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A consistent tactical picture requires data fusion technology
to combine and propagate information received from diverse
objects and usually vague situations. The information may be
contained in two types of data; numerical data received from
sensor measurements, and linguistic data obtained from human
operators and domain experts. In real world situations, the
numerical data may be noisy, inconsistent, and incomplete, and
the linguistic information is imprecise and vague. To deal with
these two types of data simultaneously, fuzzy sets and fuzzy logic
provide a methodology to obtain an approximate but consistent
tactical picture in a timely manner for very complex or ill-defined
engineering problems.
A functional paradigm for fuzzy data fusion is presented. It

consists of four basic elements: 1) fuzzification of crisp elements,
2) fuzzy knowledge base derived from numerical input/output
relations and humans, 3) fuzzy inference mechanism based on a
class of fuzzy logic; 4) defuzzification of fuzzy outputs into crisp
outputs for use by a plant. For real-time practical systems, the
on-line determination of a fuzzy membership function from a
given set of crisp inputs is vital. To this end, a methodology for
estimating an optimal membership function from crisp input data
has been implemented. This is based on the possibility/probability
consistency principle as proposed by L. A. Zadeh. A relationship
between the fuzzy membership function and the confidence
level of statistical input data has been developed and it serves
as a design parameter for fuzzification. This technique has
been applied to a two-dimensional multisensor-multitarget
tracking system. Fuzzy system performance evaluations have been
presented. With simulated data in the laboratory environment,
the simulation has been performed to evaluate the Mission
Avionics Sensor Synergism (MASS) Systems. These results show
better performance for the data correlation function using the
fuzzy logic techniques.
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I. INTRODUCTION

Fuzzy logic designs have been successfully applied
to a large number of industrial control systems. These
include the control of trains, cement kiln, traffic
lights, power systems, and air conditioners. A fuzzy
controller handles adjustments and variations the way
a person thinks and it can set speed at low, medium,
or high. In these systems, computers make decisions
like humans.
For successful execution of operational tactics, a

consistent picture plays a crucial role. However, data
fusion technology is the key to a consistent tactical
picture. To develop a consistent tactical picture, we
have to deal with very diverse objects and imperfect
information. By this we mean information that is
incomplete, inconsistent, inaccurate, imprecise,
uncertain, unreliable, or some combination of these.
However, in algorithmic formulations, the data fusion
technology usually requires mathematically precise
descriptions of these processes and objects to fuse the
information. To highlight the gap between the reality
and the mathematical abstraction, A. Einstein states,
“So far the laws of mathematics refer to reality, they
are not certain. And so far they are certain, they do
not refer to reality.” In this sense, only “approximate”
representations can work closely with real world
situations. We deal here with approximate reasoning
to fuse imperfect information.
Fuzzy logic provides a framework and flexibility

to couple human judgment with standard mathematical
tools. Mathematics is among the most explicit of
human cognitive processes whereas judgment, on
the other hand, requires the exercise of human
intelligence. Fuzzy system techniques can provide
approximate solutions, in a simple and robust way,
to engineering problems which are too complex
or ill-defined to yield analytical solutions, whose
boundaries are not crisp, and where data are
incomplete, inconsistent, imprecise and ambiguous.
For real world problems, we deal with two types of
uncertainty: probabilistic uncertainty and possibilistic
(vague and imprecise) uncertainty. We usually
receive information in two forms, numerical data
received from sensor measurements, and linguistic
information in two forms, numerical data received
from sensor measurements, and linguistic information
from human operators and experts. Since the
sensors employ simplified mathematical models,
and provide measurements based on past operations,
these sensor measurements cannot accurately cover
future simulations. On the other hand, when human
beings express their skill by linguistic rules, some
information is lost in communication. As a result,
neither of the two is enough for representing and
solving real-world engineering problems. Success
usually comes to those who apply technology to
their best advantage. Thus, the idea is to use both
numerical and linguistic information using fuzzy
logic to generate approximate solutions for complex
engineering problems.
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Both fuzzy imprecision and probabilistic
uncertainty are intrinsic features of operational
systems. In a multisensor tracking system [16], we
deal with uncertainty. This uncertainty may be caused
by both random variation of measurement data as
well as inaccuracy in data recording (fuzzy data).
Thus, we have two types of variables associated
with the tracking processes: random variable and
fuzzy variable. A fuzzy variable is associated with
a possibility distribution in much the same manner
as a random variable with a probability distribution.
However, in general, a variable (data) may be
both fuzzy and probabilistic at the same time. And
this variable may be associated with a possibility
distribution and a probability distribution with the
weak connection between the two expressed as the
possibility/probability consistency principle [19].
In tracking multiple targets there can be an

uncertainty associated with measurements as well
as the origin of the measurements when there is
clutter or the false-alarm rate is high. An uncertainty
may also be associated with the tracking system
when multiple targets are in the same neighborhood.
Further, a multisensor tracking system can be
associated with an additional uncertainty contributed
by the following processes.

