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Previous research at the Air Force Institute of Technology 
(AFIT) has resulted in the design of a differential Global 
Positioning System (DGPS) aided INS-based (inertial navigation 
system) precision landing system (PLS) capable of meeting 
the FAA precision requirements for instrument landings. The 
susceptibility of DGPS transmissions to both intentional and 
nonintentional interferencdjamming and spoofing must be 
addressed before DGPS may be safely used as a major component 
of such a critical navigational device. This research applies 
multiple model adaptive estimation (MMAE) techniques to the 
problem of detecting and identifying interferencdjamming and 
spoofing in the DGPS signal. Such an MMAE is composed of 
a bank of parallel filters, each hypothesizing a different failure 
status, along with an evaluation of the current probability of each 
hypothesis being correct, to form a probability-weighted average 
state estimate as an output. 

For interferencdjamming degradation represented as 
increased measurement noise Variance, simulation results show 
that, because of the good failure detection and isolation (FDI) 
performance using MMAE, the blended navigation performance 
is essentially that of a single extended Kalman filter (EKF) 
artificially informed of the actual interference noise variance. 
However, a standard MMAE is completely unable to detect 
spoofing failures (modeled as a bias or ramp offset signal 
directly added to the measurement). This work describes a 
moving-bank pseudoresidual MMAE (PRMMAE) to detect and 
identify such spoofing. Using the PRMMAE algorithm, spoofing 
is very effectively detected and isolated; the resulting navigation 
performance is equivalent to that of an EKF operating in an 
environment without spoofing. 
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Currently, the Department of Defense and the 
commercial airline industry are using the Instrument 
Landing System (ILS) for aircraft guidance during 
precision approaches. Recent precision landing 
research conducted by the FAA and other researchers 
has established the Global Positioning System (GPS) 
as a primary sensor for a precision landing system 
(PLS) to replace the aging ILS [ 1-41. Particularly 
applicable to this research is the work of Gray 
[2] (using standard GPS) and Britton [l] (using 
differential GPS (DGPS)), which has shown that an 
integrated GPS-aided inertial navigation system (INS) 
based PLS meets FAA requirements for Category I 
and I1 precision approaches. 

The accuracy potential of GPS as a primary 
sensor in a PLS is well established. However, 
possible interference (benign or malignant) of the 
low-power GPS signal remains a major concern in 
such a safety-of-flight critical system. Integration 
of GPS with other navigation sensors (using an 
extended Kalman filter (EKF)) provides a possible 
solution to this interference problem (see [5-71 for 
a thorough presentation of Kalman filter theory and 
applications). This work discusses the use of multiple 
model adaptive estimation (MMAE) to detect and 
identify (and so compensate for) GPS failures in a 
DGPS-aided INS-based integrated navigation system. 

II. PROBLEM STATEMENT 

The integrated PLS used in this work is composed 
of an INS, barometric altimeter, radar altimeter, 
DGPS, and a ground-based GPS pseudolite (an 
additional GPS transmitter placed at a known location 
on the ground, rather than onboard a satellite). This 
integrated system has 64 truth model (i.e., best 
simulation model) states and 13 states in the filter 
model. The truth model for the integrated PLS is 
made up of 22 DGPS states, 39 INS states, two 
bar0 altimeter states, and one pseudolite state. The 
radar altimeter error is modeled by white noise and 
uses no states. The filter error model has two DGPS 
states, nine (Pinson [5: pp. 305, 3431) INS states, 
and two bar0 altimeter states. Since error state space 
modeling is used for the filters in this application, 
the measurements are actually the difference between 
sensor measurements external to the INS (differential 
range measurements to four satellites and to one 
pseudolite, and radar altimeter and barometric 
altimeter outputs) and the INS-indicated value of 
the same variables. Explicit modeling details are in 
[8]. With this given system configuration having 
demonstrably good performance attributes under 
nominal conditions [ l ,  21, the question is, can 
acceptable performance be maintained despite the 
interference/jamming or attempted spoofing of the 
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Fig. 1 .  Multiple model adaptive estimation (MMAE). 

