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Using the Cyclostationary Properties of Chaotic Signals
for Communications

T. L. Carroll

Abstract—Cyclostationary signals have an expectation value which
varies periodically in time. Chaotic signals that have large components at
some discrete frequencies in their power spectra can be cyclostationary.
The cyclostationarity persists even if the discrete frequency components
are removed from the chaotic signal, leaving a signal with a purely broad
band frequency spectrum. In this brief, a communications system is
created by modulating information onto the periodic parts of a chaotic
signal and then removing the periodic parts from the frequency spectrum.
At the receiver, the periodic parts of the spectrum are restored by means
of a nonlinear operation. This system is demonstrated both in simulations
and real circuits, and the performance of this system is measured in
simulations. Finally, some of the reasons why such a scheme might be
useful are discussed.

Index Terms—Chaos, communication, cyclostationary.

I. INTRODUCTION

Chaotic circuits are natural generators of broad-band signals,
so there has been research into applying chaotic circuits to spread
spectrum communications [1]–[13]. Most of these communications
methods depend on having a synchronized chaotic receiver or at least
some sort of information about the chaotic signal at the receiver.
Difficulties in synchronizing chaotic receivers make most of these
techniques impractical for multi-user communications systems. In
addition, much research has focussed on the possible security of
chaotic communications systems.
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Fig. 1. (a). Chaotic Duffing circuit described by (1).R1 = R3 = R4 =
R5 = R6 = 10 k
; R2 = 39:2 k
; R7 = R10 = R12 = R13 = R14 =
R16 = R17 = R18 = 100 k
; R8 = R9 = R18 = 1 M
; R15 =
5:2 k
; C1 = C2 = C3 = 0:001 �F. The box labeledf corresponds to the
nonlinear functionf(x), while the box labeledg corresponds to the nonlinear
function g(x). All op amps are type 741 or equivalents. (b) Circuit used to
generate the functiong(x). R1 = R2 = R3 = R4 = R9 = 100 k
.
R5 = R7 = 680 k
. R6 = R8 = 2 M
. P1 = P3 = 20 k
 poteniometer.
P2 = P4 = 50 k
 poteniometer. The diodes are all type 1N485B. The
poteniometers are used to match different circuits to each other. The amplifier is
type 741. (b) Schematic of circuit used to createf(x) function.R1 = 10 k
.
R2 = 490 k
. R3 = 20 k
. R4 = R5 = R6 = 100 k
.
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There are still many applications for nonsecure spread spectrum
communications. IEEE standard 802.11 sets aside certain frequency
bands where no license is necessary to operate transmitters. Instead,
regulations have been placed on the power spectra of the signals
emitted by the transmitters so that the unlicensed signals do not
interfere with other users. Essentially, the power spectra must be flat
to within certain limits.

It is shown in this brief that some chaotic signals are cyclostationary
[14], which means that the signal can be divided into a stationary part
and a nonstationary part, with the expectation value of the nonsta-
tionary part varying periodically in time. The author demonstrates that
the cyclostationary properties of chaotic signals may be used to encode
information. One method for detection of a cyclostationarity in a signal
is to calculate the spectral coherence, which is essentially the same as
calculating the autocorrelation function of the Fourier transform of the
signal, but substituting frequency shifts for time lags. If two frequencies
are coherent (or phase locked), then the spectral coherence will show
a peak when the first term in the spectral coherence calculation cor-
responds to the first frequency and the second term corresponds to the
second frequency. By the Wiener–Khintchine theorem, the autocorrela-
tion of the Fourier transform for zero frequency shift is just the Fourier
transform of the signal squared, so simply squaring the chaotic signal
may be enough to observe cyclostationarity. Also demonstrated is that
some chaotic signals are cyclostationary. The power spectra of these
signals have large components at certain discrete frequencies, but even
after removing the parts of the signal at these frequencies, the cyclosta-
tionary property remains. The cyclostationarity may be used to recover
a signal modulated onto the periodic parts of the original chaotic signal.

II. GENERAL DESCRIPTION

The method the author will demonstrate is as follows. Choose a
nonautonomous chaotic circuit, or an autonomous circuit such as the
Rossler system which has large peaks in its power spectrum. Informa-
tion is modulated onto the narrow band frequency in the power spec-
trum, by some method such as phase modulation. If the chaotic attractor
persists over a broad range of parameters, it may also be possible to
use frequency or amplitude modulation. One (or more) chaotic signal
from the chaotic circuit is chosen as a carrier signal, and the periodic
components are suppressed, either through filtering or outright subtrac-
tion. Because the chaotic signal is cyclostationary, the periodic parts
are still present in the statistical properties of the chaotic signal, so at
the receiver the periodic components are restored by some nonlinear
operation, such as squaring the chaotic carrier signal. The phase and
other characteristics of the periodic component may then be extracted
from the chaotic carrier after the nonlinear operation. Acronyms seem
to be very popular in this field, so I will call the method presented here
“chaos cyclostationary keying” (CCK).