1) Data alignment. This is one of the major
problems in integrating sensors into a multisensor
system. Measurements may require conversion
to a common coordinate and time base, and unit
adjustments.
2) Different dimensions. Sensor measurements

may have a different number of spatial measuring
dimensions (such as IRST-to-ESM (AZ,EL) and
(EL)). This gives rise to an uncertainty in dimension.
3) Different sensor characteristics (such as target

viewing angles, measurement accuracies, sensor
resolutions, and field of view). Difference in any of
these further complicate the problem of associating
measurements.
4) Object/attribute correlation. A variety of

sensors allows the measurements of target attributes
(target type, size). A correlation of these gives rise to
a certain uncertainty.
5) Data/object correlation. Correlating kinematic

measurements (range, range-rate, azimuth) received
from different sensors with multiple tracks gives rise
to missed correlation (Type I errors) and incorrect
correlation (Type II errors).
6) Object positional, kinematic, and attribute

estimation. This involves predicting different
sensor observations, updating and predicting
position/kinematic/attribute estimates, and managing
sensors. All these processes associated with a
multisensor tracking system contribute to the
uncertainty of tracking targets.

In practical applications of fuzzy systems, we need
to know the membership of a fuzzy variable. The

membership grades are obtained either subjectively or
as the values of a function of those particular events.
The main focus in this researc is to demonstrate
the feasibility of applying fuzzy logic techniques
to correlation problem solving. In this work, we
generate membership functions for stochastic variables
characterizing multisensor tracking problems [16],
develop fuzzy rules for multisensor data association,
and finally, defuzzify the fuzzy results obtained for
use by a tracking system. Two examples demonstrate
the feasibility of using fuzzy logic for solving data
association problems in a multisensor-multitarget
tracking.

II. FUZZY SETS AND FUZZY LOGIC SYSTEMS

At the heart of fuzzy logic is the fuzzy set. Here
we define fuzzy sets and fuzzy logic, and their
interrelationship.

A. Fuzzy Sets

A fuzzy system is a class of objects in which
there is no sharp boundary between those objects that
belong to the class and those do not. Membership
function in a fuzzy set is a matter of degree. In
addition, an element may also be a member of
more than one set [5]. In a classic Boolean logic, an
element either belongs to the set or does not; there
are only two possible states (1 or 0). Despite the
imprecise boundaries of a fuzzy set, a set F can be
defined precisely by associating with each objects
x, a number between 0 and 1 which represents its
grade of membership in F. Each fuzzy set represents a
linguistic term of some linguistic variable. A linguistic
variable is defined as a variable whose values
are sentences in a natural language. For example,
“age” is a linguistic variable; this variable can only
take linguistic values. The linguistic values for the
linguistic variable, “age,” may be very young, young,
old, very old, etc. These linguistic terms play a key
role in human communication. Here the emphasis is
not on measuring the contents of the information, but
rather on defining the meaning of a linguistic value by
its possibility distribution [19].
We provide some definitions in mathematical

forms.
A universe of discourse U is a collection of objects

which can be discrete or continuous. A fuzzy set F
in U characterizes a membership function ¹j : U0 >
[0,1]. This is labeled by a linguistic term, where a
linguistic term is a word such as “young,” “old,” etc.
For example, let U be the values of “age” of a person.
Then we define four fuzzy sets in U, namely, “Very
Young,” “Young,” “Old,” and “Very Old.” Fig. 1
presents a graphic representation of the membership
function for the linguistic variable “age”. Clearly this
provides smooth transitions and overlaps among the
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Fig. 1. Fuzzy membership function.

fuzzy sets conforming to a natural situation in a real
world.
The mathematical framework of theory of fuzzy

sets provides a natural basis for fuzzy logic, as well as
for the theory of possibility.

B. Fuzzy Logic

Basically, fuzzy logic is a generalization of
binary logic. Fuzzy sets, membership functions, and
IF—THEN rules are three primary elements of a fuzzy
logic system. In the IF—THEN rules (which are logical
statements), linguistic terms are used to incorporate
vagueness and ambiguity. This logical inferencing
using fuzzy sets is known as fuzzy logic. There are
two main categories of fuzzy implication inference
rules in approximate reasoning; the generalized modus
popens (GMP), and the generalized modus tollens
(GMT) [8]. The forward data-driven inference (GMP)
plays an important role in fuzzy control systems. The
backward goal-driven inference (GMT) can play a
powerful role in special situations.

III. BASIC ELEMENTS OF A FUZZY SYSTEM

A fuzzy system contains four basic elements;
fuzzification interface, fuzzy knowledge-base, fuzzy
inference engine, and defuzzification. Fig. 2 provides
a functional paradigm for fuzzy systems. These
elements are described below.

A. Fuzzification Interface

The fuzzification interface transforms each
numerical data received from sensor measurements
into fuzzy variables. The number of fuzzy sets defined
in the input discourse and their specific membership

Fig. 2. Functional paradigm for fuzzy systems.

functions define the fuzzification interface design
[5]. Fig. 1 defines a fuzzification interface for the
linguistic variable age. This maps the crisp value of
the age of a person into four fuzzy sets which define
four linguistic values (very young, young, old, very
old). Let the age of a person be 55 years, then the
outputs of this fuzzy interface related to the belief
result in ¹very-young (55)=0, ¹young(55)=0:5, ¹old(55)=0:5, and
¹very-old(55)=0.
It is a fact of life that much of the evidence on

which human decisions are based is both fuzzy and
granular [18]. With this motivation, the fuzzification
of numerical data from sensor measurements needs
dividing an optimal (or empirical) membership X into
a number of fuzzy subsets (or term sets). This may
also be considered a fuzzy partitioning of a fuzzy set
X. The main requirement is to come up with fuzzy
subsets that ensure a uniform activation of the original
membership function of a fuzzy set X [11].

