  = c(t2 - to),  and it is found that t2 N :k,20 + to. 
Therefore, to calculate the far-field pattem at an angle 6’ for 
to < t < tl one has only to measure the near field for 
t o  < t < t2. In particular, if the far-field pattern is calculated 
on the z axis (0 = 0), we have that tz = tl, as can be 
seen immediately from the time-domain formula (1  1) since 
i . Pomn 0 on the z axis. Thus, in contrast to the frequency- 
domain computation scheme, the time-domain computation 
scheme can calculate the far-field pattem for early times from 
near-field data measured solely at early times. 

To calculate the far field at the angles of observation 
(O,4) and time t from the formula ( l l ) ,  one must know 

the near field at the point Tomn on the scan plane at the 
time T ~ , ( B , ~ )  = t + mat cos 4 sin 8 + nAt sin f$ sin 8 where 
At = c-lAzo = c-lAyo = r / w m u x .  Similarly, to calculate 
the far field at the angles of observation and time 
t one must know the near field at the point Tomn at the 
time ~ ~ , ( 6 ” ,  4’). The time difference 1-rmn(B, $ ) - T ~ , ( O ’ ,  #)I 
for the two different angles of observation can be smaller 
than At, and therefore, in general, one needs the value of 
the near field at each ram, at times that lie between time 
samples with spacing At. However, since the near field is 
bandlimited, the standard sampling theorem shows that it is 
sufficient for reconstruction to sample the near field with 
time-sample spacing given by At = 7r/wmaz = Xmin/ (2c) .  
Assuming this has been done, the reconstruction theorem [5, p. 
831 shows that the near field can be calculated at an arbitrary 
time t from the summation 

(12) 
As in the previous section, we assume that the time-domain 
near field is significant only in the time interval to < t < 
t o  + ( N ,  - l)At,  where t o  may depend on the position Tomn. 
Then the summation (1 2) becomes 

where Nu is the integer occurring in the frequency-domain for- 
mula (5). This reconstruction formula requires the calculation 
of N ,  values of the sinc function, N ,  real multiplications, 
and N, real additions. The reconstruction calculation must 
be performed for a number of time values depending on the 
far-field points, and at every near-field measurement point. 
Consequently, if N ,  is large, it may require a considerable 
amount of computer time. 

However, for practical applications it may not be necessary 
to use the exact reconstruction formula (13). Instead one may 
be able to calculate the near field at a time t between the two 
time-sample points pat and ( p  + 1)At by using the linear 
approximation formula 

If this linear formula is inaccurate one can oversample, that 
is, let At < 7r/wmaz, and then again use (14). 

Assume that the linear approximation formula (14) can 
be used to accurately calculate the near field between time 
samples at times required by the far-field formula (11) .  Then 
it takes five real additions and three real multiplications to 
obtain the near field at each value of time between the time 
samples. On a typical computer (VAX 8650), the time it takes 
to perform one real multiplication is approximately 1.5 times 
larger than the time it takes to perform one real addition. 
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Therefore the calculation of the near field at a time between 
two time samples requires approximately the time it takes to 
perform ten real additions. Thus, the time it takes to calculate 
the full time-domain far-field pattern in (1 1) for 4NzN, far- 
field points and N ,  times is approximately equal to the time 
it takes to perform 

A ,  = 160Nd(NzN,)2 - Nw(kmazrs)4 (15) 

real additions. Similarly, to calculate a principal-plane far-field 
cut (for example the 4 = 0 cut) requires the time it takes to 
perform 

A, = SONdNzN~ - N,(k,,,r,)3 (16) 

real additions. No complex multiplications are needed, and it 
is seen that the number of additions required to calculate a 
principal-plane far-field cut is significantly smaller than the 
number required to calculate the full far field. 

