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Using the Cyclostationary Properties of Chaotic Signals (@
for Communications
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Abstract—Cyclostationary signals have an expectation value which
varies periodically in time. Chaotic signals that have large components at
some discrete frequencies in their power spectra can be cyclostationary.
The cyclostationarity persists even if the discrete frequency components
are removed from the chaotic signal, leaving a signal with a purely broad RS
band frequency spectrum. In this brief, a communications system is
created by modulating information onto the periodic parts of a chaotic
signal and then removing the periodic parts from the frequency spectrum. P1 [ p2l| P3
At the receiver, the periodic parts of the spectrum are restored by means
of a nonlinear operation. This system is demonstrated both in simulations
and real circuits, and the performance of this system is measured in
simulations. Finally, some of the reasons why such a scheme might be
useful are discussed. (b)
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Chaotic circuits are natural generators of broad-band signals,

so there has been research into applying chaotic circuits to spread R: e

spectrum communications [1]-[13]. Most of these communications 34

methods depend on having a synchronized chaotic receiver or at least sy ey

some sort of information about the chaotic signal at the receiver. ©

Difficulties in synchronizing chaotic receivers make most of thesgg. 1. (a). Chaotic Duffing circuit described by (181 = R3 = R4
techniques impractical for multi-user communications systems. Ith = R6 = 10k, R2 = 39.2kQ, R7 = R10 = R12 = R13 = R14
addition, much research has focussed on the possible security/df = R17 = R18 = 100k, k8 = R9 = R18 = 1MQ, R15 =
chaotic communications svstems 5.2k,C1 = C2 = C3 = 0.001 uF. The box labeled corresponds to the

Y ) nonlinear functionf(z), while the box labeleg@ corresponds to the nonlinear
function g(z). All op amps are type 741 or equivalents. (b) Circuit used to
generate the functiop(z). R1 = R2 = R3 = R4 = R9 = 100 k2.
Manuscript received July 28, 2000; revised January 2, 2001. This paper w&is = R7 = 680 k2. R6 = R8 = 2 MQ2. P1 = P3 = 20 k2 poteniometer.

recommended by Associate Editor M. Di Bernardo. P2 = P4 = 50 k2 poteniometer. The diodes are all type 1N485B. The
The author is with the U.S. Naval Research Laboratory, Washington, Didteniometers are used to match different circuits to each other. The amplifier is

20375 USA. type 741. (b) Schematic of circuit used to crefife’) function. R1 = 10 k2.
Publisher Item Identifier S 1057-7122(02)02272-9. R2 =490 k2. R3 = 20 k2. R4 = R5 = R6 = 100 kf2.
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There are still many applications for nonsecure spread spectrum
communications. |IEEE standard 802.11 sets aside certain frequency
bands where no license is necessary to operate transmitters. Instead,
regulations have been placed on the power spectra of the signals
emitted by the transmitters so that the unlicensed signals do not
interfere with other users. Essentially, the power spectra must be flat
to within certain limits.

Itis shown in this brief that some chaotic signals are cyclostationary
[14], which means that the signal can be divided into a stationary part
and a nonstationary part, with the expectation value of the nonsta-
tionary part varying periodically in time. The author demonstrates that
the cyclostationary properties of chaotic signals may be used to encode
information. One method for detection of a cyclostationarity in a signal
is to cal_culate the spectral r_;oherenge, which is es_sennally the sam%ia_sz_ Attractor for the circuit of Fig. 1.
calculating the autocorrelation function of the Fourier transform of the
signal, but substituting frequency shifts for time lags. If two frequencies
are coherent (or phase locked), then the spectral coherence will shg@ an error in the equations describing the circuit. The set of equations
a peak when the first term in the spectral coherence calculation céescribing the circuit are

x (V)

responds to the first frequency and the second term corresponds to the da

second frequency. By the Wiener—Khintchine theorem, the autocorrela- T aly — 2]

tion of the Fourier transform for zero frequency shift is just the Fourier dy .