B. Fuzzy Knowledge-Base

This contains IF—THEN rules and simple fuzzy
statements, and provides a methodology to represent
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human knowledge. We specify the meaning of
fuzzy rules using linguistic terms defined by their
membership functions (Fig. 1).

C. Fuzzy Inference Engine

The fuzzy inference engine employs a particular
kind of fuzzy logic. It stimulates human decision
making procedure, and employs fuzzy knowledge-base
and fuzzy input to generate fuzzy decisions (output).
There are two common methods to perform

fuzzy logic inferences; the max-min method and the
max-product method. In the max-min method, the
final output membership function for each output is
the union of the fuzzy sets assigned to that output,
and the degree of membership values are clipped
at the degree of membership for the corresponding
premise. In the max-product inference method, the
final output membership function for each output is
the union of the fuzzy sets assigned to that output in
a conclusion, and their degree of membership values
are scaled to peak at the degree of membership for
the corresponding premise. The max-min interference
method is explained in Appendix A.

D. Defuzzification Interface

All fuzzy logic inference methods results in fuzzy
values for all output information. The defuzzification
interface transforms the fuzzy output into crisp
(nonfuzzy) data for use by a plant. There are several
defuzzification methods including the centroid method
and the height method [5, 8]. The centroid method
(also known as the center of gravity method) is the
most common in use. This method selects the output
value corresponding to the centroid (center of gravity)
of the output membership function as the crisp value
for an output. Appendix A illustrates its application.

IV. FUZZY MEMBERSHIP FUNCTION ESTIMATION
APPROACH

The determination of a fuzzy membership
function is most crucial in applying a fuzzy system
design methodology to engineering problems. For
real-time practical systems, the on-line generation of
membership functions is vital. There is no general
method available for determining membership
functions from a given set of crisp input. Dubois and
Prade [5] have surveyed a number of techniques to
generate membership functions in specific cases. In
many cases, membership functions are determined
subjectively. However, it is worth noting that a
membership function may be subjective, but not
arbitrary. And subjective judgments are not additive.
Further the grades of membership are “meaning
representations” of linguistic terms of linguistic
variables which are essential key elements of any

natural language in human communication and
reasoning [18]. Lai and Hwang [7] have classified
all existing membership functions into four broad
categories as follows.

1) Membership functions based on heuristic
determination. In this category, we have Zadeh’s
unimodal function, Dimitru and Luban’s power
function, and Svarowski’s sin function.
2) Membership functions based on reliability

concerns with respect to the particular problem. This
contains Zimmermann’s linear function, Tanaka,
Uejima and Asai’s symmetric triangular functions,
Hannan’s piecewise linear function, Sakawa and
Yumine’s exponential and hyperbolic inverse
functions, Dimitru and Luban’s function, and Dubois
and Prade’s L-R fuzzy number.
3) Membership functions based on more

theoretical demands. This includes Civanlar and
Trussel’s function, and Svarovski’s function.
4) Membership functions as a model for human

concepts such as Hersh and Caramazza’s function,
Zimmermann and Zysno’s function.

In practice, a system designer may also use
empirical or statistical distributions to design optimum
membership functions. To solve multisensor tracking
problems, there are several statistical techniques
including maximum likelihood estimation and
Kalman filtering. Since multisensor tracking systems
employ statistical inputs, the membership function
estimation based on statistical input data distributions
shall be appropriate. Zadeh [19—21] has provided a
mechanism, called a possibility probability consistency
principle which is described below.

A. Possibility/Probability Consistency Principle

The concepts of possibility and probability are
inherent in human thinking. These underlie the human
ability to reason in approximate terms. Clearly, this
demands developing a better understanding of the
interrelationship and interplay between possibility
and probability. It will enhance our ability to develop
machines which can simulate human reasoning to
attain goals defined imprecisely in an uncertain and
vague environment. It may be noted that a high degree
of possibility does not necessarily imply a high degree
of probability, nor does a low degree of probability
imply a low degree of possibility. However, if an
event is bound to be impossible, it is bound to be
improbable, but not vice-versa [6, 18]. This heuristic
relationship between possibility and probability may
be stated as the possibility probability consistency
principle.
For any union D of disjoint intervals, the

associated possibility and probability distributions
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Fig. 3. Membership function for Gaussian pdf.

can be written as

¼(D) = sup
X2D

h(x)=suph

and

Pr(D) =
Z
D

h(x)dx

,Z 1

¡1
h(x)dx:

The consistency principle states that the degree of
possibility of an event is greater than or equal to its
degree of probability [19]. Mathematically, this can be
written [5] as

sup
X2D

h(x)=suph¸
Z
D

h(x)dx

,Z 1

¡1
h(x)dx

for any set D on the real line.
It is noteworthy that this principle is not a precise

law rather it is an approximate formalization of
the heuristic observation that a lessening of the
possibility of an event tends to lessen its probability,

Fig. 4. Membership function for triangular pdf.

but not conversely. Further, Civanlar and Trussel
[2] have shown that, for every probability density
function there exists a lower bound for the confidence
level of the statistical input data over which the
optimal membership function satisfies the consistency
principle. Sudkamp [15] provides probability
possibility transformations, and Delgado and Moral
[4] discuss the concept of the consistency principle.