Note from the expression (1 1) for the far-field pattern that 
if all fields are zero for t < t o ,  the finite scan plane does 
not introduce any error into the far-field pattern calculation 
at times before the near field has reached the edges of the 
scan plane. This follows from the fact that E(Fo,t) 0 for 
s > c( t  - t o ) ,  where s is the shortest distance from the source 
region to the point Fo.  In part C we show a numerical example 
that illustrates this property of the time-domain computation 
scheme. The formulas for the acoustic field can be obtained 
from the formulas of this section by replacing i x E with @, 
7 with 3, and i x  with - cos 8, respectively. 

C. Comparisons of the Two Computation Schemes 

We shall now compare and discuss the advantages and 
disadvantages of the frequency-domain computation scheme 
of part A of this section and the time-domain computation 
scheme of Part B. To compare the efficiency and convenience 
of the two schemes we start by using them to numerically 
calculate the far-field pattern of a simple acoustic antenna from 
near-field data taken on a square scan plane. 

Acoustic point-source antenna: The acoustic point-source 
antenna is located at Fl = - d i ,  d > 0, and its field is given by 

where f ( t )  is the Gaussian time function 

(18) 

and 7 equals half the signal width. The signal width 27 is 
defined such that If(t)l < 0.02lf(O)( for It1 > r. Strictly 
speaking, this Gaussian pulse is not bandlimited. However, its 
spectrum is approximately zero for w > 1 2 / r ,  and therefore 
the Gaussian pulse (18) can be approximated by a pulse that 
is bandlimited with a bandlimit given by w,,,, = 1 2 / 7 .  One 
finds that this general Gaussian signal, no matter how wide a 
bandwidth it has, can be reconstructed quite accurately from 
ten time samples 14, sec. 4.31. 

With the bandlimit w,,, = 1 2 / 7  it is found that Amin = 
27rc/w,,, N c r / 2 ,  and thus the spatial sample spacing is 
AZO = Ay0 = A,;,/2 cr /4 .  The point source is located at 

17 . . . . .. . .. . 

-1 0 1 2  3 4 5 6 7 8 9 10 

t i s  

Fig. 2. On-axis far-field patterns for a Gaussian point source calculated with 
the time-domain computation scheme. (a) exact; (b) At = r /dmnr;  (c) 
At = 7r/(3wmas). 

= - d i ,  where d = 2Am,, P cr ,  and the scan plane is taken 
to be a square of sidelength 10d located in the plane z = 0. 

We start by showing results for the on-axis far-field pattern 
3(8 = 0 , t )  obtained from the acoustic versions of the time- 
domain formula (1 1) and the linear approximation formula 
(14). Fig. 2 shows the following three plots of the on-axis 
far-field pattern 3(6' = 0 , t ) :  (a) the exact value, (b) the 
value obtained from the acoustic versions of (1 1) and (14) 
with At = 7r/wmaz (as prescribed by the standard sampling 
theorem), and (c) the value obtained from the acoustic versions 
of (11) and (14) with At = 7r/(3wm,,) (that is, a value 
obtained by over sampling in time). 

The first curve (a), which is exact, has the Gaussian wave- 
form and is only significantly nonzero on the interval -0.17 < 
t < 2.17. The second curve (b), which is obtained by using 
the standard time sample spacing At = 7r/wm,, and the linear 
approximation formula (14), has some visible discontinuities in 
its slope and approximates the exact curve well on the interval 
-7 < t < 47. On the interval 47 < t < 87 it is negative 
and erroneous. The third curve (c), which is obtained by over 
sampling with At = 7r/(3wmaz) and using (14), cannot be 
distinguished from the exact curve on the interval -r < t < 
47 and is erroneous (like the second curve) on the interval 
47 < t < 87. Before discussing the erroneous behavior of the 
two approximate curves (b) and (c) over this late-time interval, 
we note that by over sampling with At = 7r/(3wma2) one can 
use the simple linear approximation formula (14) to obtain an 
excellent approximation to the exact curve. 