transform of the signal squared, so simply squaring the chaotic signal i o[=0.1y — g(x) + 2sin(F)]

may be enough to observe cyclostationarity. Also demonstrated is that [

some chaotic signals are cyclostationary. The power spectra of these - aff(z) — 0.1z]

signals have large components at certain discrete frequencies, but even 16

after removing the parts of the signal at these frequencies, the cyclosta- v + ba

tionary property remains. The cyclostationarity may be used to recover 2r+38 < -26

a signal modulated onto the periodic parts of the original chaotic signal. r4+12 —26<z<—12
g(x)=4¢0 —-12<2<1.2

r—12 12<2<26
20 — 3.8 x> 26

Il. GENERAL DESCRIPTION

The method the author will demonstrate is as follows. Choose a r+2 <=1
nonautonomous chaotic circuit, or an autonomous circuit such as the flx)={ —a _1<ae<1 V. 1)
Rossler system which has large peaks in its power spectrum. Informa- D >_1 -

tion is modulated onto the narrow band frequency in the power spec-
trum, by some method such as phase modulation. If the chaotic attradibe periodic driving signal ig, with a frequencyw = (27) x 780
persists over a broad range of parameters, it may also be possiblea/sec, and the phase of the driving signal is giversbfhe time
use frequency or amplitude modulation. One (or more) chaotic sigreginstanty was set tol0* to simulate the same time scale as the cir-
from the chaotic circuit is chosen as a carrier signal, and the periogidgit. The boxes labeledl andg were piecewise linear diode function
components are suppressed, either through filtering or outright subtrgenerators whose outputs were described ) andg(x) in (1). The
tion. Because the chaotic signal is cyclostationary, the periodic papgwer spectrum of the signal from the circuit is shown in Fig. 3(a).
are still present in the statistical properties of the chaotic signal, so aiffhe power spectrum of thg signal in Fig. 3(a) shows large
the receiver the periodic components are restored by some nonlingairow-band components at the driving frequency of 780 Hz and
operation, such as squaring the chaotic carrier signal. The phase ahils harmonics. These narrow-band components were removed by
other characteristics of the periodic component may then be extracsedtraction. The component at 780 Hz was removed by taking the
from the chaotic carrier after the nonlinear operation. Acronyms seét@0-Hz driving signal, passing it through an all-pass filter to generate
to be very popular in this field, so | will call the method presented hetbe appropriate phase shift, using an amplifier to scale the phase
“chaos cyclostationary keying” (CCK). shifted signal to the proper amplitude, and subtracting fromsthe
When a binary phase modulation is used on the periodic comggignal. The main nonlinearity in this circuit is cubic, so the narrowband
nent of the chaotic signal, CCK is in essence binary phase shift keyie@gmponent at the second harmonic frequency of 1560 Hz was not
(BPSK) except that the narrow band phase modulated signal has beege compared to the broad-band background, but this harmonic was
encoded on a chaotic signal for transmission. The properties of C@k0 removed to insure that the received signal was not simply caused
will be similar to BPSK, except that there is some loss of performanty some small term at this frequency.
when the periodic signal is converted to chaos and back. A periodic signal at the second harmonic frequency of 1560 Hz was
generated by filtering the signal with a fourth-order bandpass filter
centered at 1560 Hz and then using this signal to drive a phase-locked
lll. DUFFING CIRCUIT EXPERIMENTS loop. The phase-locked loop was constructed from a sample and hold
amplifier, an Intersil ICL8038 function generator chip, and a low pass
filter. The phase-locked loop output was phase shifted and scaled by an
The first experiments were conducted with a circuit that is similappropriate amount and subtracted fromgtsignal to generate the:
to the Duffing system [15]. Fig. 1 is a schematic of this circuit, whilesignal, which is the signal with the narrow band parts removed. The
Fig. 2 is a plot of an attractor from this circuit. This same circuit wapower spectrum of thg; signal is shown in Fig. 3(b). For the circuit,
used in previous work [16], [17], although in the previous work therenly the driving frequency and the second harmonic were removed,

A. Transmitter



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 3, MARCH 2002 359

P (arb. units)
P (arb. units)

T T
0 500 1000 1500 2000t_]
f(Hz)

Fig. 4. Power spectrum of the sigr@;)? (v, is they signal from the circuit
of Fig. 1 with the periodic parts removed).

P (arb. units)

A large cross correlation at a particular frequency in the Fourier spec-
trum indicates the presence of cyclostationarity (an analogous result
holds for discrete signals). From the Wiener—Khintchine theorem, one
1 : ‘ may equivalently simply take the squareadf), and search for large
0 500 1000 1500 20001 components at discrete frequencies.

f (H2)

C. Signal Detection
Fig. 3. (a) Power spectrum of thesignal from the circuit of Fig. 1. (b) Power
spectrum of they signal from the circuit of Fig. 1 after the periodic parts have In order to detect information on the signgl from the circuit of
been removed. Fig. 1, the signal is squared. The power spectrurfye§* is shown in

Fig. 4. The narrow-band component at 1560 Hz is obvious in the power

. . . . rum. ing s would pr ignal at the driving fr n
although in the simulation shown later, more of the harmonics we? ectrum. Cubing; would produce a signal at the d g frequency