GPS, using only the information in the residuals of 
the systems-integration filter (i.e., without use of GPS 
receiver power measurements to detect jamming, or 
use of multiple GPS antennas to address spoofing, 
etc.)? 

The goal of this work is to demonstrate the 
failure detection and isolation (FDI) capability that 
is available using MMAE in the integrated system, 
not only for military and commercial users, but 
potentially for civilian aircraft using very low-cost 
components. To this end, simulations were conducted 
using four different navigation component cases, 
the least precise and cheapest of which is composed 
only of a low-quality (4.0 n d h r )  baro-aided INS and 
DGPS. This work presents the results of only one 
navigation case, that of a high-quality (0.4 nm/hr) 
baro-inertial system combined with both DGPS 
(including pseudolite) and radar altimeter, but similar 
FDI results were obtained [8] for each of the four 
navigation cases used. 

Ill. MMAE OVERVIEW 

Fig. 1 shows a functional block diagram of the 
MMAE algorithm. Its primary feature is a bank of 
sampled-data Kalman filters operating in parallel, 
each using an identical measurement environment 
[6, 9, 101. Each Kalman filter models the dynamics 
of the system (in this case the PLS) under different 
conditions of no-fail or failed operation, such as 
greatly increased measurement noise covariance 
R(ti), which might represent the effects of GPS 
interference/jamming. At each sample period, each 
of these K filters produces a state estimate kk,  and a 
vector of residuals rk, for k = 1,2,. . . , K .  The residuals 
produced by a filter with an accurate model of the 

real world are zero-mean, white, Gaussian, and of 
covariance as computed within that filter itself. During 
operation, the filter having the most well-behaved 
residuals (to be made more precise subsequently) 
contains the model which best matches the true status 
of the system with regard to interference/jamming or 
spoofing [5,  6, 11-13]. 

Status identification takes place in the conditional 
hypothesis probability block. Based on the residuals, 
a probability of model adequacy p k  ranging from zero 
to one is computed for each elemental filter within the 
MMAE structure, according to the following recursive 
equation: 

where 

In the above equations, fz(ti)ia,z(ti-,)(~i I ak7zi-1> 
is the probability density function of the current 
measurement z(Q, of dimension m, conditioned on 
the hypothesized failure status a = a, and previously 
observed measurement history Z(ti-l), based on 
a filter's residuals r,(ti) and internally computed 
residual covariance Ak(ti). The individual filter 
residual vectors are formed as the difference between 
the actual measurement when it arrives and the 
filter' s best prediction of the measurement based 
on its assumed model of the real world. For the 
sampled-data EKF, 

rk(ti) = {[z(ti> - hk[rik(t;),til} (3) 
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where hk is the measurement vector model in the 
kth elemental filter, and the residual covariance is 
computed by the kth elemental filter as 

where Hk is the partial of h, with respect to x. When 
a filter’s actual residuals are in consonance with 
the filter-computed covariance A,, the exponential 
term in (2) is approximately -m/2, where m is 
the measurement dimension. In filters modeling an 
incorrect hypothesis, the residuals are larger than 
anticipated by A, and the magnitude of this negative 
term is greater, thus causing a deweighted P k  for that 
hypothesis. Because of the recursive nature of (l), in 
practice the pks are given an artificial lower bound 
Pk,, = 0.01 to prevent “lock-out” (without the lower 
bound, if any P k  is ever computed as zero, it will be 
zero thereafter). The 0.01 bound was chosen as the 
largest value (allows fastest pk growth) that preserved 
“good” operation in performance simulations, i.e., 
the Bayesian blended state estimates are essentially 
unaffected by the state estimates of the lower-bounded 
elemental filters. The vector of probabilities produced 
by the conditional hypothesis probability block is used 
to identify interference/spoofing status and to weight 
the state estimates of the individual filters. The output 
of this algorithm is a Bayesian blended estimate of the 
system states, Le., the probability-weighted average 
2 as seen in Fig. 1. A Bayesian blended estimate of 
the system parameters a (failure status in this case) 
is similarly obtained by weighting each a, with that 
hypothesis’ corresponding pk  (for k = 1,2,. . . , K ,  as 
shown in Fig. l), and summing. 