B. Optimal Membership Generation

The possibility probability consistency principle
can be applied to generate optimal membership
functions. In this work, we generate membership
functions for tracking data based on their probability
density functions (pdf). In this way, we relate the
fuzzy membership functions to physical properties
of tracking systems. The optimal membership function
can be shown [2] to be

¹(x) =
½
¸p(x) if ¸p(x)< 1
1 if ¸p(x)¸ 1

¾
where p(x) is the pdf, and p is a constant satisfying
the equation

¸

Z
¸p(x)<1

p2(´)d´+
Z
¸p(x)¸1

p(´)d´¡C = 0

where C is a confidence level of the statistical data
used, and it serves as a design parameter. This
mathematical equation provides a basis to generate an
optimal fuzzy membership function. We demonstrate
its applications below.

V. FUZZY MEMBERSHIP FUNCTION
DETERMINATION

Given a value of confidence level of statistical data
and its pdf, we can apply the consistency principle
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Fig. 5. Membership function for trapezoidal pdf.

to obtain an optimal membership function. The
determination of an optimal membership function
requires the solution of the equations given in
Section IVB. Further, Mathcad 4.0 from MathSoft
Inc. has been used to solve the equation for various
values of the confidence level C. Here we present
membership functions for five types of pdfs, namely,
Gaussian, triangular, trapezoidal, histogram, and
chi-square.

1) Gaussian: We can plot membership functions
for the Gaussian pdf with different confidence levels.
Fig. 3 shows this for 95% confidence level.
2) Triangular: A triangular pdf is very important

in ocean surveillance. Fig. 4 presents a membership
function corresponding to 95% confidence level.
3) Trapezoidal: Membership function for

trapezoidal pdf for a confidence level of 95% is
shown in Fig. 5.
4) Histogram: In practice, the pdf may take

the form of a histogram. Fig. 6 shows a fuzzy
membership function.
5) Chi-square: In tracking applications, a

discriminant is formed using chi-square variables.
Fig. 7 presents a fuzzy membership function for a
chi-square variable.

VI. INFORMATION GRANULARITY AND FRAME OF
COGNITION

Once a fuzzy membership function of a variable
of interest is obtained, one can use linguistic labels
(say, small, medium, big) that act as elastic constraints
over a given universe of discourse and thus identify
some of its regions as compatible to the highest
degree with these constraints. These linguistic labels
are referred to as information granules. Here the
information is granular in the sense that the data
points within a granule have to be dealt with as a
whole rather than individually [18]. As a result this

Fig. 6. Partial uniform density and MF.

concept of information granularity provides a basis for
construction of a general theory of evidence in which
the evidence is allowed to be fuzzy in nature.
A set of information granules defined for a

certain linguistic variable X over a given universe
of discourse constitutes a frame of cognition of this
variable [12]. Sometimes the frame of cognition
is also referred to as a fuzzy partition. A frame of
cognition may contain several linguistic labels.
By adjusting the granularity of the labels one can
easily implement the principle of incompatibility.
This principle asserts that high precision is
incompatible with high complexity [20]. The
main features of this frame are specificity and
robustness. Fig. 8 depicts different specificity. The
courser the fuzzy set, the lower its granularity. The
more precise the fuzzy set, the higher the value
attained for its specificity. The maximum specificity
corresponds to a pointwise assessment of the value of
a variable.
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Fig. 7. Fuzzy membership function for chi-square variable.

Fig. 8. Two frames of cognition with different specificity.

A. Reconstruction Problem

Given a piece of fuzzy information (such
as a membership function of a fuzzy variable)
how does one approximate this membership with
uniform activation using granules? Basically this is
a reconstruction problem. This deals with the selection
of the linguistic labels and their distribution. This
has a primodial impact on the performance of the
reconstruct.
In a frame of cognition, the linguistic variable

must satisfy the following two basic conditions.

1) Coverage. A frame covers a fuzzy set X when
any element of X belongs to at least one label of the
frame.
2) Semantic Soundness. This states that each

semantic label is a unimodal and normal fuzzy
set and they are also sufficiently disjoint [10]. To
specify the semantics of a certain linguistic term, we
provide a modal (typical) value of the considered
term along with the lower and upper bounds. The
main requirement is to come up with a collection of
fuzzy labels of uniform activation. This requirement
converts into a construction of a frame of cognition
with uniform entropy that subsequently means that,
on average, the linguistic labels are “activated” to the
same extent.

The construction of the fuzzy partition (frame of
cognition) driven by the criterion of equal entropy
leads to an optimization problem [11] which is
complex and computation-intensive. To overcome
this problem, we use the richness of fuzzy sets to

generate a suboptimal solution. First, derive a
composite membership function from a given
probability density function. Next, approximate
this membership function with a number of
submembership functions as closely as possible for
a desired accuracy of the result. This approach is
discussed below.

B. Motivation for Approximate Solutions

As per L. A. Zadeh, the key motivation for
applying fuzzy sets to solving complex problems is
to emulate an activity of a human being involved
in solving such problems. Fuzzy algorithms do
not model processes but model only the decision
making procedures. The objective is to generate
an approximate (suboptimal) solution to a complex
problem which is simple, efficient, and effective [20].
A human approach to solving a complex problem is
to structure the knowledge about it in terms of some
general concepts and afterwards to reveal essential
relationships between them. Some psychological
findings suggest that 7§ 2 linguistic terms as an
upper limit for the cardinality of the fuzzy partitioning
when perceived in the sense of a basic vocabulary of
linguistic terms [12]. Fuzzy system techniques are
characterized by approximate rather than categorical
reasoning, acceptance of imprecise and incomplete
information, and use of linguistic variables. It may
be emphasized that an approximate solution obtained
using fuzzy sets is a suboptimal solution based on
precise mathematical relationships, not on some
heuristic considerations.
With this in mind, we apply an approximate

method to reconstruct a given membership function
with various information granules. The level of
precision as contrasted to generality can easily be
modified by changing the number of linguistic
labels and modifying their parameters. However,
to ensure noninteraction of control rules, the fuzzy
sets of control must not be too precise and cover the
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Fig. 9. Information granularity of A and X.