. . . of 780 Hz, but the signal-to-noise ratio (SNR) of the narrow-band com-
removed. The, signal could be transmitted directly or modulated Om%onent was not as good as whenwas squared
a carrier signal for transmission. ; i

The signal(ys)? was then filtered with a second-order bandpass
filter with a center frequency of 1560 Hz prior to phase detection. In
order to detect the phase of the filterigd )* at 1560 Hz, a local oscil-
lator was also run at 1560 Hz (there was some slight mismatch between

Although the narrow-band components of thesignal have been oscillator frequencies in the transmitter and receiver, but a small mis-
removed, they may still be reconstructed from the broad-band patatch will not greatly affect the results). The sigtg})” was an input
of the chaoticy signal. The concepts behind the signal reconstruéer a sample and hold amplifier, which was strobed with the 1560-Hz
tion may be explained simply by looking at a sum of periodic sigsignal from the local oscillator. The output of the sample and hold am-
nals. Consider a sum of 2 sine waves= sine(f1) + sine(f2). Pplifier was low pass filtered to form the phase error sighal
If we perform a nonlinear operation on these signals, such as cubing he simplest way to encode information onto the chaotic sigpal
(in this brief, cubing is used as an example because the circuit d¢as to modulate the phase of the periodic signal driving the circuit (es-
scribed here has a cubic nonlinearity), then sum and difference fe@ntially a form of BPSK). We know that the signal in the detector will
guencies are produced as the sine waves are modulated togéther: be squared, so using the identitye(wt+¢)* = 0.5(1—cosine(2wt+
sin(f1) —sin(3f1) — sin(f1-2f2) +- - -. Itis then possible to remove 2w¢)) tells us that the largest possible signal at the receiver will come
terms that contain only factors ¢fl, such asin(f1) orsin(3f1) etc., When the periodic driving signal phase is modulatedH#p’ (a phase
to produce the signai;. shift of 90° in the transmitter is equivalent to a phase shift of 180

At the receiver, another nonlinear operation may be performed Bif receiver). Fig. 5(a) shows the phase modulation signal in the trans-
the received signal, such as squaring, to produd#® x cos(2f1) + mitter, while _S(b_) shpws th_e phase error 5|g|z_talfro_m the receiver
cos(4f1) + other terms. Terms containing onfit have been restored, When the periodic driving signal at the transmitter is phfise mo_dulated
so it is possible to detect variations in the phase of the signal at R 45 at a frequency of 10 Hz. Fig. 5 shows that it is possible to
quencyf1. detect the phase of the periodic driving signal even though the peri-

The actual chaotig signal contains many frequencies, but becaué?edic parts of the transmitted signal have been_removed_. T_he phz_ise error
of the nonlinearities in the chaotic circuit, the frequencies are mix&ﬁgn"’lI °9“'d _also be used _to phase sync_hronlze a F_’e”Od'C oscnlgtor_ln
together as described above. There are detailed discussions of Cytag_recelver n order t_o b‘%"d a sync_hronl_zed chaotlc response cireutt.
stationarity in the literature [14], [18], but a detailed understanding lQ a later section of this br_lef, numerical S|mulat|ons V\_"” b_e performed
not required to understand the signal recovery method here In order to measure the bit error rate of this communications system.

Cyclostationarity may be detected in a signal by calculating the au-
tocorrelation of the power spectrum [18].f¢t) is a signal andX ( f)
is its Fourier transform, then the autocorrelation of the power spectrum
is

B. Cyclostationarity

IV. ROSSLERCIRCUIT EXPERIMENTS

The Duffing circuit used above was nonautonomous. Some au-
tonomous chaotic circuits have strong narrow-band components in
their frequency spectra, so it should be possible to remove the periodic
parts and still recover their phase, as with the nonautonomous circuit.

XX = 6)do
"D = =X e @)
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Fig. 5. (a) Phase-modulation signal s used to modulate the periodic sighldl: 7- () Power spectrum of thesignal from the circuit of Fig. 6. (b) Power

driving the circuit of Fig. 1. The phase-modulation rate is 20 Hz. (b) Phase-eridt

signalA measured at the receiver.
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Fig. 6. PLR circuit described by (5).

ectrum of the signal from Fig. 6 when the periodic parts have been supressed
by filtering.
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Fig.8. Power spectrum of the sigral, )? (x, is they signal from the circuit
of Fig. 6 with the periodic parts supressed).

used to control the phase of the narrow-band component of the PLR
frequency spectrum through phase synchronization [20]. Fig. 7(a)
shows the power spectrum of thesignal from the PLR circuit.