IV. MOVINC-BANK MMAE 

The MMAE algorithm propagates multiple filters 
forward in time, continually selecting the filter, or 
weighted combination of filters, that appears to have 
(on the basis of residual characteristics) the best 
model of the real world. Often, the possible parameter 
space is so large that completely discretizing it 
requires many more filter hypotheses than can 
realistically be run in parallel, In this case, a small 
group of filters, with assumed parameter values that 
are in the close neighborhood of the current parameter 
estimate, are chosen to be active at any given time. 
If the estimated parameter moves significantly, the 
bank of active filters is moved to be centered around 
the new parameter estimate. This algorithm is called a 
moving-bank MMAE. 

of a moving-bank MMAE for the accurate tracking 
of spoofing failures. As modeled in this research 
(see Section V), the effect of spoofing failures is 
equivalent to the effect of a change in GPS user 
clock bias. Because of this similarity, the GPS user 

The state dynamics of the PLS necessitate the use 

clock bias filter state in a non-moving-bank MMAE 
quickly (during a single filter propagation cycle) 
assumes the spoofing-induced error, causing filter 
divergence due to the now-inconsistent state vector. 
Using a moving-bank MMAE with spoof offset (bias 
in indicated GPS differential range measurement) as 
the uncertain parameter, a detected spoofing event 
initiates a sub-algorithm in which the spoofing offset 
magnitude is identified and the bank is recentered 
on that new spoof offset value before the next filter 
propagation cycle is entered. In this way the current 
spoofing offset is “remembered” while the filter itself 
experiences no erroneous change in its state vector 
estimate. 

V. FAILURE MODELS 

Interference is modeled as a sudden increase in the 
measurement noise R associated with all GPS satellite 
vehicles (SVs). GPS jamming refers to the total loss of 
GPS transmissions. Such a failure is well and easily 
modeled as a very large increase in R. This results in 
a very light weighting for those measurements in the 
elemental Kalman filters; the effect is essentially the 
same as if those measurements were never received. 

Spoofing is modeled as a bias added to the 
measurements associated with all GPS SVs. The 
addition of this bias (if it is undetected) induces a 
bias on the GPS position solution. An intelligent 
spoofer would place unique offsets on each of 
the SV pseudo-range measurements, producing a 
specific position offset desired by the spoofer. In 
this research, however, spoofing biases are inserted 
as either step or ramp offsets added uniformly to all 
GPS SV measurements. The results obtained using the 
simplified model extend directly to the more complex 
spoofing model [8]. 

Specific magnitudes of interference or spoofing 
will not be considered; each failure was allowed to 
assume a range of values in order to demonstrate 
the capability of MMAE to detect and identify 
interference failures of varying magnitude, and of a 
moving-bank pseudoresidual MMAE (PRMMAE) to 
identify spoofs of various sizes and types. 

VI. FILTER STRUCTURE 

A three-filter MMAE bank was used to detect and 
isolate interference/jamming failures. The level of 
measurement noise for the DPGS measurements is 
given by R,, and it is assumed that R = 2000 x R, 
is the maximum level of real-world interference 
which will be encountered. It has been experimentally 
determined that assumed values of R for the 
individual Kalman filters within the MMAE should 
be separated by about an order of magnitude in order 
to prevent identification ambiguity [8]. Thus, the three 
interference/jamming filter assumptions were R = R,, 
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R = 200 x R,, and R = 2000 x R,. This filter bank did 
not move within the parameter space. 