entire space of control. An approximate method of
reconstructing a fuzzy variable is to distribute the
supports of the fuzzy sets according to the modal
values of the pdf, p(x), of the considered variable
and subsequently equalize the highest entropy values
by replacing the original membership function by
their trapezoidal counterparts. The linguistic terms
like positive high and negative high need not be very
specific in the cognition frame. On the contrary,
the description of the area close to zero should be
defined in more detail to make the control actions
more specific and assure enough sensitivity in the
generated control actions [11]. Figs. 9(a) through 9(c)
present various levels of information granularity of the
set A and a given membership function X.
In Fig. 9(a) the granularity of A is too high

(linguistic labels are too specific) to handle the
granularity of X. Fig. 9(b) shows that the granularity
of A is too low. In Fig. 9(c) the granularity becomes
completely justifiable owing to the input data that
becomes less precise. For purely numerical data, the
granularity of A does not play a significant role.
As becomes obvious later during applications

of fuzzy techniques, information granularity
enhances our ability to implement the principle of
incompatibility and efficiently express the tradeoffs
existing between achievable level of precision and
relevancy.

VII. MULTISENSOR TRACKING

There are three main components in a multisensor
tracking system: data alignment, data correlation,
and trajectory estimation. We concentrate on the data
association component of a multisensor tracking
process. The data correlation may suffer from two

problems, namely, missed correlation (Type I errors)
and incorrect correlation (Type II errors).
Classic algorithmic methods for data correlation

(data association) base their approaches on the
following: 1) nearest neighbor that includes
single-hypothesis techniques and multiple-hypothesis
techniques [14], and 2) all-neighbor that includes
branch-and-bound techniques [9] and joint-
probabilistic-data-association [1].
Nonalgorithmic (approximate) methods include

fuzzy logic, neural networks, and knowledge-based
techniques. The trajectory estimation may employ any
of the available techniques including Kalman filtering
and least-squares.
In practice, signals from targets of interest are

invariably accompanied by clutter, interference,
multipath, and other distractions which make data
correlation the heart of the tracking problem. The
data correlation can be performed at three levels:
report-to-report, report-to-track, and track-to-track.
The report-to-report correlation represents
correlation at the basic level. However, this is very
computation-intensive. In a practical multisensor
tracking system, one can deploy track-to-track
correlation to initialize the tracker, and thereafter use
report-to-track correlation methodology.

VIII. APPLICATIONS

Two examples are presented to demonstrate the
feasibility of using fuzzy logic for data correlation in
multisensor tracking. The input variables are position
and speed errors. These are assumed to have Gaussian
pdfs. The optimal membership of a Gaussian pdf is
shown in Fig. 3 (which is trapezoidal). To represent
this as a frame of cognition, we approximate this
using a number of fuzzy labels as discussed in Section
VI. Figs. 8 and 9 show the frames of cognitions.
The output of the correlator is a decision variable.
A decision functional is defined on the basis of an
innovation function [16]. Thus the pdf of a correlation
variable is the pdf of a chi-square variable given in
Section V5. Further, as discussed in Section IIID, here
we employ the centroid method to convert the fuzzy
outputs to the crisp data in these two examples.

A. Example 1

A target is moving with a constant acceleration.
Given: a= 0:5 ft/s2 (acceleration), and ¢T = 1 s
(sampling interval). The initial conditions: position
= 5 ft, and speed = 9 ft/s. The target motion is
characterized by the following recursive equations:

Speed = speed+ a¤¢T
Position = position+ speed¤¢T:

We have two independent sets of measurements;
target position and target speed. Let Mposition
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Fig. 10. Block diagram for correlation decision.

Fig. 11. PError–membership function.

and Mspeed denote the position and the speed
measurements. Define the position-difference and
speed-difference errors as follows.
PError =Mposition¡Predicted Position
SError =Mspeed¡Predicted Speed
Mean(PError) = 0, Standard Deviation (PError) =

3:76 ft
Mean(SError) = 0, Standard Deviation (SError) =

0:835 ft/s
True positions are also our predicted values.
Fig. 10 provides the functional block diagram for

correlation decision. Here, the MSC denotes a fuzzy
variable and embodies all the fuzzy rules and fuzzy
statements. The output variable correlation represents
the fuzzy decision for data association. We can relate
Fig. 10 to Fig. 2 in the following ways.
PError and SError represent crisp inputs to the

fuzzification interface. The MSC embodies the fuzzy
knowledge base, and the correlation represents the
output of the defuzzification interface. A fuzzy tool
provides the fuzzy inference engine for a chosen class
of fuzzy logic.

TABLE I
Rule Base

Fig. 12. SError–membership function.

Fig. 13. Correlation membership function.

Based upon the methodology discussed in Section
VI, we define five fuzzy sets in the PError discourse,
and their specific membership functions in the fuzzy
interface (Fig. 11). The following symbols denote
these membership functions:

NB =Very Low NS = Low Z=Medium

PS =High PB =Very High

The SError discourse also has five fuzzy sets
(Fig. 12). The correlation discourse has only
three membership functions (Fig. 13), and these
memberships represent Low, Medium, and High. The
fuzzy variable, MSC, has 25 IF—THEN rules. Table I
gives the interrelationships.
A sample of these rules are provided below.