The erroneous behavior of the two approximate curves (b) 
and (c) on the interval 47 < t < 8r can be explained by 
first noting that the time integral of the expression (1 1) from 
t = -cc to t = +cc is zero for finite (truncated) scan planes 
because @(t = -m) = @(t = +CO) = 0. This means that for 
the far-field patterns approximated by the summation in (1 l), s-, F(6' = 0 , t ) d t  = 0 which, of course, is not the case for 
the exact non-negative Gaussian far-field pattern. The integral 
representation [l,  (76)] of the far-field pattern is exact, and 
since the near field is sampled with spacing of A,,,/2 (as 
required by the near-field sampling theorem [7]), we conclude 

+m 
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Fig. 4. Open-ended waveguide antenna. 
Fig. 3. On-axis far-field pattems for a Gaussian point source calculated with 
the frequency-domain computation scheme. (a) exact; (b) ATd = 16; (c) 
>Vd = 32 .  

that the erroneous behavior of the two approximate curves is 
due to the finite scan plane. This observation is confirmed by 
the fact that the time between the arrival of the direct signal 
( t  N -0.17) and the arrival of the erroneous signal ( t  N 4.17) 
is equal to the time it takes the signal to travel the distance 
11 - d, where 11 = &%d is the distance from the source 
to the midpoint of the edges of the scan plane (recall that 
7 N d/c ) .  Similarly, the time difference between the end of 
the direct signal ( t  2: 2.17) and the end of the erroneous signal 
( t  N 87)  is the time it takes the signal to travel the distance 
12 - d, where 12 = &id is the distance from the source to 
the comers of the scan plane. 

Thus, the erroneous parts of the approximate far-field pat- 
terns are due to the fact that the scan plane is finite and 
represents diffraction from the artificial edges of the truncated 
scan plane. By enlarging the scan plane, the erroneous part of 
the approximate far-field pattern will move to later times, but it 
will never disappear when the scan plane is finite. Furthermore, 
from the exact integral [l,  (76)] it is seen that for t < 47 there 
is no contribution from the region outside the square scan 
plane with sidelength 10d. Thus, for early times the truncated 
scan plane does not introduce any error into the calculation 
of the far-field pattern because the signal has not yet reached 
the edges of the scan plane. However, as time gets larger the 
signal reaches these edges and the finite scan plane introduces 
an error which is separated in time from the exact far-field 
pattern as demonstrated above. 

This simple example shows that by over sampling in time 
one may avoid using the time consuming reconstruction for- 
mula (1 3) and instead use the simple linear approximation 
(14). Furthermore, it shows that the errors due to the finite scan 
plane are separated in time from the exact far-field pattern and 
can therefore be eliminated when using the direct time-domain 
computation scheme. 

Having shown and discussed results obtained from 
the time-domain computation scheme, we now turn to 
the frequency-domain computation scheme. As explained 
in part A of this section, the frequency sample spacing 
4 w  = 2w,,,/N, for this scheme depends on the bandwidth 

w,,, of the near field and on the duration of the far field. 
Moreover, we have just shown that the duration of the 
far field is erroneously extended beyond that of the near 
field by the truncation of the scan plane. Thus, in practice, 
the required frequency sample spacing A w  = 2w,,,/N, 
depends not only on the bandwidth w,,, (and the duration 
of the near field) but on the size of the scan plane. 

From Fig. 2, showing the far-field pattern calculated from 
the time-domain computation scheme, it is seen that with 
our chosen scan-plane size the duration of the calculated 
time-domain far-field pattern is T f  = 8.27,  and therefore 
to avoid significant time-domain aliasing one must chose 
4 w  = 2 n / T f  = 0.777-l. This means that the number of 
time samples needed to avoid significant time-domain aliasing 
is N, = 2w,,,/Aw N 32. 

