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Error Analysis Techniques for Planar Near-Field 
Measurements 

Abstract-The results of an extensive error analysis on planar near- 
field measurements are described. The analysis provides ways for 
estimating the magnitude of each individual source of error and then 
combining them to estimate the total uncertainty in the measurement. 
Mathematical analysis, computer simulation, and measurement tests are 
all used where appropriate. 

I. INTRODUCTION 

OR ANY measurement technique, a reliable estimate of F errors is one of the primary concerns, and this is especially 
true of a method involving a significant level of mathematical 
analysis such as the near-field technique. The determination of 
error bounds for any given antenna/probe/near-field measure- 
ment system combination can be a difficult and demanding 
task, and the mathematical complexity is a major reason for 
the difficulty. There is often, therefore, a temptation to bypass 
the mathematics and attempt to establish error bounds for the 
general measurement technique by a comparison measurement 
on a specific antenna. In this approach, the results of near-field 
measurements on a given antenna are compared with far-field 
measurements, and differences between the two are taken as a 
measure of the errors in the near-field technique. The 
limitations of such an approach are as follows. 1) The 
observed differences are due in part, and perhaps primarily, to 
errors in the far-field measurement. 2 )  It is difficult to 
generalize one result to another antenna or measurement 
system. 3) There is no indication of which measurement 
parameters are the most critical or the contribution from each 
error source. 4) Far-field measurements may be impractical 
for certain classes of antennas suited to near-field measure- 
ments. 

This does not mean that comparisons are not valuable. They 
demonstrate reliability, help to establish confidence without 
detailed mathematical study, and indicate possible areas where 
more detailed study should be done. They are one piece in the 
error analysis puzzle, but certainly not the whole picture. 

A complete and general error analysis requires a combina- 
tion of approaches, both analytical and experimental, to 
identify all possible error sources and estimate their contribu- 
tion to final calculated results. Such an analysis provides a tool 
for the system designer to determine the requirements for each 
part of a near-field system, and for the metrologist to estimate 
the uncertainty in measured quantities. 

This paper will summarize the results of an extensive error 
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analysis study on planar near-field measurements carried out 
at the National Bureau of Standards. In some cases, error 
equations have been derived to predict the effect on far-field 
quantities such as gain and sidelobe level due to various 
measurement errors. In other cases, simulation or special tests 
have been developed to quantify both the near-field error and 
its effect on results. Examples of some of these tests will be 
given to illustrate key points in the study. 

The comprehensive error analysis is based on a four-part 
approach. 1) All significant sources of error are identified and 
itemized. 2 )  The magnitudes of all near-field error sources are 
measured or estimated, and in many cases the functional form 
of the errors can also be determined. This requires, for 
instance, the use of laser devices to measure the x-,  y-, and z- 
position errors, and calibration techniques to measure receiver 
linearity. 3) Error equations have been derived or special tests 
developed to determine the relationship between the near-field 
measurement errors and the far-field results. 4) The individual 
error components are correctly combined to give a realistic 
estimate of the total resultant error. 

A .  Identifying Error Sources 
All possible errors can be divided into three broad catego- 

ries: theory, numerical calculations, and measurement. Theo- 
retical errors include approximations that are made in the 
development of the working equations that limit the ultimate 
accuracy. From a careful study of the theoretical development, 
we observe that any such errors due to theoretical approxima- 
tions are either of negligible magnitude or may be considered 
as measurement errors. For instance, the transmission equa- 
tion that specifies the measured relative near-field data B i ( P )  
and B l ( P )  in terms of the transmitting parameters tlo(K) of 
the antenna under test (AUT) and the receiving parameters 
si2(K) and s&(K) of two independent probes is 

B ; ( P ) = F ' a o  1 t l o ( K )  * s;2(K)e'rde'K'P dK (1) 

B; ( P ) = F " a o  s t l o ( K )  . s&(K)eiydeiK.P dK. (2) 

These relations are derived from Maxwell's equations under 
the usual assumptions of linearity, single frequency (e- j w f )  

operation in free space, and the additional assumption that 
multiple reflections between the AUT and the probes are 
negligible. The first assumptions are generally valid to within 
negligible error, and multiple reflections can be viewed as a 
measurement error. That is, B;(P)  and B { ( P )  will be in error 
due to multiple reflections, but the transmission equation 
relating error-free near-field data, and error-free probe and 
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AUT parameters is exact. Similar comments apply to the 
probe correction relations (7) and (8), and the equations 
relating conventional far-field quantities to tlo(k). By adopting 
this point of view, the focus of the error analysis is on the 
nonideal character of the measurement system, not on the 
mathematics. 

Errors due to numerical calculations arise from roundoff 
errors in the computer and aliasing errors in the numerical 
evaluation of the integral in (5) and (6). The roundoff errors 
for modern computers using at least 32-bit words are much 
smaller than measurement errors, and they can therefore be 
neglected. The aliasing errors will be discussed in more detail 
in the section on measurement errors. 

B. Summary of Theory 
For later reference, the remaining essential parts of the 

plane-wave scattering matrix theory are summarized here. In 
(1) and (2) above, B,’(P) and B:(P) represent the complex 
output of two probes having nominal orthogonal polarizations, 
where P is the x-y position vector on the plane z = d.  a. is the 
input to the antenna under test. F‘ and F” are impedance 
mismatch factors between the respective probes and the 
“load” port connected to the probes, 

where ri, r;, and r; are, respectively, the reflection 
coefficients of the load, the first probe, and the second probe. 
The transmitting properties of the AUT are specified by the 
plane-wave transmitting coefficients (PWTC) tlo(K) which are 
functions of the transverse part of the propagation vector k .  