When a binary phase modulation is used on the periodic compo-
nent of the chaotic signal, CCK is in essence binary phase shift keying
(BPSK) except that the narrow band phase modulated signal has been
encoded on a chaotic signal for transmission. The properties of CCK
will be similar to BPSK, except that there is some loss of performance
when the periodic signal is converted to chaos and back.

III. D UFFING CIRCUIT EXPERIMENTS

A. Transmitter

The first experiments were conducted with a circuit that is similar
to the Duffing system [15]. Fig. 1 is a schematic of this circuit, while
Fig. 2 is a plot of an attractor from this circuit. This same circuit was
used in previous work [16], [17], although in the previous work there

Fig. 2. Attractor for the circuit of Fig. 1.

was an error in the equations describing the circuit. The set of equations
describing the circuit are

dx

dt
= �[y � z]

dy

dt
= �[�0:1y � g(x) + 2 sin(�)]

dz

dt
= �[f(x)� 0:1z]

d�

dt
= ! + �d

g(x) =

2x+ 3:8 x < �2:6

x+ 1:2 �2:6 � x < �1:2

0 �1:2 � x � 1:2

x� 1:2 1:2 < x � 2:6

2x� 3:8 x > 2:6

f(x) =

x+ 2 x < �1

�x �1 � x � 1

x� 2 x > 1

: (1)

The periodic driving signal is�, with a frequency! = (2�) � 780
rad/sec, and the phase of the driving signal is given by�. The time
constant� was set to104 to simulate the same time scale as the cir-
cuit. The boxes labeledf andg were piecewise linear diode function
generators whose outputs were described byf(x) andg(x) in (1). The
power spectrum of they signal from the circuit is shown in Fig. 3(a).

The power spectrum of they signal in Fig. 3(a) shows large
narrow-band components at the driving frequency of 780 Hz and
at its harmonics. These narrow-band components were removed by
subtraction. The component at 780 Hz was removed by taking the
780-Hz driving signal, passing it through an all-pass filter to generate
the appropriate phase shift, using an amplifier to scale the phase
shifted signal to the proper amplitude, and subtracting from they

signal. The main nonlinearity in this circuit is cubic, so the narrowband
component at the second harmonic frequency of 1560 Hz was not
large compared to the broad-band background, but this harmonic was
also removed to insure that the received signal was not simply caused
by some small term at this frequency.

A periodic signal at the second harmonic frequency of 1560 Hz was
generated by filtering they signal with a fourth-order bandpass filter
centered at 1560 Hz and then using this signal to drive a phase-locked
loop. The phase-locked loop was constructed from a sample and hold
amplifier, an Intersil ICL8038 function generator chip, and a low pass
filter. The phase-locked loop output was phase shifted and scaled by an
appropriate amount and subtracted from they signal to generate theyf
signal, which is they signal with the narrow band parts removed. The
power spectrum of theyf signal is shown in Fig. 3(b). For the circuit,
only the driving frequency and the second harmonic were removed,
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Fig. 3. (a) Power spectrum of they signal from the circuit of Fig. 1. (b) Power
spectrum of they signal from the circuit of Fig. 1 after the periodic parts have
been removed.

although in the simulation shown later, more of the harmonics were
removed. Theyf signal could be transmitted directly or modulated onto
a carrier signal for transmission.

B. Cyclostationarity

Although the narrow-band components of they signal have been
removed, they may still be reconstructed from the broad-band part
of the chaoticy signal. The concepts behind the signal reconstruc-
tion may be explained simply by looking at a sum of periodic sig-
nals. Consider a sum of 2 sine waves,s = sine(f1) + sine(f2).
If we perform a nonlinear operation on these signals, such as cubing
(in this brief, cubing is used as an example because the circuit de-
scribed here has a cubic nonlinearity), then sum and difference fre-
quencies are produced as the sine waves are modulated together:s3 /

sin(f1)� sin(3f1)� sin(f1-2f2)+ � � �. It is then possible to remove
terms that contain only factors off1, such assin(f1) or sin(3f1) etc.,
to produce the signals3f .