Fig. 3 shows the following three plots of the on-axis time- 
domain far-field pattern F(8 = 0 , t )  calculated with the 
frequency-domain calculation scheme: (a) the exact value, (b) 
the value obtained from the acoustic versions of the frequency- 
domain formulas (5)-(7) with Nu = 16 (which is sufficient for 
reconstructing the near-field pulse), and (c) the value obtained 
by using the acoustic versions of (5)-(7) with N ,  = 32 
(the number prescribed by the sampling theorem to compute 
the far field extended in time by the truncated scan plane). 
The exact Gaussian curve (a) is only significantly nonzero 
on the interval -0.17 < t < 2.17. The second curve (b) is 
periodic with period T = nN,/w,,, = 4.27 and is clearly 
erroneous due to time-domain aliasing. The third curve (c) is 
periodic with period T = 8.47 and cannot be distinguished 
from the exact curve (a) on the interval -0.57 < t < 4.17. 
No significant time-domain aliasing occurs for the curve (c), 
and from Fig. 2 it is seen that curve (c) is simply a periodic 
repetition of the far-field pattern calculated from the time- 
domain computation scheme. Consequently, it has now been 
demonstrated that the frequency-domain computation scheme 
produces the same field as the time-domain computation 
scheme when the frequency sample spacing A w  is chosen 
small enough to avoid time-domain aliasing caused by the 
field diffracted at the edges of the finite scan plane. 

Open-ended waveguide antenna: Let us now consider the 
more complicated electromagnetic antenna consisting of an 
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open-ended rectangular waveguide fed by a source that has 
time dependence fi(t) and is located at the point (2, y, z )  = 
( O , O ,  -d) in the waveguide shown in Fig. 4. 

Assuming that the source is such that only the TElo mode is 
excited, the part of the electric waveguide field that propagates 
in the direction of the positive z axis is given by 

where the longitudinal propagation constant is 

Furthermore, w, = n c / a  is the cutoff frequency for the TElo 
mode and f$ is the spectrum of the input signal. Note that 
the spectrum of the electric field is exponentially attenuated 
below cutoff and that its value at the center of the aperture is 
approximately given by 

According to [ 11,  (1) and (6)] the on-axis far-field pattern 
Fw(d = 0) is given approximately by 

Fw(0 = 0) = FW(S = 0)7j 

= c ~ ~ E ~ ~  1 + r  + -(I - r) (22) 
[ k  k= 1 

where CO is a frequency independent constant and I? is a reflec- 
tion coefficient that is approximately frequency independent 
over the recommended usable bandwidth of the waveguide. 

Let us now calculate the time dependence of the aperture 
electric field and the on-axis far field for the special case where 
the source is Gaussian and the waveguide is X-band. In this 
case the TElo cutoff frequency is w, = n c / a  = 4.1. 1O1O s-', 
r N 0.27ei1.4, a = 2.86 cm, and b = 1.016 cm. The Gaussian 
source is chosen such that its spectrum, at the midpoint of the 
interval from w, to the next cutoff frequency 2w, = 2nc/a = 
8.2 . lolo s-', equals half its value at w = 0. Then the input 
pulse and its spectrum are given by (18), with T = 5.4.10-11 s. 

For d = 5 cm, the absolute value of the spectrum  EA^ and 
the time dependence EA@) of the electric field at the center 
of the aperture are shown in Fig. 5. 

It is seen from Fig. 5 that the spectrum for the aperture 
electric field is significantly attenuated below cutoff and that 
its slope is very large around the cutoff frequency. This 
spectrum is thus very different from that of the Gaussian 
input pulse because of the dispersion of the TElo mode over 
the 5 cm of travel in the waveguide. The time dependence 
of the aperture electric field is also shown in Fig. 5 and is 
seen to be completely different from the Gaussian input pulse 
(18). In particular, the aperture electric field has a pulse width 
of approximately 807 while the Gaussian input pulse has a 
pulse width of approximately 27. Since the bandwidth of the 
aperture field is the same as that of the input pulse, the time 
sample spacing for the signals are the same. This means that 
the number of time samples required for the aperture electric 
field is 40 times the number of time samples required for 
the Gaussian input pulse. It was mentioned above that the 
Gaussian input pulse required approximately ten time samples, 
so the aperture electric field requires approximately 400 time 
samples. In other words, to reconstruct the aperture electric 
field by use of the reconstruction theorem [5, p.831 one has to 
sample this field at 400 different times. And therefore, when 
a near-field to far-field calculation is performed for this near 
field, one must use 400 time samples to make sure that the far 
field is calculated accurately. 