The spoofing MMAE filter bank must be arranged 
in symmetric pairs about a no-bias filter in order to 
detect and isolate spoofing biases of either a negative 
or positive sign. The spoofing bias assumed by an 
individual filter is given by b,. One filter pair is 
located, in parameter space, quite closely to the 
no-bias filter, in order to provide good hypothesis 
blending to identify small spoofing changes or to 
recenter the filter bank after a large move. A second 
symmetric filter pair is located further away from the 
no-bias filter, near the experimentally determined limit 
of useful blending performance, in order to capture 
larger spoofing bias changes. Thus, the five-filter 
spoofing MMAE bank assumptions are b, = 0 ft (no 
bias, relative to the currently estimated spoof offset 
value), b, = &15 ft, and b, = f240  ft. Recall that 
the spoofing filter bank just described is required 
to remain centered on the actual bias in order to 
preserve good state estimation and future spoofing 
offset tracking. 

VII. RESULTS 

Figs. 2, 3,  and 4 of this section are organized 
to show the FDI operation and performance of the 

MMAWmoving-bank PRMMAE algorithm clearly and 
concisely. The first subplot of these figures shows the 
F D I  performance of the algorithm; the x’s denote the 
true (simulated) value of the failure parameter, and the 
line is the average (over the 15 sample runs) estimate 
of the R multipliers (additive spoof offset in the case 
of spoofing failure Figs. 3 and 4). The remaining 
three subplots of Fig. 2 (the last five subplots for 
spoofing failure Figs. 3 and 4) show the time histories 
of mean (solid line) f one standard deviation (dotted 
lines) pk  probability values for each active elemental 
filter. Subplot two of Fig. 3 shows the spoof offset 
estimation error mean (x’s) f one standard deviation 
(dotted). In Fig. 4, the spoof offset estimation error 
information is included in the first subplot. The next 
subplot in Figs. 3 and 4 shows the number of spoof 
estimation operations required to recenter the filter 
bank at each measurement time. The results discussed 
and plotted in this section are produced by 15-run 
Monte Carlo performance evaluations. 

A. Interference/Jamming (Measurement Noise Failure) 
Results 

Because the measurement noise R strongly 
influences the elemental filter probabilities pk (see 
(1)-(4)), it was anticipated, before simulations were 
conducted, that the MMAE would be quite effective at 
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detecting and identifying, through Bayesian blending, 
interference/jamming failures. The R parameter 
estimation provided by the three-filter (assuming 
lx,  200x, and 2000x the original tuned R values) 
interference bank, along with the pk probabilities 
for each elemental filter, is shown in Fig. 2. As can 
be seen from the figure, the MMAE algorithm very 
quickly detects the onset of interference/jamming. The 
Bayesian blended state estimation performance which 
results from the MMAE FDI method is very good; 
in fact, it is essentially the same as that produced 
by a single EKF artificially informed of the actual 
measurement noise changes [8]. 

As expected, MMAE FDI was very effective 
against interference failures. However, as can be 
seen in Fig. 2, the filter bank has some difficulty in 
blending its two noise hypotheses. With the aid of 
hindsight, it could have been expected that the MMAE 
algorithm would be prone to bouncing probability 
weighting from hypothesis to hypothesis without 
much blending, and to have a tendency to choose the 
model with the larger assumed noise level. As the 
real world noise level becomes even slightly greater 
than that assumed by one filter, that filter's residuals 
very quickly look bad (i.e., its [r;(ti)A;' (ti)rk(ti)] 
becomes a large value) because the measurements 
are consistently violating its assumptions. Although 
the actual measurement noise variance is much less 
than it expects, the filter assuming a larger noise 
value sees measurements that do consistently fall 
within its expected variance (its [<(ti)A;' (ti)rk(ti)] 
is considerably smaller). Probability quickly flows to 
the filter with the larger noise variance assumption. 