K = k,i+ k,,,j = k - 72 (4) 

where y = -denotes the z-component of k .  For e lu‘( 

time dependence y is chosen positive real or imaginary. In a 
similar way, s,’,(K) and sd;(K) represent the plane-wave 
receiving coefficients (PWRC) of the two probes. We note 
that, consistent with the notation employed by Kerns [ 11 in the 
original development, the lower case s’s and t’s represent the 
complete vectors, not merely the transverse x-y components. 

The solution for the AUT parameters is accomplished 
through a Fourier transformation of the measured data 

D ” ( K )  D ’ ( K )  

In these equations, some common conventions have been 
employed for compactness. The first is to express the ratio 
b,’(P)/ao as the ratio of relative near-field data, 

and the normalization constant 

(9) 

The near-field amplitude and phase pattern can then be 
measured relative to the reference point Po, which is generally 
at or near the maximum amplitude, and the normalization 
constant can be measured in a separate procedure. The second 
convention is the use of m and c subscripts on the plane-wave 
coefficients in (7) and (8). They are used to denote two 
orthogonal components of the vectors tIo(K) or soz(K). They 
generally denote “main” and “cross” components, however, 
to be consistent with definitions of polarization ratios (see 
(14)-( 17)), the m subscript specifically denotes either the 
linear components referred to as elevation, epsilon, vertical, 
4,  or the right-circular component. The c subscript then 
denotes the corresponding orthogonal components, azimuth, 
a ,  horizontal, 19, or left-circular. As a general rule, the probes 
are chosen such that the first probe couples primarily to the rn 
component and the second one couples primarily to the c 
component. The probe corresponding to si2(K) will therefore 
be referred to as the m or main-component probe, and the one 
corresponding to s&(K) as the c or cross-component probe. 

The receiving polarization ratios appearing in (7) and (8) are 
the ratios of the probe components, 

D ’ ( K ) =  B;  ( P ) ~  - 1 K . P  d p  
e - i v d  

4w2F A 

D”( K )  = tlo( K )  . s&( K )  

D ” ( K ) =  1 B;  ( P ) e - ~ K . P  dp 
e - i y d  

4a2F ” A “ 

(7) 

The complex polarization ratios are in many ways analogous 
to transmission-line reflection coefficients, and polarization 
mismatch factors written in terms o f p , ( K )  and p,(K) are very 
similar to impedance mismatch terms. When the coordinate 
axes coincide with the E-field major axes and the rn and c 
subscripts refer to linear components, 

tilt angle = 7 = a / 2  or 0, 

arg ( P l )  = 



756 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 36. NO. 6, JUNE 1988 

TABLE I 
ERROR SOURCES IN PLANAR NEAR-FIELD MEASUREMENTS 

~ 

~ 

Primary Methods of evaluating 
Computer Test on Measurement Error 
Simulation System Equations Source of Error 
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I )  Probe relative pattern 
2) Probe polarization ratio 
3) Probe gain measurement 
4) Probe alignment error 
5) Normalization constant 
6 )  Impedance mismatch factor 
7) AUT alignment error 
8) Data point spacing (aliasing) 
9) Measurement area truncation 

IO) Probe x ,  y-position errors 
I I )  Probe z-position errors 
12) Multiple reflections (probeiAUT) 
13) Receiver amplitude nonlinearity 
14) System phase error due to: 

Receiver phase errors 
Flexing cablesirotary joints 
Temperature effects 

15) Receiver dynamic range 
16) Room scattering 
17) Leakage and crosstalk 
18) Random errors in amplitudeiphase 

X 

X 

X 

X 
X 

X 

X 

X 

X 

X 

X X 

equations for the basic quantities are and 

axial ratio = AR = I pI 1 .  
In the main beam region of linearly polarized antennas, these 
conditions are often fulfilled, and pl can therefore be thought 
of as a complex axial ratio. Familiar polarization parameters 
such as axial ratio, AR(K) and tilt angle 7(K) then follow from 
the polarization ratios, but the form of the relations depends 
upon whether linear or circular components are being denoted 
by the m and c subscripts. If circular components are being 
used, m r’enotes the right-circular component and c the left. In 
this case, 

E( r )  - !? t lo( Rk/r)aoeikr 

where G(K) denotes the power-gain function, a(K) is the 
receiving effective area, Yo = d& is the plane-wave 
admittance in the space medium, qo is the characteristic 
admittance for propagated waves in the transmission line 
connected to the antennas, ro is the AUT’S reflection 
coefficient, and r is the position vector with transverse part R, 

(21) r = R + ze,. 
and 

7(K)= 1/2 arg (pt(K)). 
11. MEASUREMENT ERRORS 

The errors due to the measurement system are the major 
source and will be the primary focus of the remaining 
discussion. We begin by itemizing in Table I the individual 
error sources. The noted methods for evaluation are described 
in detail with each source and are the means for quantifying 
the error effect on far-field results. 

The measurement system errors listed in Table I can be 
considered in two broad categories. The first are uncertainties 
in probe parameters arising from the gain, polarization, and 
pattern measurements used to obtain so2(K), and the second are 
errors in the calculated spectra D’(K) and D”(K)  arising from 
the measured data B{ (P), B{ (P), A ’, A ”, and the various 
reflection coefficients. Before discussing these errors, some 
general comments are made. With the exception of error 18, 

If linear components are being used, 

It is important to realize that the plane-wave scattering 
matrix coefficients are power normalized [ 11 so that absolute 
quantities such as power gain, receiving area, and far-electric 
field follow directly from a solution for tlo(K). The defining 
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all of those listed in Table 1 are primarily systematic. They 
may have a small random component, but those components 
are all combined in error 18. Second, most of the error sources 
produce an “error spectrum.” This means, for instance, that 
the error may vary as a function of x and y in a repeatable and 
deterministic manner, and under Fourier transform produces 
an error spectrum. In the case of probe pattern errors, they 
vary with K,  and therefore the spectrum is obvious. Finally, 
each of the errors is assumed independent and uncorrelated 
with any other error. They can all be treated separately and 
combined using their independent character. 