RULE-1:
IF PError is NB AND SError is NB THEN

Correlation = LOW.
RULE-2:
IF PError is NB AND SError is NS THEN

Correlation = LOW.
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TABLE II
Correlation Results

Fig. 14. Target trajectory.

Fig. 15. Position errors and speed errors.

RULE-3:
IF PError is NB AND SError is PS THEN

Correlation =MED.
RULE-4:
IF PError is NB AND SError is Z THEN

Correlation =MED.
RULE-5:
IF PError is NB AND SError is PB THEN

Correlation =MED.

The true target positions and speeds were fuzzified
to provide measurement data for simulation. The
simulation was run for 10 s. The correlation represents
the defuzzification outputs. The correlation results are
provided in Table II.
Fig. 14 depicts the target trajectory along with its

sampled position. The distribution of position and
speed errors are shown in Fig. 15. The correlation
results in terms of the grades are plotted in Fig. 16.
However, for practical applications, these must

be converted into numbers. One method is to use
binary decision. One criterion implemented here is
that a particular measurement should be correlated if

Fig. 16. Correlation results (%).

Fig. 17. Binary decisions for CORR1.

the grade of correlation>= 50%. Fig. 17 presents the
result.
The correlation results show that all the

measurements except the ninth one should be
associated.

B. Example 2

Two targets are crossing each other are shown in
Fig. 19. The initial conditions are as follows:

Target 1 Target 2

Position1 = 9 ft Position2 = 100 ft Speed2 = 4 ft/s
Speed1 = 5 ft/s

a= 0:5 ft/s2 (constant acceleration)
¢T = 1 s (sampling interval)

Their trajectories are governed by

Speed1 = Speed1+ a¤¢T
Position1 = Position1+Speed1¤¢T
Speed2 = Speed2+ a¤¢T
Position2 = Position2+Speed2¤¢T
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Fig. 18. Block diagram for two targets crossing.

Fig. 19. Target trajectories.

We have four sets of independent measurements
for the two target positions and speeds: Mposition1,
Mspeed1, Mposition2, and Mspeed2. Define the errors
as follows.

PError11 =Mposition1¡Position1
DError11 =Mspeed1¡Speed1
PError12 =Mposition1¡Position2
DError12 =Mspeed1¡Speed2
PError21 =Mposition2¡Position1
DError21 =Mspeed2¡Speed1
PError22 =Mposition2¡Position2
DError22 =Mspeed2¡Speed2
Mean(PError11) = 0
STD(PError11) = 3:76 ft
Mean(DError11) = 0
STD(DError11) = 0:835 ft/s
Mean(PError22) = 0
STD(PError22) = 3:571 ft
Mean(DError22) = 0
STD(DError22) = 0:975 ft/s.

The errors corresponding to the target and the
measurement are shown in Tables III and IV.
Relating the entries of Table IV to the

corresponding variables of Table III, a fuzzy

TABLE V
Fuzzy Correlation Results

TABLE III
Track and Measurement Errors

TABLE IV
Target and Measurement Errors

correlation variable, Corr11, represents the correlation
between fuzzy variables PError11 and DError11;
Corr22 between PError22 and SError22; and a
fuzzy cross-correlation variable Corr12 represents
correlation between fuzzy variables PError12 and
DError12; and Corr21 between PError21 and
DError21. Fig. 18 shows the data association scheme.
Relating this figure to the fuzzy system paradigm
(Fig. 2), we have the following.
PError11, PError12, DError11, DError12,

PError21, PError22, DError21, and DError22
represent the observations (crisp inputs) to the
fuzzification interface. The fuzzy variables Corr11,
Corr12, Corr21 and Corr22 are the outputs of the
defuzzification interface. The MSC embodies the
fuzzy knowledge. A fuzzy tool provides the fuzzy
inference engine.
We have applied 100 IF—THEN rules to this

correlation decision problem. The fuzzy correlation
results are denoted in Table V.
Figs. 20—23 show the plots of fuzzy correlation

membership functions. The Y-axis represents the
grades of fuzzy correlation variables.
This shows that there is no cross-correlation

between measurements PError12 and DError12.
This figure shows that there exists one cross-

correlation between PError21 and DError21. But
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Fig. 20. Plot correlation component for CORR11.

Fig. 21. Plot correlation component for CORR22.

Fig. 22. Plot correlation component for CORR12.

Fig. 23. Plot correlation component for CORR21.

the value of this grade is low. The combined
correlation results for all the measurements are shown
in Fig. 24.
The corresponding binary correlation results are

based on 50% or more grades in the correlation
membership functions and are denoted by: CORR11,
CORR12, CORR21, and CORR22. These are shown
in Figs. 25—28.
Fig. 25 suggests that the eighth measurement of

the pair, Mposition1 and Mspeed1, should not be
associated.

Fig. 24. Combined correlation results for CORR11, CORR12,
CORR21, CORR22.

Fig. 25. Binary decision for CORR11.

Fig. 26. Binary decision for CORR22.

Fig. 27. Binary decision for CORR12.