B. Spoofing (Measurement Bias Failure) Results 

In this section the filter is designed to detect only 
spoof failures, whereas only interference/jamming 
failures were discussed in the previous section. 
Because it is desired to have only a small number 
of elemental filters active at one time, it is expected 
that it will be required to implement a moving-bank 
MMAE in order to detect and identify arbitrarily 
sized spoofing (measurement bias) jumps. Early 
experimental trials revealed two important and related 
considerations affecting such an implementation. 
First, a correctly implemented moving-bank MMAE 
algorithm is completely unable to distinguish between 
the residuals of the individual elemental filters 
based on different presumed spoof offset values: 
no information is available on which to base the 
recentering of the filter bank. Second, this ambiguity 
among the filter probabilities precludes useful 
hypothesis blending even within the portion of 
parameter space spanned by the active filter bank. 
Both of these effects are products of the GPS user 
clock bias state's similarity to the induced spoofing 
failure: that state estimate in each elemental filter is 

corrupted by the difference between the actual spoof 
offset and the offset assumed by that filter. 

A new technique, PRMMAE, provides useful 
information as to how to recenter the filter bank. 
Good parameter and state estimation is achieved and 
maintained by performing bank recentering operations 
before entering the next filter propagation cycle. This 
recentering prevents the central (no-bias) filter's state 
estimates from ever being corrupted by the spoof 
offset. The mathematical motivation and development 
of the PRMMAE algorithm is shown below. 

At all times let the actual measurement be 

'true = HtrueXtrue + 'true + btrue. (5) 

Let us assume two filter models, 1) assuming no 
measurement bias, i.e., that b,,,, = 0, and 2) assuming 
a positive measurement bias, i.e., that btrue = b,,  
where b, will, at least initially, be assumed to be 
the bias actually simulated in the real world. These 
two filters will have, as their best prediction 'i of 
the measurement before it arrives, i, = H?; and 
i2 = 6; + b,, which will produce the following 
update equations used to generate 2' at each sample 
period: 

2; = 2, + K[ztrue - HGJ 
x2 - x2 + K[ztrue - (H2, + b])]. 

Let b,,, = 0 for a period of time. After allowing 
both filters to run to steady state, each filter will 
modify its state estimates so that the residual vector 
tends to be zero-mean, i.e., E[zkue - i ]  = 0. In fact, it 
has been observed that the elemental filters primarily 
altered their user clock bias state to yield such 
zero-mean residuals. This has the following effect: 

(6)  
A +  - A -  

E[H2,1 = Ztme(btrue = 0) = HtNeTrUe 
(7) 

E[Hi,I = Zme(btrue = 0) - b, = HtrueXlrue - b1. 

At the onset of a spoof, btrue becomes non-zero, 
b,,, = b, for example. At that measurement update 
time, the true residuals are 
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In writing (5)-(9), it is assumed that true residuals 
are used to update the elemental filters; what is 
subject to consideration here is whether the true 
residuals or the pseudoresiduals are more useful 
in forming [rrAklrk] for the MMAE’s probability 
computations. As seen above, the true residuals 
from each elemental filter do not reveal the real 
world measurement bias and are indistinguishable 
from one another. It may be deduced that the filter 
assuming the negative of the actual bias will show 
nearly zero-mean pseudoresiduals at the measurement 
update immediately following the spoof onset. Hence, 
good identification may be achieved by using the 
pseudoresiduals to form [riAilrk]. In the above 
discussion, had a filter assumed a bias of -b,, then 
in steady state its E[H?] (as in (7)) would have 
become Htruextme + b, . The pseudoresiduals of such a 
filter would be roughly zero-mean at the measurement 
update following the spoof onset (and this information 
is only visible for a single measurement update 
time). The information provided by this zero-mean 
measurement pseudoresidual is used to isolate the 
actual bias. The true residuals must be used (as in a 
single Kalmanfilter or regular MMAE) to update the 
elemental filters. 