A ,  Probe Paramefer Errors 

The effect of probe errors (items 1-4 in Table I) will be 
considered first and will depend on the probe’s polarization 
properties relative to those of the AUT. Every case cannot be 
considered here, but we will consider the most common ones. 
Others may be derived by similar application of the basic 
relations. We will assume that the first probe couples 
primarily to the main component of the AUT; the second 
responds primarily to the cross component; therefore, the 
AUT’s and probe’s polarization ratios satisfy the conditions 

on the determination of either component. Under these 
conditions, the cross-polarized response of the main compo- 
nent probe has no significant effect on the measurement. 2) 
Since the AUT’s main component pattern and partial gain are 
proportional to f,(K), the errors in the main component, 
arising from probe errors are one-to-one. That is, they have 
the same magnitude as the errors in s,i(K), and the result in a 
given direction (specified by (K)) is affected by the probe’s 
pattern in that same direction. This is in contrast to the 
cylindrical and spherical near-field measurements where the 
result in one direction is affected by the probe’s pattern over 
an extended region. 3) The probe’s effect on the AUT cross 
polarization depends on the relative polarization ratios of the 
AUT and the second probe. 

1) For regions where 

pr(K)p5”(K)  + 1, (28) 

(27) reduces to the same form as (26) and errors in f ,  are 
produced only by errors in D” and s,” . This condition is likely 
to exist in the sidelobe region of the AUT where pr may 
approach 1,  but pS” is still quite large, as illustrated by Fig. 1. 
In a sense, when (28) is satisfied, the probe is “better” 
polarized than the antenna being measured. 

2) In the region of the main beam, however, the product of 
= I pS‘ (K)/pS” ( K ) /  1 (22) the polarization ratios may approach 1, 

because the AUT and cross-polarized probe have similar axial 
ratios but are orthogonally polarized. In that case, all the terms 
of (27) are significant and errors in ps“ , D I ,  and also 
produce errors in r,. In either case, the uncertainties in probe 

for all values of K where results are desired. The I O  and 02 
subscripts in these and following equations have been deleted 
for brevity. The probe correction equations then reduce to 

parameters are obtained from a knowledge of the errors in the 
probe calibration process and then used in (26) and (27). 

Another useful form of the error equation for probe effects 
comes from considering the error in the AUT polarization 
ratio rather than the individual components. Equations (24) 
and (25) show that 

D‘(K) 
s , p )  

s: ( K )  s;(Kbs’’ ( K )  . 

f , (  K )  =-- (24) 

D”(M) D ’ ( K )  r,( K )  = ~ - ( 2 5 )  

Focusing attention on the terms involving the two probe’s 
parameters, the following conclusions can be drawn. 1)  If the 
polarization ratio of the first probe satisfies the requirements in 
(22) and (23), uncertainties in ps’(K) have no significant effect 

f , (K)  D ” ( K ) s i , ( K )  1 
. (30) -~ - prt ( K )  = - - 

t,(K) D’ (K)s :  ( K )  PS‘;(K) 

An additional E subscript has been added topr and the ps”(K) in 
the second term of (30) since we want to consider the effect of 
errors in ps”(K) on the AUT polarization results. P ~ ” ~ ( K )  
represents erroneous values for the cross-polarized probe 
polarization and Pr,, the resulting AUT parameter. The first 
term in (30) is evaluated using (5a) and (6a), giving 

The ratio of measured to actual polarization is then 

Four typical cases will illustrate how (32) is used. The first 
two relate to nominally linearly polarized AUT and probes 
with the E-field and coordinate axes approximately coincident. 

. .  
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Fig. 1 .  Typical main and cross component patterns for AUT where 
magnitudes are approximately same in sidelobe region. 
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Fig. 2.  Worst-case axial ratio error for linear polarization due to error in probe’s polarization. AUT axial ratio is 30 dB. 

The ratio of p ’ s  is then equivalent to axial ratio errors. In the 
first case, the complete probe correction is applied, but there is 

assumptions that 

is equivalent to assuming 

an error in pS“. Fig. 2 shows the worst-case curves under the P: ( K )  = 0, Ps’:(K) = O0 

and the error is now 

arg ( p , (  K))  = - a/2 (33a) 

and 

(34) 

(35) 

arg (p,”(K))=arg (p,’:(K))=a/2. (33b) Fig. 3 shows the axial ratio errors to be expected for various 
AUT probe combinations under the assumptions of (33). From 

These are consistent with the assumed field polarization, and these and similar curves the need for, and accuracy of 
for linear polarization it is generally the magnitude of p,”(K) polarization probe correction for linear antennas can be 
that is in error, not its phase. determined. 

Next we consider the effect of assuming that both probes are Next we consider two cases of nominally circular polariza- 
perfectly polarized and therefore use only the principal tion for the AUT and probes. The error equations correspond- 
component pattern of each probe in the probe correction. This ing to (32) and (35) are written in terms of axial ratios by 
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Fig. 3. Worst-case ratio error for linear polarization due to neglecting probe’s polarization. AUT axial ratio is 30 dB 

noting from (14) that for small axial ratios in decibels, 

AR,(K)= 17.31pf(K)( for right-circular (36a) 

and 

AR, (K) = 17.3 I 1 / p r  (K) I for left-circular (36b) 

with similar relations for the probes. Using these in (31) and 
noting that the AUT is right-circular while the cross-polarized 
probe is left-circular, 

AAR, ( K )  = axial ratio error in dB 

= JAR,(K)e‘2T1 + AR,”(K)e-’2T: 

- ARs’L(K)e-’2rL I - ARJK), (37) 

where 

7, 

7,” 

7,; 

tilt angle for the AUT, 
correct tilt angle for the probe, 
tilt angle used for the probe. 