At the receiver, another nonlinear operation may be performed on
the received signal, such as squaring, to produce(s3f)

2
/ cos(2f1) +

cos(4f1)+ other terms. Terms containing onlyf1 have been restored,
so it is possible to detect variations in the phase of the signal at fre-
quencyf1.

The actual chaoticy signal contains many frequencies, but because
of the nonlinearities in the chaotic circuit, the frequencies are mixed
together as described above. There are detailed discussions of cyclo-
stationarity in the literature [14], [18], but a detailed understanding is
not required to understand the signal recovery method here.

Cyclostationarity may be detected in a signal by calculating the au-
tocorrelation of the power spectrum [18]. Ifx(t) is a signal andX(f)
is its Fourier transform, then the autocorrelation of the power spectrum
is

�(f) =

1

�1
X(f)X�(f � �)d�
1

�1
X(�)X�(�)d�

: (2)

Fig. 4. Power spectrum of the signal(y ) (y is they signal from the circuit
of Fig. 1 with the periodic parts removed).

A large cross correlation at a particular frequency in the Fourier spec-
trum indicates the presence of cyclostationarity (an analogous result
holds for discrete signals). From the Wiener–Khintchine theorem, one
may equivalently simply take the square ofx(t), and search for large
components at discrete frequencies.

C. Signal Detection

In order to detect information on the signalyf from the circuit of
Fig. 1, the signal is squared. The power spectrum of(yf)

2 is shown in
Fig. 4. The narrow-band component at 1560 Hz is obvious in the power
spectrum. Cubingyf would produce a signal at the driving frequency
of 780 Hz, but the signal-to-noise ratio (SNR) of the narrow-band com-
ponent was not as good as whenyf was squared.

The signal(yf)2 was then filtered with a second-order bandpass
filter with a center frequency of 1560 Hz prior to phase detection. In
order to detect the phase of the filtered(yf)2 at 1560 Hz, a local oscil-
lator was also run at 1560 Hz (there was some slight mismatch between
oscillator frequencies in the transmitter and receiver, but a small mis-
match will not greatly affect the results). The signal(yf)

2 was an input
for a sample and hold amplifier, which was strobed with the 1560-Hz
signal from the local oscillator. The output of the sample and hold am-
plifier was low pass filtered to form the phase error signal�.

The simplest way to encode information onto the chaotic signalyf

was to modulate the phase of the periodic signal driving the circuit (es-
sentially a form of BPSK). We know that the signal in the detector will
be squared, so using the identitysine(!t+�)2 = 0:5(1�cosine(2!t+
2!�)) tells us that the largest possible signal at the receiver will come
when the periodic driving signal phase is modulated by�45� (a phase
shift of 90� in the transmitter is equivalent to a phase shift of 180� in
the receiver). Fig. 5(a) shows the phase modulation signal in the trans-
mitter, while 5(b) shows the phase error signal� from the receiver
when the periodic driving signal at the transmitter is phase modulated
by �45� at a frequency of 10 Hz. Fig. 5 shows that it is possible to
detect the phase of the periodic driving signal even though the peri-
odic parts of the transmitted signal have been removed. The phase error
signal could also be used to phase synchronize a periodic oscillator in
the receiver in order to build a synchronized chaotic response circuit.
In a later section of this brief, numerical simulations will be performed
in order to measure the bit error rate of this communications system.

IV. ROSSLERCIRCUIT EXPERIMENTS

The Duffing circuit used above was nonautonomous. Some au-
tonomous chaotic circuits have strong narrow-band components in
their frequency spectra, so it should be possible to remove the periodic
parts and still recover their phase, as with the nonautonomous circuit.
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Fig. 5. (a) Phase-modulation signal s used to modulate the periodic signal
driving the circuit of Fig. 1. The phase-modulation rate is 20 Hz. (b) Phase-error
signal� measured at the receiver.

Fig. 6. PLR circuit described by (5).

To test this idea, the piecewise-linear Rossler (PLR) circuit shown
in Fig. 6 was used [19]. The PLR circuit may be described by the
equations

dx

dt
= ��[0:05x+ 0:5y + z + c�(A sin(!ct+ �)� x)]

dy

dt
= ��[�x � 0:11y]

dz

dt
= ��[z + g(x)]

g(x) =
0 x � 3

15(x� 3) x > 3
(3)

where � = 104 s�1, the phase control coupling constant
c� = 0:025; A = 3:15; � is varied in order to control the PLR
circuit phase, and!c is set to the peak frequency in the PLR spectrum,
which is 1.16 kHz. The term multiplied byc� in the PLR circuit is

Fig. 7. (a) Power spectrum of thex signal from the circuit of Fig. 6. (b) Power
spectrum of thex signal from Fig. 6 when the periodic parts have been supressed
by filtering.

