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I. INTRODUCTION 

With microwave surveillance radar it is possible 
to detect and locate ships at sea in all weather, day or 
night, to the limits of the radio horizon. Surveillance 
radars do not have sufficient antenna angle resolution 
to allow recognition of detected ships; however, 
a technique known as inverse synthetic aperture 
radar CISAR) can, while searchlighting the ship 
with its antcnna bcam, produce images in range and 
cross-range with sufficient resolution for recognition. 
When ISAR displays the constantly changing images 
of target ships to human operators for classification, 
the proccss requircs trained operators to dwell for a 
relatively long time duration before an identification 
can be confirmed. ISAR produces a rapidly updating 
sequence of range-Doppler image frames. Range 
resolution gives one imaging dimension, and the 
resolution of differential Doppler caused by target 
rotation gives an orthogonal (cross-range) dimension. 
While the formation of ISAR imagery relies on target 
motion (described below), in many rcspect<; ISAR 
images are similar to optical presentations of the same 
target, but there are notable exceptions. In addition to 
intuitive recognition by an operator, classification of 
ISAR ship imagery is accomplished by a combination 
of three different techniques: mensuration, feature 
description, and shape correlation. In mensuration 
the locations of major target components (such as 
masts, superstructure breaks, cranes, weapons, etc.) 
along the how-stern axis of the target are measured 
as a percentage of the range extent of the ship, and 
compared with the locations of the same components 
on candidate ship classes. Because ISAR imagery is 
not affected by parallax, these relative measurements 
are not affected by changcs in targct aspect. Feature 
description is the process of labeling thc components 
of candidate targets by their degree of match to 
descriptive templates (such as the stern: straight, 
curved, or rounded; or a mast: pole, lattice, or solid). 
The operator compares the feature descriptions 
observed in an ISAR frame sequence with the feature 
descriptions of candidate targets for recognition. 
A<; a final confirmation of the result of the above 
methods of rccognition, thc human opcrator can 
perform a shape correlation on a single selected 
ISAR image frame, visually comparing the image to 
a wire-frame model of onc or more candidate ships 
the operator thinks might match the unknown image. 
The wire-frame model is transformed by a computer 
to match the orientation of the target in the ISAR 
image. To facilitate this three-mcthod approach to 
ship classification, computer-based decision aids 
have been developed which contain databases of ship 
characteristics. The automatic recognition approach 
described in this work emulates the computer-assisted 
human recognition process, and utilizes the databases 
constructed for the computer-based aids. 
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A limitation to the recognition of a large number 
of ships in a limited time is the performance of human 
image interpreters. They suffer from fatigue and 
require a finite amount of time to reach a decision. 
Thus automatic or semiautomatic classification 
methods are a means of overcoming operator 
limitations. 

ISAR uses primarily thc ship's own normal angular 
motions (roll, pitch, and yaw) to provide the aspect 
changes necessary for imaging. As a consequence 
the images change radically on time scales which are 
fractions of the ship's motion periods (on the order 
of 10 s). This variability adds a time dimension to 
the task of automating ISAR ship recognition. The 
following are some ways in which the dynamics of 
ISAR images affect recognition. 

1) It may be necessary to wait as long as a 
ship-motion period for a favorable image aspect to 
appear. 

2) The image projection-plane and cross-range 
(vertical) scale factor are continually changing with 
the ship motion. 

3) Imagc frames separated by a fraction of a 
motion-period can reveal different target features, 
i.e., plan and elevation information. This allows 
three-dimensional information to be extracted directly 
from the two-dimensional images. 

4) The rapid changing of the image means that it 
is not possible to improve the detectability of target 
features by the direct integration of successive frames 
by summing or averaging pixel values. 

5) Since not all image frames are equally useful, 
and different target features are likely to be found 
in successive image frames, it may be necessary to 
proccss many frames for reliable recognition, greatly 
increasing the amount of pixel-processing computation 
required. 