Rather than using phase-locked loops, the periodic components were
removed from the PLR: signal by filtering and subtraction. Second-
order bandpass filters were used to isolate the components of the PLR
x signal at 1.16 and 2.32 kHz, and the outputs of the bandpass filters
were subtracted from thesignal to produce the signal;. The power

To test this idea, the piecewise-linear Rossler (PLR) circuit shov@pectrum ofr; is shown in Fig. 7(b). There is still some evidence of
in Fig. 6 was used [19]. The PLR circuit may be described by tHerrow-band signals at 1.16 and 2.32 kHz, but their amplitude is down

equations

dt
dy
dt
dz
dt

ole) = {(1)5(1» - 3)

= —a[0.052 4+ 0.5y + z + co(Asin(w.t + ¢) — )]

r<3
z >3

—al: + g(a)]

where @ =

@)

by a factor of 1000. One advantage of using filters instead of phase-
locked loops to remove the periodic components is that the filter will
still remove the periodic component if its amplitude changes, allowing
for amplitude modulation of the periodic component. The phase-locked
loop, on the other hand, compensates better for small variations in the
frequency of the periodic component.

Fig. 8 shows the power spectrum @f ;). In this case, there are
peaks at both the fundamental of 1.16 kHz and the second harmonic of
2.32 kHz, possibly because these signals were not completely removed
from x ;. Once again, the phase of the second harmonic at 2.32 kHz

10* s', the phase control coupling constants detected when the phase of the 1.16-kHz frequency in PLR circuit

ce = 0.025,4 = 3.15,¢ is varied in order to control the PLR is varied by using phase synchronization. Fig. 9(a) shows the phase-
circuit phase, and. is set to the peak frequency in the PLR spectrummodulation signal, while Fig. 9(b) shows the phase—error signal
which is 1.16 kHz. The term multiplied by, in the PLR circuit is demonstrating that it is possible to recover the phase of the periodic
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Fig. 9. (a) Phase-modulation signalused to modulate the phase of the P
periodic part of the chaotic signal from the PLR circuit of Fig. 6. Théf€‘®
phase-modulation rate was 1 Hz. (b) Phase error signal detected at the receiver.
At the simulated receiver;,; was squared and filtered with a band-
pass filter with a center frequency of 1560 Hz:

for DCSK.

TABLE |
AMPLITUDES @; AND PHASES¢; OF THE DRIVING FREQUENCY (i = 1) AND du  —y> u
ITS NEXT FOUR HARMONICS (i = 2—5) FROM THE y SIGNAL IN THE m =—-—+v
SIMULATION OF (1). THESE CONSTANTS WERE DETERMINED FROM THE Lo e me
FOURIER TRANSFORM OF ALONG-TIME SERIES dv _ zulri+ r3) (5)
dt rirersc?
i £ ;i .
¢ whereu was the filter output and; = 102 000 2 , », = 204 000 €2,
1 [0.6516 0.0943 andrs = 513 Q.
2 10.1407 0.3741 The next step in the receiver was to determine the phase tie
3 10.2027 1.9559 .
1 T0.0662 0.7032 signals, was generated, whesg = 1 for v > 0 ands, = —1 for
sToo71i6 5.4081 u < 0. This signak,, was used to strobe a sinusoidal signal at 1560 Hz
de, _
e~
part of a chaotic signal from an autonomous chaotic circuit when the 6 = sin(26,)|s, =01
periodic part has been suppressed. In Fig. 9, the phase is modulated at A ) 5 A 6
a frequency of 1 Hz. ar 000(6 — A) 6)

wherew is the same as in (1) antdis produced by samplingn(6..)
whens,, crosses zero in the positive direction. The final phase error

signal isA, which is the low pass filtered version &f The value ofA

When used as a communications system, itis most likely thata wh@leset to 0 at the start of each bit and the final valuesdt the end of
set of nonautonomous circuits would be used, with each circuit haviggch pit is used to determine whether a binary 1 or 0 was sent.

a different drive frequency. It would be possible to build many copies

of the same circuit and simply rescale the time constanis (1)) so A, Comparison to BPSK
that every transmitter-receiver pair operated at a slightly different fre- _. . . . .
quency. This method would amount to using frequency division multi- Fig. 10 shows the probability of bit errdf, as a function of (bit

plexing with binary phase-shift keying (BPSK), except that the periodﬁ:nergy)/(noise power spectral density) when (1) is used to simulate a

carrier signal is spread with the chaos to prevent it from interfering WiH:]ansmltter aqd the added n0|se. is Gaussian white nqlse. The bit-error
other transmitters performance is not as good as simple BPSK, but that is to be expected,