Fig. 26 suggests further that the fourth and seventh
measurements of the pair, Mposition2 and Mspeed2,
should not be associated.
Based on our decision criterion, the binary

decisions for CORR12 and CORR21 are zeroes. The
overall binary decisions for correlation individual
measurements with tracks are shown in Fig. 29.
This represents an overall decision made by the

fuzzy correlator as shown in Fig. 18. The eighth
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Fig. 28. Binary decision for CORR21.

Fig. 29. Overall binary decisions for CORR11, CORR12,
CORR21, CORR22.

measurement of the pair, Mposition1 and Speed1;
and the fourth and seventh measurements of the pair,
Mposition2 and Mspeed2, should not be associated.
The cross-correlation represented in Fig. 23 did

TABLE VI
Performance Evaluation (Example 1)

TABLE VII
Performance Evaluation (Example 1)

not affect the result because it is below the binary
threshold set out for the test.

IX. FUZZY SYSTEM PERFORMANCE EVALUATION

Since a fuzzy logic technique generates an
approximate solution, an evaluation criterion for its
performance is shown in Table VI for Example 1
whether this approximate solution is acceptable. In
practice, it is only possible to judge the effectiveness
of fuzzy logic techniques, when a sufficient number of
functioning devices or solutions for complex problems
have been constructed on the basis of fuzzy logic
theory.

A. Arbitrary Evaluation Criteria

Two evaluation criteria for data association are
defined below

Criterion 1: PError( 1¾p AND SError( 1¾s

Criterion 2: PError( 2¾p AND SError( 2¾s:

Table VI shows that the fuzzy system performs
70% with respect to the first criterion, and 90% with
respect to the second for Example 1.
Table VII shows that the fuzzy system performs

65% with respect to the first criterion, and 80% with
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TABLE VIII
Performance Evaluation (%)

respect to the second for Example 2. After the system
has been developed, it requires tuning of the system
response. A self-tuning technique based on fuzzy
meta-rules provides one such methodology [3].
Table VIII summarizes the performance evaluation

results. The number of fuzzy rules and their impact on
performance is discussed in Section X.

B. Evaluation Using Mission Avionics Sensor Synergism
System

The Mission Avionics Sensor Synergism
(MASS) laboratory consists of the hardware and
software necessary to provide real-time simulations
of a Tactical Coordinator (TACCO) station in a
Navy surveillance aircraft involved in ASUW,
Surface-Subsurface Surveillance Coordination (SSSC)
or ASW missions. The TACCO is supplied with
data from simulated aircraft avionic systems. Sensor
contact reports are supplied directly to the TACCO, to
sensor trackers, and to MASS correlation functions.
Sensor tracker and correlation function outputs are
also supplied to the TACCO for evaluation and
comparison with conventionally derived target tracks.
The laboratory is capable of storing mission scenarios
onto what are known as extraction files. Extraction
files from both the laboratory and the aircraft are
able to be “replayed” for post-mission evaluation and
development. Data from a flight tested Multisensor
Multitarget Correlation (MSMTC) system named
MASS [9] were used to test fuzzy logic techniques
on track-to-track correlation processes. The data were
generated via sophisticated laboratory simulations.
This analysis focused on the standardized squared

difference, which is a statistic computed from the
parameters of two tracks and is assumed to be a
chi-square distributed random variable. This statistic
is normally compared with a threshold based on
the chi-square pdf with the appropriate degrees of
freedom. A heuristic examination of values of this
statistic for a specific case of correlation processing
indicated that a less stringent threshold would be
reasonable. Transferring the correlation problem from
a “probability domain” to a “possibility domain” is
exactly the basis of fuzzy logic [6]. The heuristic
threshold improved performance in two examined
cases, suggesting that a formal fuzzy logic algorithm
for automating threshold selection would benefit
track-to-track correlation processing.

Fig. 30. Case A target/sensor distribution.

Fig. 31. Case B target/sensor distribution.

Fig. 32. Case A associations from classic technique.

The Track Association function was isolated
and reproduced on a PC to enable efficient
experimentation with a set of extraction files. Two
cases of Track Association, one from each of two
extraction files, were examined. The two cases were
each run using classic techniques and then using fuzzy
logic techniques. We refer to the extraction files as
Extraction File A (containing Case A) and Extraction
File B (containing Case B). Figs. 30 and 31 show the
cases’ tactical scenarios.
The only difference between the two cases is that

target 5 is monitored by acoustics sensors in Case B
but not in Case A.
1) Case A: MINYAN denotes a composite track.

This uses kinematic data to perform multisensor
multitarget correlation. For this scenario Track
Association evokes four passes. In the first pass,
the seven radar tracks are established as the initial
MINYAN tracks. In the second pass, the function
attempts to combine the seven IRDS tracks with the
initial MINYAN tracks. Ideally after the second pass,
the IRDS tracks on targets 6, 9, 10, and 11 would
be combined with the appropriate MINYAN tracks
and the other IRDS tracks would establish three new
MINYAN tracks. After four passes, the twenty-seven
sensor tracks should be correctly combined into eleven
MINYAN tracks.
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Fig. 33. Case A associations from fuzzy logic technique.

Fig. 34. Case A, run 2, pass 3 values for standardized square
difference.