Apart from their ever-changing dynamics, ISAR 
images arc quite suitable for the application of 
many conventional image processing techniques. 
The images contain relatively few pixels compared 
with optical images; and there is normally little 
background clutter, making the separation of the 
target from the clutter (called segmentation) relatively 
straightforward. Even so, due to the large dynamic 
range and specular nature of ISAR images, other 
standard processing techniques, such as edge detection 
and histogram-based segmentation techniques, are 
normally ineffective. 

Since single frames of ISAR imagery may not 
contain all the information necessary for ship 
recognition, techniques have been developed for 
processing time sequences of ISAR image frames. 

The need for multiframe processing has led to the 
development of inexpensive processing techniques 
(in terms of memory and central processing unit 
(CPU) cycles, since they must be applied to each 

frame in a sequence of ISAR images) to produce both 
frame-selection criteria and target-specific features. 
The results obtained from processing the multiple 
image frames are then examined to detect and locate 
consistent target features, which are in tum used to 
classify the target. 

This work summarizes research by the U.S. Naval 
Research Laboratory's Airborne Radar Branch 
on basic methods for automatic ISAR ship-image 
recognition. Section II deslcribes the nature of ISAR 
ship images, and presents some examples. Section III 
describes single-frame prol;essing for segmentation, 
feature extraction and target modeling. Section IV 
describes an approach to multiple-frame feature 
extraction. Section V gives example of processing and 
classification results. Section VI present� some final 
observations. 

II. ISAR SHIP IMAGING 

In this papcr, ISAR means target-stabilized 
range-Doppler imaging. A pulse-to-pulse 
phase-coherent radar is used whose range resolution 
(1 m to 3 m) is much smaliler than the dimensions of 
the target. The antenna beam of the radar searchlights 
the target for the duration of imaging (usually longer 
than the ship's roll period). Amplitude and phase 
echo data are collected for each of a set of range cells 
which span the target, and for each radar pulse during 
the imaging interval. The Icells are stabilized in range 
relative to the target so that one target point remains 
in the same range cell for at least the duration of 
the time needed to collect the radar data for a single 
image frame. One method of range stabilization is 
to tie the range-sampling grid to a prominent point 
range tracker. Range cells form the down-range 
dimension of the image. The Doppler spectrum of 
the pulse-to-pulsc data in each range cell is computed 
to form a cross-range (Doppler) dimension of the 
ISAR image frame. For a point on a rotating object 
(rotation is required for ISAR imaging), the Doppler 
frequency shift is proportional to the distance from 
the center of rotation, me.asured perpendicular to 
the radar line-of-sight. Thus the Doppler dimension 
represents cross-range. The Doppler resolution in 
Hz is approximately the r,�ciprocal of the coherent 
processing time (in s) used to form the spectrum. The 
cross-range scale factor (mlHz) is proportional to the 
Doppler frequency resolution, but also depends on the 
instantaneous rotation rate of the target (which for 
ship targets is generally unknown). ISAR recognition 
techniques thus must be tolerant to an unknown 
Doppler-to-cross-range scale factor. It is desirablc to 
provide an operator with a sequence of ISAR image 
frames which changes smoothly as the target ship's 
motion changes; however, the integration time for the 
required Doppler resolution is usually much longer 
than the frame update interval for a smooth movie-l:ike 
presentation. The faster frame rate is achieved by 
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Fig. 1. RangeIDoppler pitch effect. 

computing the Doppler spectra for each frame on 
overlapping time segments of the coherent radar echo 
data. 

The ISAR image projection planc is defined by the 
radar line-oC-sight and the direction of rotation of the 
target. The image plane contains the line-of-sight, or 
range vector, which in this work is displayed as the 
image horizontal dimension. The other dimension of 
the projection plane can be described as the vector 
cross-product of the line-of-sight vector with the 
instantaneous angular velocity vector, that is, a vector 
perpendicular to both the range vector and the angular 
velocity vector. 

