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Communications 

Procedure for Correct Refocusing of the Rotman Lens 
According to Snell's Law 

DAVID R. GAGNON, MEMBER, IEEE 

Abstract-A procedure is derived for proper refocusing of the 
dielectric-filed Rotman lens with beam port locations determined 
according to Snell's law. The approach provides an alternative lens 
configuration which may give a wider field of scan, at a given focal 
length, for lenses fabricated in microstrip or stripline. The presence of 
grating lobes in the lens is discussed. 

I. INTRODUCTION 

The techniques for microwave lens design, as described by Rotman 
and Turner [ 11, have found wide application in beamforming antenna 
systems [2]. This approach is well suited to implementation in 
stripline or microstrip circuitry. In general, the design of a particular 
strip transmission-line lens is first obtained in air, as per Rotman and 
Turner, and the dielectric region is then scaled by the inverse square 
root of the substrate dielectric constant. By the use of a substrate with 
high dielectric constant, a very compact lens can be obtained. 

As an alternative, the array port contour (inner lens contour) can be 
left unscaled, in which case the beam port locations on the lens focal 
arc are determined according to Snell's law, i.e., 

sin f l =  er- ' I 2  sin CY, 

where OL is the scan angle of the antenna array, 0 is the corresponding 
angle of focus inside the lens, and er is the relative dielectric constant 
in the parallel plate region of the lens. This arrangement provides 
beam port and array port placements which give improved coupling 
to the outermost beam ports, particularly for stripline or microstrip 
lenses used with small arrays. It shall be referred to here as the 
refracting lens. In this communication, the theoretical performance of 
the refracting lens is compared with that of the conventional design at 
wide scan angle and the design equations for correct refocusing of the 
refracting lens are derived. 

11. COMPARISON OF TWO APPROACHES 

Fig. 1 shows the array port and beam port curves for two lens 
designs, one of which comes from simply scaling the design obtained 
in air to the wavelength in the substrate medium. The other i s  
designed for Snell's law placement of the beam ports and is depicted 
with the heavier line in the figure. The two are shown superimposed 
for comparison. The particular design example is for a lens with a 
focal length of five wavelengths and an array of six elements with 
half-wavelength element spacing in air. The relative dielectric 
constant in the lens is chosen to be 2.33 and the beam port curves 
which are shown in the figure are for f 50 degrees of scan with off- 
axis points of perfect focus at * 30". For both designs, the ratio of 
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Fig. 1. Comparison of conventional lens and refracting lens with identical 

parameters. The contours of the refracting lens are drawn with the heavier 
line. 

off-axis to on-axis focal length is g = 1.06. Larger values for this 
parameter give increased phase errors and reduced coupling to the 
outer beam ports so that the wide-angle performance of the scaled 
conventional lem is further degraded in comparison with the properly 
designed refracting lens. 

In order to compare the performance of the two designs at wide 
scan angles, we shall examine the coupling between the array ports 
and the outermost beam ports for both cases. The direct-ray 
amplitude coupling coefficient is given by [3] 

where K and X are the wavenumber and wavelength in the lens 
parallel plate region, dA and d~ are the widths of the array port and 
beam port, E (e, d )  is the normalized field pattern of a port of width d 
and angle B from the port normal, and ro is the distance between the 
array port and beam port. Assuming a uniform field distribution in 
the port aperture, the normalized radiation pattern is approximately 
given by 141 - - 

(2) 
sin (?rd sin e / h )  

2 COS* e. 1 Ird sin 8/A 1 E2(0, d ) =  

The approximate look angles between the outermost beam port and 
the "worst case" array port are shown in Fig. 1 for both design 
cases. Using these angles in (1) and (2) with beam ports at scan angles 
10" apart, it is found that the magnitude of the coupling coefficient 
for these beam podarray port pairs is 1.36 times (2.7 dB) greater for 
the refracting lens at a frequency of 10 GHz. In addition to providing 
improved coupling between the beam ports and array ports, the 
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Fig. 2. 
and correctly refocused refracting lens design example at 50" scan angle. Fig. 3. Microwave lens parameters. 

normalized with respect to the focal length F, is here defined: design equations for the refracting lens yield solutions at wider scan 
angles than for the scaled conventional lens. 