These tilt angles are less accurate than for linear polarization 
since they are for circularly polarized antennas. Fig. 4 shows 
plots of the AUT axial-ratio error as a function of probe axial- 
ratio error for 7, = 0 and various combinations of 7,” and 7,:. 
From the figure and (37), the error is bounded by the extremes 

(38) 

This condition occurs only under the very special case when 
the actual and assumed probe polarization phases are 180” 
different and  the AUT polarization phase is identical to one of 
these. More typical values are represented by the other curves. 
This is illustrated in Fig. 5 where the distribution of errors has 
been calculated for a uniform distribution of all possible phase 

AAR,(K) < (probe axial ratio + axial ratio used). 

conditions. The maximum occurs for less than one percent of 
the combinations, and the most probable values are in the 
region of the probes’ axial ratio. 

If the probe polarization is not used in the probe correction, 
this is equivalent to assuming that 

ARJ:(K) = 0 (39) 

and the error in this case is bounded again by the extreme and 
rare situation, 

AAR,(K) 6 fprobe axial ratio. (40) 

The curve in Fig. 5 for no polarization correction shows the 
probable value again peaked at the probes’ axial ratio value. 

Probe alignment errors can be considered as a part of the 
probe pattern and polarization errors. The probe’s receiving 
properties are measured or calculated with respect to a 
coordinate system fixed to the probe. When it is mounted for 
near-field measurements, errors in its alignment effectively 
rotate the coordinate system. Since the probe pattern is 
generally slowly varying, azimuth and elevation misalign- 
ments produce very small probe pattern errors. Rotation 
misalignments about the z axis produce errors in ps‘(K) or 
p,”(K) which can be significant. These can be estimated using 
the probe polarization pattern, the rotation error, and (37) for 
the effect of probe polarization errors. 

B. Near-Field Measurement Errors 
Items 5-18 in Table I are the individual sources which 

contribute to errors in the spectra D‘(K) and D “ ( K ) .  These 
errors will be discussed in the order they appear in Table I. We 
will describe what effect they have on far-field results, 
summarize error equations, and describe what computer or 
experimental tests can be performed to quantify the errors. 
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The computer tests [2] use either actual or hypothetical near- 
field data to represent perfect error-free data. These data are 
then modified with errors of various types and magnitudes. 
Differences between far-field parameters computed from the 
error-free and modified data sets are a direct measure of the 
effect of each error source. The experimental tests are 
essentially a self-comparison technique where measurements 
on a given antenna are repeated after making a known, specific 
change in the system. Ideally, the change is made to produce a 

sign reversal in the effect of only one error, and the difference 
between the two measurements is then a direct measure of that 
specific error. In the equations of this section, single or double 
primes on B(P),  D(K), and the normalization constant A will 
be dropped since the relations refer to either case. 

Gain Errors 
We first consider those error sources which produce a 

constant effect on the far-field pattern; that is, they are 
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generally not functions of K .  These errors affect only the peak 
gain and other related power parameters. Using a concise 
version of the gain equation [ 3 ]  for near-field measurements, 
we obtain 

where AM and M refer to the impedance mismatch factor and 
the A's in each case denote the errors in the quantities. 

Alignment Errors: Antenna alignment errors imply that the 
antenna coordinate system as defined by mirrors, fiducial 
marks, tooling balls, or a boresight scope is not precisely 
aligned with that of the mechanical scanner. Since pattern 
results are defined with respect to the mechanical scan plane, 
angular misalignment of the AUT will produce boresight 
errors equal to the azimuthal and elevation rotation errors. 
Small misalignment about the z axis will produce approxi- 
mately equivalent errors in the tilt angle for K values not too 
far off axis. 

Aliasing Errors: In principle, data point spacings can be 
chosen so that aliasing errors are arbitrarily small, but noise 
and rapidly varying systematic errors set the practical lower 
limit. As developed in the theory [ 11, [4 ] ,  the summation of 
incremental data going from the integral of ( 5 )  and (6) to the 
digital Fourier transform (DFT) is exact (there is no aliasing 
error) if the Fourier transform of the measured data is band- 
limited with band limits k l  and k2, and the data point spacings 
satisfy the sampling criteria 

corresponding to those band limits. If band limits do not exist, 
or if the sampling criteria are violated by using larger data 
point spacings, aliasing errors occur in the use of the FFT to 
calculate the Fourier transform. The character of these errors 
can be illustrated by considering the near-field data B(P) 
sampled at intervals 6,, 6,. Let us denote the true spectrum of 
B(P)  and its DFT as calculated by summation as F(K) and 
F,(K), respectively. The term "true spectrum" as used here 
means the Fourier transform of the actual measured data 
excluding any aliasing errors. Since the data include the effects 
of measurement errors as well as spectral properties of the 
probe and AUT, the true spectrum is composed of two parts. 