Let us now consider the far-field pattern (22), whose spec- 
trum and time dependence are shown in Fig. 6. It is seen 
that the spectrum of the far-field pattern is very similar to 
that of the aperture electric field and that it is very different 
from the spectrum of the Gaussian input pulse. Near the 
cutoff frequency the spectrum of the far-field pattern is much 
smoother than the spectrum of the aperture electric field. The 
time dependence of the far-field pattern, also shown in Figure 
6, is very similar to the time dependence of the aperture electric 
field. However, because of the smoother spectrum, the far-field 
pattern dies off faster with time than the aperture electric field 
and the pulse width of the far-field pattern is approximately 
407, which is 20 times that of the input pulse. 
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Fig. 6. Amplitude of spectrum and time dependence of on-axis far-field pattem for open-ended waveguide antenna. 

In summary, for the open-ended waveguide antenna the time 
dependence of the aperture electric field and of the far-field 
pattern are very different from the time dependence of the 
input pulse because of the dispersive effects of the waveguide 
on the TElo mode. In particular, for a Gaussian input pulse the 
time widths of the aperture electric field and far-field pattern 
are approximately 40 and 20 times larger than the time width 
of the input pulse, respectively. Assuming that the near field 
behaves as the aperture field, this means that one must measure 
the near field (at every near-field point on the scan plane) at ap- 
proximately 400 different times when the waveguide is fed by 
a Gaussian pulse, which alone requires only ten time samples. 

We will now discuss some of the consequences of using the 
two computation schemes to determine the far-field pattern 
of the open-ended waveguide. Assuming that the time depen- 
dence of the near field is similar to that of the aperture field 
shown in Figure 5, 400 near-field time samples are required 
to calculate the far-field pattern. (The open-ended waveguide 
antenna is directive, so it is assumed that the diffraction due 
to the edges of the scan plane is negligible.) The on-axis far- 
field pattern of the open-ended waveguide antenna, shown in 
Figure 6, consists of a main (early-time) part (0 < t < ~OT) ,  
which contains most of the power and an oscillatory part 
( t  > 107). For some applications one may be interested only 
in the main part of the far-field pattern. From part B, it is found 
that the time-domain computation scheme can determine this 
early-time part of the on-axis far-field pattern from measured 
near-field data taken in the time interval 0 < t < 107. Since 
the duration of the near field is approximately 807 (see Figure 
5 ) ,  only . 400 = 50 time samples are needed to calculate 
the main part of the far-field pattern using the time-domain 
computation scheme. Because the calculation of the frequency- 
domain near field requires the near field for its entire duration, 
the frequency-domain computation scheme needs all 400 time 
samples of the near field to calculate the main part of the 
far-field pattern. This example shows that if one is interested 
only in the far-field pattem for early times, the number of 
time samples of the near field required by the time-domain 
computation scheme can be much smaller than the number 
required by the frequency-domain computation scheme. 

40 60 

t / T  

Computertime: Let us now compare the computer time 
required by the two computation schemes. For the far-field 
calculation performed in this section for the acoustic point- 
source antenna with Gaussian pulse excitation, the number 
of near-field sample points was 4N,Ny = 1600 because 
N, = Ny = 20. To avoid time-domain aliasing caused by 
the edges of the scan plane, the number of time samples 
was N,  = 32 for the frequency-domain computation scheme 
(5)-(7), and therefore from (8) and (9) it is found that this 
scheme requires the calculation of M f  = 5.3  . lo5 and 
M,  = 1.3 . lo5 complex multiplications to compute the full 
far field and a principal-plane far-field cut, respectively. The 
on-axis result of this calculation is curve (c) of Fig. 3 and 
cannot be distinguished from the exact far field on the time 
interval where the exact far field is nonzero. 