111. MODIFIED DESIGN EQUATIONS 
q = N/F,  X =  X / F ,  y = Y/F, 

w- WO 
F 

The refracting lens with an array port contour or inner lens contour 

focused. In other words, if the array port contour is obtained strictly 
according to [l] without scaling to the wavelength in the lens 
substrate material and with subsequent placement of beam ports 
according to Snell's law, substantial phase errors will result. This is 
because the curvature of the lens is typically too large, with respect to 
wavelength, for Snell's law to be applied directly. We shall refer to 

design. Fig. 2 shows a plot of phase errors on paths to each array port 
from the 50" beam port for the uncorrected refracting lens design 

w = -  , g = G/F.  
obtained according to the design equations in [l] is not correctly 

Also define, 

a0 = (1 - sin2 d e r )  ]I2, bo = sin a. 

F~~ this case, [ I ,  eqs. (8) ,  ( 1  become 

the lens design thus obtained as the uncorrected refracting lens y€f/2=q(€j/2- w )  (9) 

€ ,X2  + €,y2+ 2€,gX= w2- 2€j/2gw (10) 
with the parameters of the previous example. The array ports are 
numbered sequentially from one end of the array with array port 
number 6 being the nearest to the beam port. Also plotted in Fig. 2 
are the corresponding phase errors for the refracting lens which was 
designed using the corrected design equations derived here. The 
corrected refracting lens design gives phase errors much smaller than 
one degree electrical for this example. 

In order to correctly refocus this type of lens, another set of design 
equations must be obtained, starting from proper modification of the 
electrical and geometrical constraints which are given in [l, eqs. (1)- 
(6)]. Definition of the parameters involved is given pictorially in Fig. 
3. F,, F2, and G are points of perfect focus at angles of - 0, + P ,  and 
0 degrees, respectively. 

Electrical constraints: 

Geometrical constraints: 

- 2 ~ ;  '12FY sin a (6) 

( F T ) 2 =  ( F 2 + X 2  + Y 2 ) +  ~ E ; ~ / ~ F X ( E ~ -  sin2 

+ ~ E ; I / ~ F Y  sin (Y (7)  

(@)2= ( G + X ) 2 +  Y2.  (8) 

which are the equations to be solved for the (x, y) coordinates of the 
array ports on the inner lens contour. The following relation is also 
obtained between the normalized distance r ]  from the lens axis to a 
given antenna element and the normalized length w of the transmis- 
sion line connecting the antenna element to an array port, 

where a, b, and c are functions of r ] .  This is the same as [l, eq. (12)] 
except that the parameters a, b, and c are given, in terms of r ] ,  by the 
following: 

The choice of the value of g ,  the ratio of on-axis to off-axis focal 
length, affects the quality of focusing away from the three points of 
perfect focus. Rotman and Turner describe a procedure for estimating 
the optimum value of g for a given choice of the off-axis focus angle 
a. By substituting 0, the off-axis focus angle in the refracting lens, in 
place of a, [l ,  eq. (13) ]  becomes 

( 1 5 )  
P2 g= 1 +- . 
2 

Following Rotman and Turner, a set of parameters, which is 
This gives a value of g which is close to the optimum for minimking 
the overall aberrations of the lens. 
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The optical aberration of the lens at a given scan angle is obtained 
from the difference in total path lengths (including cable length) 
between the central ray, which passes through the origin, and one 
other ray, with both paths terminating at a given wavefront in free 
space. The expression for the path length error AL is given by 

A L  -=(h2+x2+y2+2hX cos 0 + 2 h y  sin / 3 )1 /2  
F 

- h + w + r ]  sin 8 (16) 

where h = H/F and H is the distance from the origin to the beam 
port corresponding to scan angle 8, located at angle 0 on the lens focal 
arc. Note the similarity of this expression to [ l ,  eq. (14)]. 