Fig. 1 illustrates the connection between the target 
motion and the projection plane. In this example the 
ship is illuminated by the radar from the bow. It is 
subject to a pure pitch counter-clockwise rotation; 
and its angular velocity vector (by the right-hand rule) 
is perpendicular to the page. Therefore the vector 
cross-product is in the plane of the page, in the vertical 
direction. The pitch motion causes the tops of the 
masts to have a higher velocity, relative to the radar, 
than the deck, causing them to have greater Doppler 
shifts. This allows the vertical structure of the ship to 
be resolved in Doppler. If the ship pitches at a faster 
rate, the Doppler shifts of the masts will be greater, 
and the vertical image dimension enlarged. If the ship 
pitches in the clockwise direction, the Doppler shift 
will be in the opposite direction, and the ship image 
will be inverted. In like manner, roll motions (if the 
radar illumination aspect is other than parallel to the 
ship heading) also give ship elevation information, 
and yaw motions give plan information. The ISAR 
prescntation of ship height structure, caused by roll 
and pitch, is known as profiling. 

The dependence of the image projection plane and 
cross-range scale factor on the ship target motions 
causes the ISAR image dynamics. Roll and pitch 
are usually non coupled oscillatory motions with 
varying periods on the order of 10 s, and yaw is a less 

(a) (b) 

(e) (d) 

(e) (f) 

(g) 

Fig. 2. [SAR images from image sequence. 

structured motion depending on the steering of the 
ship and its interaction with the seaway. Generally, an 
ISAR image can be expected to change significantly in 
1 s, and radically significant variations can be expected 
within 5 s. 

Fig. 2 shows a typical sequence of ISAR images 
of a small (16,880 T) commen.:ial ship. The radar 
used operates in X-band with 100 MHz bandwidth 
and a 2.5° antenna beamwidth. Successive frames are 
spaced in time by about 0.6 s. This image sequence is 
controlled by a rapidly changing roll motion, causing 
profiling; pitch, causing profiling and image tilt; and 
a slowly changing yaw motion, resulting in plan-view 
imaging. 

1) Frame (a) contains an inverted image that is 
largely a vertical cut, or profile, caused by the roll 
and pitch motions of the ship. The vertical masts, 
king-posts, and central superstructure are visible. Some 
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pitch component is visible as a slight downward tilt of 
the image axis. 

2) Frame (b) also shows profiling, but with more 
plan component. 

3) In frame (c) the profile component is minimal, 
caused by a very small combined roll and pitch rate, 
but the plan information is pronounced. The apparent 
orientation or tilt of the image in the frame due to 
pitch has changed. 

4) In frame (d) the profile information has 
begun to change sense, beginning to give an upright 
image; with the plan scale and tilt mostly unchanged. 
The sharpness of the focus is reduced, a result of 
nonuniform rotational motion. 

S) Frame (e) has well-defined right-side-up profile 
information. 

6) Frame (f) once again has sharply focused profile 
information. 

7) Frame (g) shows significant plan component in 
addition to the profiling. 

The time elapsed between frames (a) and (g) in 
Fig. 2 is 3.7 s. This figure illustrates the dynamics of 
ISAR imaging, requiring the use of special recognition 
techniques. 

III. SINGLE FRAME PROCESSING AND FEATURE 
EXTRACTION 

Since there is no a priori indication of classification 
utility for an TSA R image, each image frame in a time 
sequence must be processed. Some frames will be 
of better image quality than others, and some will 
contain more target classification information than 
others because of the target presentation. (In this 
papcr, the term presentation refers to the appearance 
and orientation of the target in the ISAR image, while 
aspect is reserved for the physical orientation of the 
target to the radar line-of sight.) Thus the processing 
of each frame consists of segmenting the target from 
the rest of the image, and then extracting features 
and a frame selection criterion. Computing the frame 
selection criterion yields extra information about the 
ISAR image to indicate the reliability of the other 
features which have been extracted. 

Although the techniques described are 
implemented to be applicable to multiframe 
processing, the last part of this section demonstrates 
the accuracy of the single-frame feature extraction 
process by using the features in classification. The 
locations of the extracted features are used to define 
ISAR transformations of wire-frame line drawings of 
candidate ships to make them fit the ISAR image. This 
demonstration is of a simple model-based single-frame 
classifier which both demonstrates the effectiveness of 
the feature extraction algorithms, and also mimics the 
shape correlation part of the human approach to ship 
classification. 