Fig. 8. Power spectrum of the signal(x ) (x is they signal from the circuit
of Fig. 6 with the periodic parts supressed).

used to control the phase of the narrow-band component of the PLR
frequency spectrum through phase synchronization [20]. Fig. 7(a)
shows the power spectrum of thex signal from the PLR circuit.

Rather than using phase-locked loops, the periodic components were
removed from the PLRx signal by filtering and subtraction. Second-
order bandpass filters were used to isolate the components of the PLR
x signal at 1.16 and 2.32 kHz, and the outputs of the bandpass filters
were subtracted from thex signal to produce the signalxf . The power
spectrum ofxf is shown in Fig. 7(b). There is still some evidence of
narrow-band signals at 1.16 and 2.32 kHz, but their amplitude is down
by a factor of 1000. One advantage of using filters instead of phase-
locked loops to remove the periodic components is that the filter will
still remove the periodic component if its amplitude changes, allowing
for amplitude modulation of the periodic component. The phase-locked
loop, on the other hand, compensates better for small variations in the
frequency of the periodic component.

Fig. 8 shows the power spectrum of(xf)2. In this case, there are
peaks at both the fundamental of 1.16 kHz and the second harmonic of
2.32 kHz, possibly because these signals were not completely removed
from xf . Once again, the phase of the second harmonic at 2.32 kHz
is detected when the phase of the 1.16-kHz frequency in PLR circuit
is varied by using phase synchronization. Fig. 9(a) shows the phase-
modulation signal, while Fig. 9(b) shows the phase–error signal�,
demonstrating that it is possible to recover the phase of the periodic
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Fig. 9. (a) Phase-modulation signals used to modulate the phase of the
periodic part of the chaotic signal from the PLR circuit of Fig. 6. The
phase-modulation rate was 1 Hz. (b) Phase error signal detected at the receiver.

TABLE I
AMPLITUDES a AND PHASES� OF THE DRIVING FREQUENCY(i = 1) AND

ITS NEXT FOUR HARMONICS (i = 2–5) FROM THE y SIGNAL IN THE

SIMULATION OF (1). THESECONSTANTSWERE DETERMINED FROM THE

FOURIER TRANSFORM OF ALONG-TIME SERIES.

part of a chaotic signal from an autonomous chaotic circuit when the
periodic part has been suppressed. In Fig. 9, the phase is modulated at
a frequency of 1 Hz.

V. SIMULATIONS

When used as a communications system, it is most likely that a whole
set of nonautonomous circuits would be used, with each circuit having
a different drive frequency. It would be possible to build many copies
of the same circuit and simply rescale the time constants (� in (1)) so
that every transmitter-receiver pair operated at a slightly different fre-
quency. This method would amount to using frequency division multi-
plexing with binary phase-shift keying (BPSK), except that the periodic
carrier signal is spread with the chaos to prevent it from interfering with
other transmitters.

The circuit described by (1) was numerically simulated (using a
Runge–Kutta integrator with a time step of5� 10�5 s.) to determine
its bit error performance when a simple phase shifting encoding tech-
nique was used. For the simulation, the drive frequency and the next
4 harmonics were subtracted from they signal to generate the trans-
mitted signalys

ys = y �

5

i=1

ai sin(i� � �i) + � (4)

where� is an additive noise term,� is defined in (1), and the parameters
aI and�I are defined in Table I. An information signal was encoded
onto the chaotic signal by varying the drive phase�d between�1 ra-
dian at a frequency of 20 Hz.

Fig. 10. Circles show the probability of bit errorP as a function of (energy
per bit)/(noise power spectral density)E =N for chaos cyclostationary keying
(CCK) with added white Gaussian noise. The solid line is the probability of bit
error for BPSK, the dotted line isP for PSK with phases�45 , and the squares
areP for DCSK.

At the simulated receiver,ys was squared and filtered with a band-
pass filter with a center frequency of 1560 Hz:

du

dt
=
�y2s
r1c

�
u

r2c
+ v

dv

dt
=
�u(r1 + r3)

r1r2r3c2
(5)

whereu was the filter output andr1 = 102 000 
 , r2 = 204 000 
,
andr3 = 513 
.