IV. THE GRATING LOBE “PROBLEM” 
If the array port spacing exceeds a half-wavelength in the 

refracting lens, grating lobes will appear inside the lens when the 
antenna array is scanned to the outer angles. However, it can be 
easily shown that grating lobes will not appear in the scan space of the 
lens. For an antenna array with h/2 element spacing, let 8 be the scan 
angle of an incident plane wave. The phase difference 6 between 
adjacent array elements is then given by 

x 
6 =  --sin 8 2 

where X is the free-space wavelength. The effective spacing of the 
array ports inside the lens is E ; / ~ X / ~ .  Be rescaling the problem to air, 
the angular position of the first grating lobe inside the lens, 
designated as el ,  is given by 

E : / 2  5 sin el = x + 6 (18) 2 

which yields the following relationship between the scan angle 8, and 
the angular position of the first grating lobe inside the lens: 

2 sin 8 
sin 8, =E1/2-E1/2 . 

r r  

If OlS is the corresponding scan angle of the grating lobe, then 

sin t?ls=E;/2 sin el (20) 

which, from (19), gives the following result: 

sin Ol,=2-sin 8. (21) 

The scan angle of the first grating lobe is undefined for array scan 
angle less than 90 degrees. Thus it is found that grating lobes will not 
appear in the scan space of the lens. Although they do not appear in 
the scan space, the presence of grating lobes in the refracting lens 
constitutes a compromise of effective antenna gain at wide scan 
angles. This may be an acceptable trade-off for array/lens combina- 
tions which require a wide angle of scan if properly terminated beam 
ports are provided to absorb the grating lobe energy. 
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Evaluation of Edge Effects in Slot Arrays Using the 
Geometrical Theory of Diffraction 

GIUSEPPE MAZZARELLA, STUDENT MEMBER, IEEE, AND 
GAETANO PANARIELLO 

Abstract-In the design of high-performance slot arrays, the influence 
of the array edges should not be neglected. The quantitative evaluation of 
these effects requires the knowledge of the Green’s function for a wedge. 
Upon use of the geometrical theory of diffraction (GTD), an approximate 
form of this Green’s function is computed, which admits a representation 
in terms of “images.” The influence of the edge is modeled as a coupling 
with a suitable image of the slot, which can be very efficiently computed. 
Some test cases show that the overall error of this approximation can be 
neglected since it is comparable with the error due to mechanical 
tolerances. 

I. INTRODUCTION 

The design of a waveguide-fed longitudinal shunt slot array has 
been discussed by various authors. It is well known that an accurate 
matching of the input impedance of the array can be achieved only 
when external mutual coupling is taken into account. A procedure 
which allows a systematic inclusion of such coupling in the design 
equations has been recently formulated by Elliott [ 11. 

Let us consider an array of N slots whose offsets and lengths are x, 
and 2 I,, . Assuming the tangential electric field in the slot given by 
V:/w cos ?rz,/21,, 2 [l], [2] ,  wherein w is the slot width and Z ,  a 
local abscissa on the slot, the active admittance Y t  of a slot can be 
expressed recasting [2 ,  eq. (3311 as 

wherein U, is the self-admittance of a slot and f,, a geometric factor 
depending on (x,,, I,) as well as on the waveguide dimensions and 
angular frequency w. 

The coupling coefficient is proportional to the reaction integral 
between the field of a slot (say n) and the equivalent current 
distribution of another (say m),  and is given by 

wherein is the free-space impedance and H, ( zm) is the field due to 
the slot n measured at the slot m. 

The exact expression of H, in the presence of one edge is very 
complicated so that the evaluation of (2) is in general unfeasible. 
Moreover, no exact expression for H, is known when all four edges 
are included. 
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