(a) (b) 

(c) (d) 

(e) 

Fig. 3. Example of segmentation process. (a) Original image. 
(b) Unstreaked image. (c) Smoothed image. (d) Thresholded image. 

(e) Clustered image. (f) Segmented image. 

A. Segmentation 

The first step is extracting the target from the 
rest of the image (sea-clutter or noise). While it 
is commonly believed within the computer-vision 
community that recognition schemes relying on 
a robust segmentation proc;ess are generally less 
successful than other approaches, the characteristics 
of TSAR imagery make sUI�h a segmentation process 
reliable. Although it is not practical to crcatc a perfect 
segmentation process for ISAR imagery (which would 
always produce perfect results and be scalable to a 
real-time implementation), the process described 
below performs well and is computationally amenable 
to a real-time implementation. Highlights of the basic 
segmentation approach for ISAR images, illustrated in 
Fig. 3, are as follows. 

1) Select a threshold to remove the background 
noise and clutter from the original image (Fig. 3(a», 
but do not apply it until later. 

2) Detcct and reduce vertical streaks in the image. 
These vertical streaks, onlly a few pixels wide, are 
object-related image features arising from either 
internal motion on the ship (e.g., moving machinery) 
or multiple-bounce scatte:ring from the moving sea 
surface. Apply a low-pass filter to the image to remove 
noise spikes (Fig. 3(c». 

3) Apply the threshold found in Step 1 to the 
smoothed image (Fig. 3( d)). 

4) Perform morphological region-growing and 
region-filling [1] to the remaining image regions. 

5) Apply a geometric clustering algorithm to 
removc any remaining nontarget regions (Fig. 3(e)). 
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6) Overlay the clustering result on the original 
unprocessed image to obtain target intensity 
information (Fig. 3(f»). 

The goal of the segmentation process is to leave 
only the target areas in the image. The idea behind 
the processing steps listed above is to find all image 
regions bright cnough to be part of the target, and 
then to use a geometrie clustering algorithm (described 
below) to eliminate any bright regions which are not 
located in image positions that are characteristic of the 
shape of a target. Although many processing steps are 
applied during the segmentation process, each step can 
be performed independently of the others. This allows 
for an inherently parallel set uf pipe lined processes, 
which could minimize the frame-to-frame processing 
time. 

Most of the segmentation stcps use standard 
image-processing opcrations fll The exceptions are 
the streak-elimination procedure and the clustering 
algorithm. Streaks are thin ver tical image features 
caused by transient or rapid motions internal to a 
target, and·thus arc not focused in Doppler by the 
ISAR processing which assumes rigid-body rotation of 
the whole target. Streak elimination uses the threshold 
selected in Step 1 to count the number of "bright" (i.e., 
intensities above the threshold) cross-range pixels for 
eaeh range cell in the image. Streaks are considered to 
be range cells with more than 66% of their Doppler 
pixels abovc this threshold. Each range cell containing 
a streak is then processed by comparing eaeh Doppler 
(vertical) bin in the range cell to neighboring Doppler 
bins (in adjacent range cells) to find isolated bright 
image pixels surrounded by nonbright image pixels. 
If a pixel is bright and its neighbors are not, then it 
is considered to be a streak pixel and its intensity is 
reduced by 30%. The application of streak removal 
reduces the visibility of very thin vertical structures on 
the target; however, because most of the target image 
elements occupy several range cells, most of the target 
information is generally not adversely affected. 

The geometric clustering algorithm is specifically 
designed for the expected shape of ship targets. Ship 
ISAR images tend to be long shapes oriented along 
the range dimension of the image. The application of 
the morphological region-growing and region-filling 
algorithms, done in Step 5 of the segmentation process, 
makes the resultant image input to the clustering 
algorithm consist of disjoint image regions. Each 
region contains image areas bright enough to be 
part of the target. The clustering algorithm performs 
region-labeling. Statistics such as size, boundaries, 
and centers of mass are collected for each region. 
The algorithm either retains or discards a labeled 
region based on its size and perpendicular distance 
to the estimated centerline of the target. Large regions 
which are close to the centerline are retained while 
small regions further away from the center li�e are 
eliminated. 