The next step in the receiver was to determine the phase ofu. The
signalsu was generated, wheresu = 1 for u � 0 andsu = �1 for
u < 0. This signalsu was used to strobe a sinusoidal signal at 1560 Hz

d�r

dt
= !

� = sin(2�r)js =0"

d�

dt
= 1000(� ��) (6)

where! is the same as in (1) and� is produced by samplingsin(�r)
whensu crosses zero in the positive direction. The final phase error
signal is�, which is the low pass filtered version of�. The value of�
is set to 0 at the start of each bit and the final value of� at the end of
each bit is used to determine whether a binary 1 or 0 was sent.

A. Comparison to BPSK

Fig. 10 shows the probability of bit errorPb as a function of (bit
energy)/(noise power spectral density) when (1) is used to simulate a
transmitter and the added noise is Gaussian white noise. The bit-error
performance is not as good as simple BPSK, but that is to be expected,
as producing the chaos and detecting the periodic signal will have some
effect on performance. The transmitted signal will interfere less with
other signals than a periodic BPSK signal will, so something is gained
by using chaos. The performance shown in Fig. 10 is probably not ideal
since the bit-error probability shown here does depend on the bandpass
filter in the receiver, which is not ideal.

For comparison, the solid line in Fig. 10 shows the bit error prob-
ability of BPSK, while the dotted line shows the probability of bit
error for a PSK signal with a phase shift of�45�. These lines are
calculated from analytic formulas [21], so they are ideal. The squares
in Fig. 10 are the calculated bit-error rate for differential chaos shift
keying (DCSK) [22]–[24], which is another asynchronous chaotic com-
munication method. The DCSK curve appears slightly better, but it
should be noted that the performance of DCSK will be worse for signal
to noise ratios less than 0 dB [24]. For the DCSK data in Fig. 10, the
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Fig. 11. Probability of bit errorP as a function of interference frequency
(normalized by driving frequency). The dark circles are for interference from
another CCK transmitter, while the open squares are for interference from a
purely sinusoidal signal.

SNR corresponding toEb=N0 =16 dB is estimated to be+ 0.69 dB
[24]; for the CCK data in Fig. 10, the SNR forEb=N0 =16 dB was
�10.9 dB (with a bit length of 0.05 s), although, as with DCSK, the bit
error probability curve will shift for different bit lengths, so CCK is not
noise robust under the definition of Abel [24]. CCK is not noise robust
because the noise is also squared when the received signal is squared.

Other transmitter-receiver pairs could be added by using frequency
division multiplexing. The effect of interference from another trans-
mitter with the same power is shown in Fig. 11. The solid circles show
the probability of bit errorPb when a signal from a second Duffing
system has been added to the chaotic carrier signal. The interfering
signal comes from a Duffing system that is identical to (1) except that
the time constant� and the frequency! have been multiplied by a
constant. Thex axis in Fig. 11 shows the driving frequency for the in-
terfering signal divided by the driving frequency for the chaotic system
producing the carrier signal. The frequency range of this plot is limited
to values close to 1.0 because the bandpass filter in the receiver su-
presses interfering signals outside of this range.

The interference acts like a small constant noise signal outside
the 20-Hz bandwidth of the information signal, and only causes
significant interference when the interference is within the information
bandwidth. The bandwidth efficiency of this chaotic communications
method should be about the same as for BPSK.

Periodic interference will also affect the chaotic carrier signal. Also
shown in Fig. 11 (open squares) is the bit error rate caused by a si-
nusoidal interference signal with the same power as the chaotic carrier
signal. The interference from a sinusoidal signal is negligible outside of
the 20-Hz information bandwidth. The effect of sinusoidal interference
could be further reduced by filtering the received signal with a notch
filter which removes signal components at the driving frequency. The
peak power in the chaotic carrier power spectrum is a factor of 10 less
than the peak power in a sinusoidal signal of the same total power; a
better choice of chaotic circuit could reduce this ratio even more.

VI. CONCLUSION

It is possible to use the cyclostationarity properties of chaos to gen-
erate a broad-band carrier signal which has performance characteris-
tics similar to BPSK, with only a small loss involved in converting the
signal into chaos and back CCK. The advantage of the chaotic signal
is that it has a relatively flat spectrum, and, therefore, will not inter-
fere with other signals, making it useful for unlicensed communica-
tions applications. There are other methods for producing broad-spec-
trum communications signals, but CCK is very simple, and therefore,
potentially very inexpensive.
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