The circuit described by (1) was numerically simulated (using aafsfproducmg the chaos and detectln_g the pe”Od'C. 5|_gnal will have some
. : . g =5 . effect on performance. The transmitted signal will interfere less with
Runge—Kutta integrator with a time stepik 10~ ° s.) to determine . - . . L ;
o ) - . ther signals than a periodic BPSK signal will, so something is gained
its bit error performance when a simple phase shifting encoding te(g]-usin chaos. The performance shown in Fia. 10 is brobably not ideal
nigue was used. For the simulation, the drive frequency and the n YSing chaos. pertor 9. P y
. . since the bit-error probability shown here does depend on the bandpass
4 harmonics were subtracted from thesignal to generate the trans-_ "~~~ ) L .
mitted signaly. filter in the receiver, which is not ideal.
e For comparison, the solid line in Fig. 10 shows the bit error prob-
< ability of BPSK, while the dotted line shows the probability of bit
g =y — Z‘“ sin(if — 6;) + (4) error for a PSK signal with a phase shift ##45°. These lines are
= calculated from analytic formulas [21], so they are ideal. The squares
in Fig. 10 are the calculated bit-error rate for differential chaos shift
wheren is an additive noise term,is defined in (1), and the parameterskeying (DCSK) [22]-[24], which is another asynchronous chaotic com-
ay; and¢; are defined in Table I. An information signal was encodecthunication method. The DCSK curve appears slightly better, but it
onto the chaotic signal by varying the drive phasebetweent1 ra- should be noted that the performance of DCSK will be worse for signal
dian at a frequency of 20 Hz. to noise ratios less than 0 dB [24]. For the DCSK data in Fig. 10, the

V. SIMULATIONS



362
] [m]
[m] ]
% e e [1]
0.1
6]
4 ® °
a® 2]
2 oo P
0.01 Py
55..... ®oe, [3]
4]
1 °
2 o (4]
T T T T T
0.96 0.98 1.00 1.02 1.04
fif
(5]
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SNR corresponding t&; /N, =16 dB is estimated to b¢ 0.69 dB
[24]; for the CCK data in Fig. 10, the SNR fdt, /Ny, =16 dB was
—10.9 dB (with a bit length of 0.05 s), although, as with DCSK, the bit
error probability curve will shift for different bit lengths, so CCK is not
noise robust under the definition of Abel [24]. CCK is not noise robust
because the noise is also squared when the received signal is squared,

Other transmitter-receiver pairs could be added by using frequen
division multiplexing. The effect of interference from another trans-
mitter with the same power is shown in Fig. 11. The solid circles show11]
the probability of bit errorP, when a signal from a second Duffing
system has been added to the chaotic carrier signal. The interferir{éz]
signal comes from a Duffing system that is identical to (1) except that
the time constant and the frequency have been multiplied by a [13]
constant. The: axis in Fig. 11 shows the driving frequency for the in-
terfering signal divided by the driving frequency for the chaotic system14]
producing the carrier signal. The frequency range of this plot is Iimited[ls]
to values close to 1.0 because the bandpass filter in the receiver su-
presses interfering signals outside of this range. [16]

The interference acts like a small constant noise signal outside
the 20-Hz bandwidth of the information signal, and only caused!’]
significant interference when the interference is within the informationy;
bandwidth. The bandwidth efficiency of this chaotic communications
method should be about the same as for BPSK.

Periodic interference will also affect the chaotic carrier signal. Also
shown in Fig. 11 (open squares) is the bit error rate caused by a Y
nusoidal interference signal with the same power as the chaotic carri?jo]
signal. The interference from a sinusoidal signal is negligible outside of
the 20-Hz information bandwidth. The effect of sinusoidal interference
could be further reduced by filtering the received signal with a notch?1]
filter which removes signal components at the driving frequency. TthZZ]
peak power in the chaotic carrier power spectrum is a factor of 10 less
than the peak power in a sinusoidal signal of the same total power; a
better choice of chaotic circuit could reduce this ratio even more. 23]

(8]

9]

VI. CONCLUSION [24]

Itis possible to use the cyclostationarity properties of chaos to gen-
erate a broad-band carrier signal which has performance characteris-
tics similar to BPSK, with only a small loss involved in converting the
signal into chaos and back CCK. The advantage of the chaotic signal
is that it has a relatively flat spectrum, and, therefore, will not inter-
fere with other signals, making it useful for unlicensed communica-
tions applications. There are other methods for producing broad-spec-
trum communications signals, but CCK is very simple, and therefore,
potentially very inexpensive.
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