(43) 

the first term corresponding to the coupling product of probe 
and AUT spectra, and the second arising from noise and other 
sources of error in the measured data. As illustrated in Fig. 6 
and (44), the calculated spectrum is the sum of offset replicates 
of the true spectrum which overlap at (2m - l ) k l ,  and (2n - 

F (  K )  = D( K)e'rd + E( K ) ,  

u k 2  PI 
m 

F , ( K ) =  F(k,+2mk,, k,+2nk2) 
m,n= - m  

= 2 D(k,+2mkl ,  k,+2nk2)e'rm,nd 
m.n= - m  

+ c(k,+ 2 m k l ,  k,+ 2nk2) (44) 

where 

~ ~ , ~ = d k ~ - ( k ~ + 2 r n k ~ ) ~ - ( k , + 2 n k ~ ) ' .  (45) 

The aliasing error is due to the contributions of the terms for 
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rn # 0,  n # 0,  within the region (k,l < kl, lkyl < k2. The 
aliasing error from the terms involving the factor ei%nd can 
be made arbitrarily small by making 6, and 6, small enough; 
the terms involving the error spectrum are, therefore, the 
limiting lower bound. In most cases, only the terms for rn = n 
= & 1 will make a significant error contribution, and from 
estimates of D(K) arrived at from either measured or 
theoretical probe and AUT patterns, the bound of the resulting 
aliasing errors can be reliably determined. 

In some cases, pattern results for a narrow-beam antenna 
may be required only over a limited region centered on K = 0. 
The data point spacings may then be increased beyond the 
value specified by the sampling criteria, producing aliasing 
errors outside the region of interest while limiting the errors 
within. For example, if the region of interest is bounded by 

l k y l  < k y m  l k x l  < k x m ,  (46) 

only evanescent spectra will overlap this region if 

as illustrated in Fig. 6 .  Measurement and data processing time 
can, therefore, be reduced by using the larger spacings with 
little change in accuracy with the region of interest. 

To estimate the error due to aliasing, F(K) or its two parts, 
D(K)eird and E(K), must be measured or estimated. This can 
often be accomplished with either centerline near-field data 
tests or theoretical antenna patterns along with measurements 
of system noise and error levels. 

Truncation Errors: The area truncation has two effects. 
First, for areas larger than the aperture the pattern results are 
valid only within the angular region defined by the geometry 
of the antenna and the scan area, as shown in Fig. 7. This 
result has been developed empirically from extensive measure- 
ments [6] and derived from a theoretical analysis [7]. It may be 
surprising that a simple relation is valid for such a complicated 
situation, but it has been validated for a large number of 
antenna and probe combinations. This criterion is used to 
determine the minimum size of the scan plane for a given 
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desired angular region of coverage and separation distance d .  
Since the lower limit on d is set by the physical structure of the 
antenna and multiple reflections, a trade-off is usually neces- 
sary between either maximizing angular coverage along with 
reducing truncation errors or minimizing multiple reflection 
errors. 

The second effect of area trunction produces some errors in 
D(K) even within the “region of validity” shown in Fig. 7 .  
Yaghjian [7] showed that this error can be estimated from a 
knowledge of the measured data on the boundary of the scan 
area, even though the error results from neglecting all the data 
on the infinite plane outside the scan area. If we denote the 
plane polar coordinates of the boundary as ( p ’ ,  C#J,,), the data 
on the boundary as B ( p ’ ,  $,,), and the spherical coordinates of 
the far-field directions by (e, $), then the fractional error in 
that direction is 

(48) 

where ymax is the maximum acute angle between the plane of 
the scan area and any line connecting the edges of the antenna 
aperture and the scan area. Equation (48) can be easily 
evaluated after measurements have been completed and B(P’ , 
6,) is known. If preliminary estimates of the truncation error 
are desired, another relation is available requiring less 
information, but generally predicting much larger upper bound 
errors; specifically, 

g ( K )  (49) 
lAD(K)I aXLmaxBmax(p‘, C#Jp) < 
ID(K)I 2A COS Ymax 

where 

A area of antenna aperture, 
Lmax maximum width of scan area, 
CY = 1 - 5 ,  taper factor (see discussion by Yaghjian in 

g(K) = ID(Ko)/D(K)(, ratio of peak pattern amplitude at 

The character of the truncation error can be seen clearly from 
the plot in Fig. 8 of the magnitude of D(K) for the single 
direction K = 0 as a function of the data area used in the 
summation of (5b). Each point on the curve represents a 
calculated value of D(0) for increasing areas, starting in the 
center of the data array. Another way of estimating the effect 
of truncation involves the use of (48) and the actual measured 
data to calculate an effective “error spectrum” resulting from 
the finite scan area. This error spectrum is obtained by 
calculating the Fourier transform of the measured data with all 
measured amplitudes not on the boundary set to zero. This 
spectrum is basically the numerator of (48) and represents an 
upper bound estimate of the error spectrum produced by 
truncation. An example of this test is shown in Fig. 9. 

Position, Multiple Reflection, and Receiver Errors: For 
the sources of errors thus far considered, reliable and 

[61) 

KO to the amplitude at K .  
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Fig 9 Error spectrum relative to beam peak due to area truncation 

reasonable estimates of their effect have been obtained without 
the need for much additional information beyond the normal 
data, B(P), A ,  and the probe parameters soz(K). For the 
remaining errors, probe position errors, multiple reflections, 
and system amplitude or phase nonlinearities, either more 
information is required or the error bounds will be unrealisti- 
cally large. Equations have been derived [6] for the latter 
group that give the upper bound effects in terms of the 
maximum value of the near-field error and pertinent antenna 
parameters. In the sidelobe region, a common assumption 
implicit in the derivation of each of these equations is that the 
variation of the error as a function of probe position P is such 
that it concentrates its maximum effect in the direction of 
observation. In most cases, this is a sinusoidal error. For 

instance, if the z-position error is of the form 

and the main beam is along the z axis, the sidelobes in the 
directions 

k x  - _  - +-=s inAZ 
k T x  

will be in error by the amount predicted by the upper bound 
equations, but in all other directions, the error will be 
essentially zero. If only 6zm,, is known, we must either 
conclude that any sidelobe could be in error by the upper 
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bound value or make some estimate based on the probability of 
the distribution over all values of K .  A more realistic estimate 
can be made if the actual error function is known, say from 
optical or mechanical measurements on the mechanical probe 
x-y scanner. From actual measured values of &(x, y) ,  the 
Fourier components may be calculated for each direction 
yielding 