To perform the same far-field calculation for the acous- 
tic point-source antenna using the time-domain computation 
scheme (1 1) with the linear time-approximation formula (14), 
two different values of N, were used, namely N,  = 10 
(giving curve (b) of Fig. 2 )  and N,  = 3 . 10 = 30 (giving 
curve (c) of Fig. 2) .  The far field obtained with N, = 10 
is a good approximation to the exact far field. The far field 
obtained with N, = 30 cannot be distinguished from the 
exact far field on the time interval where the exact far field is 
nonzero. From (15) it then follows that A f  = 2.6 . los  and 
A f  = 7.7 . 10' real additions are needed to calculate the full 
far field with ten and 30 time samples, respectively. Similarly, 
to calculate a principal-plane far-field cut A ,  = 6.4 . lo6 and 
A, = 1.9 . lo7, real additions are needed, using ten and 30 
time samples, respectively. 

Before comparing the results we note that on a typical 
computer (VAX 8650) the time it takes to perform one complex 
multiplication equals approximately six times the time it takes 
to perform one real addition. For the acoustic point-source 
antenna, we see that when the full far field is calculated, the 
frequency-domain computation scheme is by far the fastest 
because it makes use of the FFT. When only a principal-plane 
far-field cut is calculated the computation time for the time- 
domain computation scheme reduces significantly, whereas 
that of the frequency-domain computation scheme does not. 
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Next consider the open-ended X-band waveguide antenna 
fed by the Gaussian pulse with w,,, N 4w, = 1.6.  10l1 s-’. 
The scan plane is taken to be a square of sidelength 20 cm. 
Since /\,in = 2nc/w,,, = 1.1 cm, we find that N, = 
Ny = 18 and that the total number of near-field scan points 
is 4NzNy = 1296. From the duration of the aperture field 
and the time-sample spacing, it follows that the number of 
near-field time samples is N ,  = 400. 

With these values of N,, Nyr and N ,  one finds from (8) and 
(9) that the frequency-domain computation scheme requires 
M j  = 7.1 . lo6 and M,  = 2.2 . lo6 complex multiplications, 
respectively, to calculate the full far field and a principal-plane 
far-field cut. Similarly, the formulas (15) and (16) show that 
the time-domain computation scheme requires AI = 6.7 . lo9 
and A, = 1.9.108 real additions, respectively, to calculate the 
full far field and a principal-plane far-field cut. 

Again, when the full far field is calculated, the frequency- 
domain computation scheme is by far the fastest, while the 
difference in computer time for the calculation of a principal- 
plane far-field cut is small. Furthermore, as discussed above, 
if one is interested only in calculating the far field for early 
times, the number of time samples required by the time-domain 
computation scheme reduces significantly, whereas that of the 
frequency-domain computation scheme does not. Thus, when 
only the early part of the far field is needed the time-domain 
scheme becomes more attractive. 

In summary, when far fields are calculated for all times and 
all angles of observation, the FFT makes the frequency-domain 
computation scheme much faster than the time-domain compu- 
tation scheme. When only part of the far field is calculated, the 
difference in computer time for the two computation schemes 
becomes smaller and the time-domain computation scheme be- 
comes more advantageous because of its simplicity. In general, 
the time-domain computation scheme is much more direct and 
simpler than the frequency-domain computation scheme, and 
it does not have the problems of time-domain aliasing due to 
the finite scan plane. The time-domain computation scheme is 
much easier to use than the frequency-domain computation 
scheme, and it is consequently the more attractive scheme 
when one is not concemed with the amount of computer time 

it takes to perform the far-field calculations. Regardless of 
what computation scheme is used, planar time-domain near- 
field antenna measurements, unlike single-frequency near-field 
measurements [9], have the capability of eliminating finite scan 
errors. For some radiators, such as broadbeam antennas, this 
may be ample reason to consider time-domain measurements 
even when the final characterization of the radiator is required 
in the frequency domain. 
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