Fig. 32 shows the results of Track Association
when the thresholds to test the hypothesis that two
tracks could represent the same target is set at levels
dictated by classic probability theory.
The process results in seventeen MINYAN tracks,

one false correlation, five failures to correlate, and
two denied opportunities to correlate due to the false
correlations.
Examining the values of the parameter D,

described in Section III, revealed a heuristically
identifiable cluster containing values for track pairs
where most were correctly matched. The threshold
for this cluster was arbitrarily set at 100 and Case A
was rerun. The measure of agreement E(J ,K) was set
equal to D=100 for all sensors. Fig. 33 shows results.
Results were twelve MINYAN tracks, two false

correlations, one failure to correlate, and one denied
opportunity to correlate due to false correlations.
Fig. 34 presents the values of D computed in the

third pass of the second run of Case A. At this point,
six acoustic tracks were being compared with nine
MINYAN tracks.
2) Case B: Fig. 35 shows results of running

Case B with the classic threshold. Results are sixteen
MINYAN tracks, one false correlation, four failures
to correlate, and two denied opportunities to correlate
due to the false correlations.
Fig. 36 shows results of running Case B with the

threshold set at 100. Results are eleven MINYAN
tracks, two false correlations, no failures to correlate,
and two denied opportunities to correlate due to false
correlations.

X. CONCLUSIONS/REMARKS

It is important to note that a fuzzy logic approach
generates an approximate solution to the problem.
Despite the fact that the crisp output to a fuzzy system

Fig. 35. Case B associations from classic technique.

Fig. 36. Case B associations from fuzzy logic technique.

is arrived at via precise mathematics, the outputs
are still approximate and subject to the accuracy of
the rule set and membership functions. However,
it has been shown that fuzzy systems with product
inference, centroid defuzzification, and Gaussian
membership functions are capable of approximating
any real continuous function on a compact set to
arbitrary accuracy [17]. Remember, fuzzy algorithms
model the decision maker, not the process. As a
result, fuzzy logic is totally intuitive. We must verify
whether it makes sense with this system. This says
only applications matter.
A technique for generating on-line membership

functions for input and output variables based on
their pdfs has been presented. The key feature of a
fuzzy system technique based on fuzzy logic is its
ability to combine information from different classes
of variables (like pressure, temperature, : : :) using
fuzzy inference operations. Thus, it solves complex
problems using inexact inputs received from diverse
sensors and provides approximate solutions. The
examples presented here have taken into account only
kinematic data and have not considered attributes
which are critical elements for data association.
Further, this fuzzy approach puts equal emphasis on
both kinematic and attribute data.
Example 1 employs 25 rules and example 2 100

rules. On the surface, it seems that the number of
rules is increasing exponentially like any classic
combinatorial problem. Fuzzy techniques are highly
flexible in creating rules giving much latitude in
reducing the rule base. However, precision is costly.
General guidelines for creating rules are as follows.

1) Use attribute data in conjunction with kinematic
data. This may greatly reduce the number of rules
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Fig. 37. Max-Min inference method.

required to achieve the same accuracy for the decision
result.
2) Where precise outputs are required, define more

input and output terms. This results in a large number
of rules.
3) Where imprecision can be tolerated, define

fewer input and output terms. Hence, it results in a
smaller number of rules.

Therefore, we need to assess a degree of
imprecision, that the system can tolerate. In addition,
fine tuning can be achieved by adjusting relative
width of a membership function as well as the relative
shapes and sizes of the output membership function.
To overcome this problem further, we can also apply
a hierarchical rule structure [13] and self-tuning using
meta-rules [3].
In this paper, a fuzzy logic technique that can

be applied to resolve data association problems in
multisensor multitarget tracking has been explored.
The normal distance measure has not been used
in the usual manner, but the fuzzy logic technique
has fuzzified the distance measures for use by
the fuzzy knowledge-base. The fact of the matter
is that here we do not measure the contents of
the information, but rather we emphasize on the
meaning of a linguistic value defined by its possibility
distribution. Performance evaluation has been done
with two criteria. Of course, fuzzy logic is not the
best approach for every control problem. This is the
first fuzzy technique approach to data association
problems. With simulated data in the laboratory
environment, the simulation has been performed to
evaluate the MASS system as reported in Section IXB.
These results show better performance for the data
correlation function using the fuzzy logic techniques.

XI. FUTURE PLANS

1) Incorporate attributes into the fuzzy
knowledge-base. Solve data association problems

Fig. 38. Centroid defuzzification method.

using both kinematic and attribute information present
in the fuzzy knowledge-base.
2) Develop, test and evaluate a fuzzy logic

algorithm that formalizes threshold selection.
3) Apply the above fuzzy logic methodology to

solve tracking problems for both the components
of data association and of trajectory estimation in
real time. Run the simulation with real data in the
laboratory environment.
4) Compare and evaluate the performance of the

fuzzy logic technique with 1) multiple-hypothesis
techniques, and 2) branch-and-bound techniques for
multisensor multitarget tracking problems in a dense
clutter environment.
5) Integrate this nonalgorithmic methodology

into a navy platform enabling the platform to handle
a large number of diverse targets in a dense clutter
ocean environment.

APPENDIX A. MAX-MIN INFERENCE METHOD

In the max-min inference method, the final output
membership function for each output is the union of
the fuzzy sets assigned to that output in a conclusion
after clipping their degree of membership values at the
degree of membership for the corresponding premise,
as shown in Fig. 37.
The centroid defuzzification method picks the

output value corresponding to the centroid (center
of gravity) of the output membership function as the
crisp value for an output. If one were to draw the
output membership function on a piece of cardboard
and cut it out, the center of gravity would be the crisp
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value at which the cardboard balances on a razor
blade, as shown in Fig. 38.
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