The far-field error in any direction is given by the upper bound 
equations with 6,(K) as the magnitude of the near-field error 
rather than the maximum value 6, 

This concept is also valid for the equations related to 
multiple reflection, x-y position, and system nonlinear re- 
sponse errors. Therefore, in the following equations for errors 
in the sidelobe region, the parameters denoting the magnitude 
of the near-field errors will appear as functions of K. These 
parameters may then be interpreted in one of two ways. 1)  
Lacking information about the spatial (x, y )  dependence of the 
error, the parameter is a constant equal to its maximum value. 
The resulting error estimates will predict a worst-case error in 
every far-field direction. 2 )  If data are available to specify the 
spatial dependence of the error, the magnitude parameter is the 
result of a Fourier decomposition on the near-field error data 
and the error equations will predict upper bound errors nearly 
equal to the actual errors for every direction. The latter option 
is preferable where possible, and in the following, techniques 
will be described to obtain the spatial dependences of the error 
functions. 

The error functions producing the maximum effect are 
different in the main beam region than for sidelobes. Constant 
and long period types are predominant; however, for z- 
position errors, even random errors with the same rms value 
as a systematic error will have the same effect on the gain. The 
same is true for x,  y-position errors when the main beam is 
steered off the z axis. These facts are reflected in (56) and 
(59), where the rms subscript indicates that this value rather 
than the spectral magnitude is used. 

The equations below are derived for the case of directional 
antennas where the antenna's maximum dimension is on the 
order of 5-1OX or greater. Since the planar technique is 
generally used for such antennas, this is the most important 
case. For electrically small antennas, similar equations may be 
derived from the basic analysis presented in the references. 

For the following equations, the following notations will be 
used: 

D (K) true plane-wave spectrum for a sum pattern, 
(K) true plane-wave spectrum for a difference 

pattern, 
m m )  maximum value of difference pattern, 
Kb value of K for the boresight direction of a 

beam steered off-axis, 
e b  polar angle between the z axis and the 

boresight direction of main beam or differ- 
ence null, 
polar angle between Kb and K, e 

De(K), D,(K) spectra determined from actual near-field 
data for sum and difference patterns contain- 
ing errors due to some single type of near- 
field error such as probe position error, 
multiple reflections, etc., 

77 antenna aperture efficiency, 
Q difference in dB between the two maxima of 

a far-field difference pattern, 
L maximum antenna dimension, 
A(K) spectrum of the near-field x- or y-position 

6,(K) spectrum of the near-field z-position error 

g(K) = I D(Kb)/D(K)I or lfi(Km)/l?(K)l, ratio 
of pattern maximum to amplitude in the 
direction under consideration, 
direction in which the error is being deter- 
mined. 

Using the above notation, the errors in the spectra due to near- 
field X ,  y-position errors are as follows. 

a) If the antenna boresight is along the z axis and K 
denotes directions close to boresight where 8 < X/lOL, 

errors, A,&, Y ) ,  Ay@, Y ) .  

6z(x, Y ) ,  

K 

(53) 

(54) 

b) If the antenna boresight is along the z axis and K 
denotes directions away from boresight where h/lOL < 8 < 
n/2, 

c) If the antenna's main beam is steered off the z axis and 
K denotes directions near boresight, 

d) If the antenna's main beam is steered off the z axis and 
K denotes directions away from boresight, 

The errors in the spectra near the main beam due to z-position 
errors are 
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In the sidelobe region, 

Equations (59)-(61) apply to both steered and nonsteered 
beams. 

The position error functions, 6,(x, y ) ,  A,(x, y ) ,  and A,(x, 
y )  can be measured very accurately with a laser interferome- 
ter. If the mechanical system is stable, such a measurement is 
required when the system is originally installed and then only 
at periodic intervals to guarantee accuracy. 

The effect of the multiple reflections on the measured data 
can be seen clearly from plots similar to Fig. 10. The probe 
has been placed at a fixed x, y-position and the separation 
distance varied. The periodic variations with peak-to-peak 
magnitudes denoted by w shown in Fig. 10 are due to the 
multiple scattering between the probe and test antenna. The 
analysis [6] shows that the error in any direction could be as 
large as 

where w is in decibels. 
This predicts very large errors in the sidelobe region, and 

the actual error will depend on the variation of w in both 
amplitude and phase as a function of position. In this case, the 
technique used to measure w(P) can also measure the error 
directly and, therefore, reduce or eliminate it. This is 
accomplished by measuring the near-field data at a series (2)- 
( 5 )  of closely spaced planes over a z distance of W2.  The 
average of the results tends to remove the effect of multiple 
reflections and the difference between the average and any 
individual results gives the error. This approach requires much 
extra data and is generally done only to achieve the highest 
accuracy, or at one of a series of frequencies, to establish 
reliable error estimates. The measurement effort can also be 
reduced by using centerline data instead of full scans to 
estimate error bounds. 