Once the pseudoresidual information is gathered 
from the filters within the MMAE, the spoof is 
estimated (the value that would appear to be needed 
to zero the residual in the middle filter), and then 
that current measurement is reprocessed assuming 
that the estimated spoof is present in the real world 
(the entire filter bank is moved to the neighborhood 
of the estimated spooj). During operation, filter bank 
movement is accomplished by subtracting bestimated 
from the true measurements before they enter the 
MMAE algorithm, rather than adding bestimated to each 
filter’s ik, since it is computationally more efficient. 
This process is repeated for that single update 
time until the new spoof bias value is completely 
identified and the bank is recentered. Complete failure 
identification is assumed when each elemental filter 
pk  changes by less than 0.2 from one iteration to the 
next. After this correction, each of the elemental filters 
in the bank steps forward into the next propagation 
cycle without knowing it ever experienced a spoof. 
This process can be observed in the p k  plots of 
simulations involving spoofing elemental filters. In 
the first, third, and fifth subplots of Fig. 4 (to be 
seen and described in detail later in this section, 
associated with ramp rather than step spoofs, but 
called out here because it clearly shows the desired 
phenomenon), for example, it can be seen that when 
the real-world spoof bias changes by +15 ft/s (the 
first spoofing ramp), the p k  associated with the -15 ft 
bias elemental filter spikes for one second. The bank 
is moved based on this spike, and in the next second 
the probability returns to the no-bias elemental filter. 
Throughout the simulation depicted in Fig. 4 (and 

each spoofing simulation), it may be seen that the pk  
value corresponding to the no-bias elemental filter 
displays such downward spikes each time a change 
in the real-world spoof bias value is detected. These 
downward spikes depict the information associated 
with the first measurement update which caused the 
MMAE filter bank to be moved; in reality, due to 
the measurement reprocessing described above, the 
no-bias elemental filter’s pk  value never moves from 
its near-unity value. 

Fig. 3 shows the detection and isolation 
performance of the PRMMAE algorithm in the 
moving-bank configuration against step-valued spoofs. 
Note several aspects of Fig. 3 which are in accordance 
with the description of the moving-bank PRMMAE 
algorithm’s operation as described so far. It can be 
seen that the probability rests consistently (excepting 
the downward spikes mentioned above) on the no-bias 
elemental filter (fourth sub-plot), while the real-world 
and declared spoof values range over 2000 ft (first 
sub-plot). This is a clear indication that the no-fail 
filter is consistently recentered on the real-world spoof 
value. Each time the real-world spoof value jumps by 
a value modeled in one of the elemental filters, the 
probability spikes on the filter assuming the negative 
of the spoof jump value (sub-plots five through eight). 
The third sub-plot (measurement count) shows the 
number of measurement update iterations that were 
taken to identify the new spoof offset value fully at 
each sample time before the following propagation 
cycle was entered. 

Fig. 3 indicates that spoofing jumps are identified 
accurately regardless of whether their value is exactly 
modeled in the bank of elemental filters. The spoof 
offset values are identified well enough that the 
resulting state estimation performance is, as in the 
case of interference/jamming failures, equivalent to 
that of a single Kalman filter artificially informed of 
the actual spoof offsets. The PRMMAE algorithm 
alone is unable to identify spoofing values greatly 
different from those modeled in its bank. The 
difficulty here is that the MMAE residual information 
term in (2), $Ailrk, becomes very large when 
the spoof offset is numerically greater than 150 
(ft) displaced from the bias assumption of a given 
elemental filter. Because - 1 /2 times this large term 
appears in the exponential of (2), the computed value 
of that equation (for use in (1)) goes to zero and 
the MMAE algorithm cannot make a decision about 
which direction to move the bank in the possible 
failure space. Even though the MMAE calculations 
using the r lAi lrk  term become useless, the individual 
measurement residuals associated with the DGPS 
measurements in each elemental filter allow simple 
isolation of the spoof magnitude under this condition. 
These residuals are zero-mean up until the addition 
of the spoof. When the spoof occurs, it shows up 
directly on all the residuals. Estimation is a matter of 
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in this research. The three-filter spoofing bank can be 
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Fig. 4 shows the FDI performance of the 
moving-bank PRMMAE algorithm in the face of 
ramped (intelligent) spoofing offsets. The first ten 
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have slopes of 30, 24, 20, 16, 12, 10, 8, 6 ,  4, and 
2 ft/s, respectively. It can be seen that no significant 
identification error occurs until the 8 ft/s spoofing 
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navigation component configuration used, spoofing 
steps and spoofing ramps as small as 10 ft/s can be 
identified with no significant error. When the actual 
spoofing error is smaller than this observable lower 
sensitivity bound, the PRMMAE algorithm is unable 
to distinguish the spoof offset (measurement bias) 
from the measurement noise clearly, and the spoof 
offset estimation error ceases to be zero-mean. While 
the spoof estimation error is still zero-mean, the 
resulting state estimation performance is equivalent 
to that of an artificially informed EKE 