Amplitude and phase instrumentation errors arise from 
receiver nonlinearity, flexing of the cable connected to the 
probe, and drift. All of these combine to produce the measured 
amplitude a,(P) rather than the true amplitude a(P).  The 
receiver amplitude error is modeled with a nonlinearity 
function, p ( P ) ,  

The contribution to p from the receiver nonlinearity can be 
measured and partially corrected for by calibrating the 
receiver with a precision variable attenuation. The same is also 
true of the other contributors to amplitude error and, in 
estimating final errors, the corrected value of p ( P )  should be 
used. If we denote the Fourier transform of p ( P )  by U(P),  the 
resulting error is 

I\ Scan Plane 
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Z-AXIS Measurements to Detect 
Multiple Reflections 

Multiple reflection between AUT and probe indicated by periodic Fig. 10. 
variations with X/2 period. 

Instrumentation phase errors arise from the same sources as 
amplitude errors and can be treated in much the same manner. 
If we denote the residual, uncorrected phase errors as A$(P) 
and the corresponding transform by V(K), the effect on D(K) 
is very similar to z-position errors, and 

for 6 < h/ lOL,  and 

when h/lOL 6 6 Q ~ / 2 .  
Dynamic Range: Since the effect of limited dynamic range 

is so dependent on the receiver characteristics and the near- 
field pattern, measurement tests are the best method for 
estimating the resulting errors. Computer simulation can be 
used where the amplitude data are artifically set to zero at 
various levels. The more serious effect is generally on the 
phase, however, and it is difficult to predict how the phase 
errors will be influenced by different dynamic ranges. One 
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characteristic that is typically observed with phaselamplitude 
receivers is where the phase readings tend to become constant 
as the amplitude is reduced below some level. This has a very 
serious effect on the far-field pattern, since under Fourier 
transform these measurements are erroneously applied to the 
main beam region instead of the sidelobes. Both regions are 
then in error. 

Tests for receiver dynamic range are of two types. In the 
first, the probe is placed at a fixed position, or to increase 
available signal levels, the generator and load ports are 
connected directly together. The input signal is then decreased 
in steps while noting both the amplitude and phase response. 
The upper limit for receiver signal is determined by linear 
amplitude response as indicated when the amplitude reading 
change for a given step remains constant for input signal 
variation. The lower level is indicated when the phase readings 
begin to change by more than 5"-10" from their initial value. 
This defines the receiver's dynamic range, but it does not 
determine what effect it will have on the far-field results. For 
this a second set of tests is required. A series of near-field data 
sets is taken with decreasing levels of input signal to the 
AUT. Comparing the far-field results for the different signal 
levels quantifies the effect of reduced dynamic range. These 
tests can be time-consuming if two-dimensional data are used, 
and in many cases one-dimensional centerline scans are 
adequate. 

Room Scattering: Scattering by fixed objects in the room is 
not generally detected by the probe/antenna multiple reflection 
test. Room scattering is best observed if the AUT and probe 
are moved together relative to the room. Scattered signals then 
go in and out of phase with the direct signal, and this variation 
is a direct measure of the level of scattering. In one application 
of this approach, the test antenna was mounted on a set of 
accurately aligned rails parallel to the scanner's x axis so that it 
could be moved in the x direction without changing its angular 
alignment or its y or z positions relative to the probe. In the 
antenna's initial position, the probe was moved in the y 
direction, and amplitude and phase data were recorded. The 
probe and antenna were then moved in the x direction by the 
same increment and the y scan repeated. This process was 
repeated for an x movement over the complete scan distance. 
The measured data were analyzed to detect differences due to 
scattering, and the largest such signals were at least 40 dB 
below the peak direct signal. In the far field, the uncorrelated 
nature of the scattering reduced its effect to a spectrum 
approximately 70 dB below the main beam. 

Leakage: Leakage and crosstalk occur when transmission 
lines on either the transmitting or receiving side radiate or 
receive RF energy, or when signals within the receiver's 
reference and measurement channels interfere. An effective 
test for leakage is accomplished by terminating the generator 
port and measuring the signal picked up by the probe as 
compared to the direct signal. A sample of such a test is shown 
in Fig. 11. In this example, a faulty cable caused the observed 
increase in signal in one region. A similar test of leakage on 
the receiver side is accomplished by substituting a termination 
in place of the probe and repeating the scan. The leakage and 
crosstalk have the biggest effect when measuring antenna with 

v -  u 40 
bi- 

z 

Input Terminated, No Leakage I 
l 1 l l l 1 l 1 l l l  1 

Probe Position (cm) 
-60 -40 -20 0 20 40 60 80 

Fig. 11. Leakage measurement with generator port terminated. 

gains less than about 30 dB. The error signal tends to have a 
relatively constant phase over the scan area, and adds up to a 
significant level in the Fourier transform. Because the sum of 
the measured relative data is approximately equal to the 
effective area of the AUT, 

and 

N 

2 ~ , ( P i ) e - i ~ ~ p i S , G y ~ ~ B c G x S y .  (69) 
i =  I 

The ratio of peak antenna gain to leakage signal gain is 

where 

G, leakage signal gain, 
A ,  measurement area, . 
B, leakage signal relative to peak measurement signal. 

The error in AUT gain is then given by 

4.3 A,,, B, 
A G a y - .  

A ,  

For high gain antennas, the ratio of measurement area to 
effective area is only about 4: 1, but for lower gain antennas it 
can be as high as 1OO:l and even though B, may be 60 dB 
below the measurement signal, gain errors of 0.4 dB can 
occur. One test to measure the actual effect of these errors is to 
record a complete two-dimensional scan with either the 
generator or load ports terminated. Transformation of these 
data will then quantify the actual error spectrum. As with other 
tests like this, they are usually done on a representative 
frequencylbeamlpolarization/port combination. 

Random Errors: The last error source is the net random 
error in amplitude and phase due to mechanisms in the 
mechanical and electrical system. Mathematical analysis [8] 
has developed expressions for the far-field signal-to-noise 
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Fig. 12. Spectrum resulting from measurements at data point spacings less than X/2 showing noise spectrum and multiple reflection 
lobes in region where lk,i k .  

ratio in the sidelobe region due to random amplitude errors: 

D(K0)  f i A , q  JN,/2 
(72) - - I c a ( K )  ~ ' ~&A,u ,  3 a , m e  

where 

N total number of measurement points, 
Ne Ae/6,6,, number of measurement points within the 

effective area, 
A, actual area of AUT, 
A, = N6,6,, 
U, standard deviation of random amplitude errors. 

A similar expression for the phase error is 

D(Ko) JNe/2  lt(K)l>o,. (73) 

Computer simulation has been used to verify the essential 
features of (72) and (73). In these tests, actual data were 
assumed to represent error-free measurements from which the 
correct spectrum could be calculated. Random amplitude and/ 
or phase errors with known distributions were then added to 
the original data and such quantities as t,(K), q ( K ) ,  and the 
signal-to-noise ratios directly calculated. 

To use (72) and (73), the standard deviations of the random 
amplitude and phase distributions are required. These can be 
obtained by measuring or estimating the contributions of such 
sources as resolution in analog-to-digital converters, receiver 
noise, scattering within the room, random position errors, etc. 
An alternate method makes use of near-field centerline data. 
These data are taken at spacings much less than X/2 and allow 

calculation of the spectrum for values of either k,/k or k J k  
beyond f 1 as shown in Fig. 12. These data were taken at a z 
spacing of about 6X where actual evanescent modes are 
attenuated to such a low level they could not be detected. The 
calculated spectrum in the evanescent region therefore repre- 
sents the effect of errors in the measurement, and the relatively 
constant floor level in this region is a direct observation of the 
effect of random errors in the measured data. From this direct 
measure of the signal-to-noise ratio in the one-dimensional 
(1 D) spectrum the corresponding signal-to-noise for the two- 
dimensional (2D) data may be inferred. For instance, let the 
1D measurement be taken in the x direction over a length lA! 
with data point spacings 6;. The corresponding 2D data will 
involve data point spacings 6,, 6, and scan lengths I ,  and 1,. 
The signal-to-noise ratio for the 2D measurement will then be 

D(K0) D(K0) ~X'YS,: 
l m ~ * D = l m l i D  * (74) 

C. Combination of Errors 
The problem of combining systematic and random errors to 

provide an overall estimate of accuracy has evoked heated 
discussion, and various viewpoints have evolved concerning 
this topic. Choosing the correct method for combining the 
systematic errors requires some knowledge about their error 
distribution. This information is not normally available from 
experimental tests and, at best, is obtained through an 
educated guess. We do know that to a first approximation the 
systematic errors are independent. Our viewpoint is that the 
method of combination assumes secondary importance if the 
estimates for each error source are tabulated and the formula 
used in the combined estimate is explicitly stated. 
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TABLE I1 
ERROR BUDGET FOR PEAK GAIN MEASUREMENTS 

Error Source Error (dB) 

Probe relative pattern 
Probe polarization ratio 
Probe gain 
Probe alignment 
Normalization constant (or power measurement) 
Impedance mismatch 
AUT alignment 
Aliasing error 
Measurement area truncation 
Probe x-y-position error 
Probe z-position error 
Multiple reflections 
Receiver amplitude nonlinearity 
System phase errors 
Receiver dynamic range 
Room scattering 
Leakage and crosstalk 
Random errors in amplitude and phase 

RSS combination (dB) 

0.00 
0.00 
0.10 
0.02 
0.10 
0.05 
0.00 
0.00 
0.05 
0.01 
0.01 
0.15 
0.01 
0.00 
0.02 
0.05 
0.05 

0.23 
0.00 

TABLE III 
ERROR BUDGET FOR -30 dB SIDELOBE MEASUREMENT 

Error Source Error (dB) 

Probe relative pattern 
Probe polarization ratio 
Probe gain 
Probe alignment 
Normalization constant (or power measurement) 
Impedance mismatch 
AUT alignment 
Aliasing error 
Measurement area truncation 
Probe x-y-position error 
Probe z-position error 
Multiple reflections 
Receiver amplitude nonlinearity 
System phase errors 
Receiver dynamic range 
Room scattering 
Leakage and crosstalk 
Random errors in amplitude and phase 

RSS combination (dB) 

0.10 
0.05 
0.00 
0.20 
0.00 
0.00 
0.00 
0.05 
0.15 
0.06 
0.21 
0.30 
0.07 
0.23 
0.20 
0.05 
0.05 

0.53 
0.00 

The method we have adopted assumes that the component 
systematic uncertainties ( E ; )  are independent and normally 
distributed with E ;  corresponding to 3a. Because of the central 
limit theorem, the combined probability distribution will 
approach a Gaussian and we estimate the total error by 

(75) 

where e T  represents the total error, E ;  the estimates of the 
worst-case systematic components, and aR is the standard 

typical results using the error equations and tests to determine 
each of the individual errors and then combining them using 
(75). 

111. SUMMARY 
A combination of techniques has been described for reliably 

estimating the magnitude of each error arising in planar near- 
field measurements. They include mathematical analysis, 
computer simulation, and measurement tests. There are three 
primary applications for these tests. 1) In designing a new 
measurement facility, the requirements of each part of the 
measurement system can be specified in order to meet a given 
level of accuracy. 2) During actual measurements the experi- 
mentalist can identify, and reduce where necessary, potential 
sources of error in the measurement. 3) When a measurement 
has been completed, the estimated uncertainty in the measure- 
ment can be obtained with confidence and ease. The latter 
application has been used in many measurements to verify that 
the planar near-field technique produces high accuracy results 
competitive with any other measurement technique. 
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