An important consideration is inherent throughout 
the above discussion. The elemental filters of the 
moving-bank PRMMAE must be allowed to initialize 
with no measurement bias present in the real world. 
What is actually detected and tracked is the offset 
of the measurement bias from what was present 
during initialization. This assumption is reasonable 
because GPS initialization will presumably be 
accomplished before take-off from a friendly air 
base. Any attempted spoofing there would be detected 
by surveyed receivers at the station, and shortly 
removed. 

VIII. CONCLUSIONS AND RECOMMENDATIONS the first subplot). The smaller spoofing ramps do 
cause considerable confusion to the algorithm, 
although the state estimation still does not degrade 
appreciably P I .  It can be concluded that, given the 

This paper shows the development of moving-bank 
PRMMAE, a new technique for the identification of 
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Fig. 4. Spoofing (ramps) FDI performance and elemental filter probabilities: moving-bank PRMMAE. 

measurement offset (bias or ramp “spoof”) events. 
Moving-bank PRMMAE (for spoofs) and standard 
MMAE (for interference) are used to detect and 
compensate for interference and spoofing events 
in the GPS portion of a GPS-aided INS navigation 
configuration. Accurate state estimation is maintained 
before, during, and after these events. These results 
indicate that a PLS based on these navigation 
components can reliably detect degradation of the 
navigation solution due to external RF sources, and 
can preserve the quality of navigation so that flight 
and some categories of instrument landings may 
safely be continued. It is expected that any system 
subjected to increased measurement noise or to 
measurement offset events will experience similar 
performance benefits through the application of the 
FDI techniques described in this paper. 

which may produce errors less than several meters, 
is the dominant residual error source. Multipath is 
a bias phenomenon (always a delay) which appears 
on the individual pseudo-range measurements. A 
subject of possible future application of the techniques 
developed in this paper is seen by noting the similarity 
between GPS multipath errors and the spoofing 
(measurement bias) errors addressed in this paper. 
The limiting factor in such an application is the 

For differenced measurements (DGPS), multipath, 

sensitivity limit of moving-bank PRMMAE (see 
Section VIIB), which at approximately 10 ft (bias 
change per measurement update) excludes application 
to many instances of multipath. It was discovered 
however, that by artificially weighting the spoof 
bias estimates of the f I5 symmetric filter pair, 
zero-mean spoof offset estimation was acheived 
for measurement bias steps as small as 1 ft. The 
artificial weighting is accomplished by implementing 
a pk  lower bound greater than is necessary just to 
prevent probability lock-out. In this case cited, a 
lower bound of 0.06 produced zero-mean estimation 
of measurement bias offsets of one foot, a factor 
of ten increase in sensitivity over the performance 
in Section VIIB associated with a lower bound of 
0.0 1. While a complete mathematical explanation 
of this phenomenon has yet to be developed, such 
performance argues for the application of this method 
to detect and isolate multipath errors as well as the 
onset of spoofing. 
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