An important consideration for thc segmentation 
algorithm is to keep bright superstructure features 
on the target well defined, while retaining the low 
intensity pixels which usually define the target 
end-points. In practice this is hard to achieve. Because 
of the very large dynamic range of image intensities 
of ship components, the intcnsity of image processing 
artifacts (Doppler sidelobes and focus errors) around 
the superstructure regions is similar to the actual 
target intensity near the ends of the Ship. Thus, the 
bright featurcs can bc sharpened by increasing the 
threshold and excluding artifacts, but at the expense 
of eliminating the target end-points; while extraction 
of the end-point and target extremity information can 
be achieved with a lower threshold, but fine details 
associated with the target superstructure may be lost. 

The threshold selection is a one-pass, rather than 
an iterative, algorithm. While a noniterative approach 
may not perform as well as an iterative method, it 
produces satisfactory results and requires much less 
computation. A threshold is chosen by examining the 
statistics of an area of the image background which 
contains no target energy. It is an intensity level ahove 
the noise and processing artifact f loor of the image 
background. Histogram-based segmentation techniques 
(which look for bimodal characteristics in the intensity 
histogram) are unsuitable because the background 
energy in the image has a Rayleigh-like distribution, 
and the target intensity information is only slightly 
above the background f loor. 

The intensity-based processing (Steps 1--4) is 
sometimes sufficient for segmenting an image. Usually 
however, other nontarget image areas have exactly 
the same intensity characteristics as the target. To 
eliminate spurious bright image pixels, the geometric 
clustering algorithm is used. Before this operation is 
performed, some preprocessing is performed (Step 5) 
to fill in the small gaps between close but nontouching 
image regions. 

B. Feature Extraction and Projection Plane 
Determination 

In order for a human operator to accomplish the 
shape-correlation stage of classification described 
in the Introduction, the projection plane of the 
image must be determined. An operator, using a 
computer-based interpretation aid, does this by 
designating the apparent positions in the image of 
the bow, the stern, and the height of the bridge on 
the ship. While this is a simple task for a human 
operator, it requires extensive processing to accomplish 
automatically. In this Subsection, the feature extraction 
of projection plane parameters is described, and 
Subsection C describes the performance of an 
automatic shape-correlation classifier module. The 
projection-plane parameters define the physical 
projection of a 3-dimensional target model into the 
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Fig. 4. Peatures automatically extracted to deduce ISAR 
projection parameters. 

2-dimensional ISAR image plane. This allows the 
automatic warping of target wire-frame models to 
match the orientation of the target within the image 
frame. 

The features extracted to deduce the orientation of 
the target include the following. 

1) Centerline. 
2) End-points (bow and stern). 
3) Plan component (how much plan information is 

present). 
4) Profile component (how much profile 

information is present). 
5) Width of the plan component at either end (at 

bow and stern). 
6) Width of the outline at either end. 
7) Superstructure breaks and extent. 
8) Major uprights (mast and crane locations). 

Fig. 4 is a sketch of an image showing these 
features. In extracting them, a large portion of the 
processing time is spent in making a consistently 
robust estimation of the centerline of the target 
(described below). After the centerline has been 
found, much of the information used to extract it 
also can be used in the extraction of the other target 
features. In the interest of processing speed, only 
approximations to the actual features are found. For 
example, the real centerline of the target is the line 
connecting the point of the bow through the center 
of the stern. These points are often not identifiable 
in the imagery and are only obtainable by inference 
from other target features, using prior knowledge 
of symmetry and expected target shape. Thus, the 
estimated centerline obtained from the automatic 
processing does not always coincide with the real 
centerline of the target. 

Since ships in ISAR images are long thin shapes, 
the centerline of a target can be estimated by searching 
for the maximum peak of the Hough transform [1] of 
a partially segmented image. This technique differs 
from that of Drazovich [3] who used a least-square-fit 
line though the target to estimate the centerline. The 
least-squares method is less effective than the Hough 
transform because the amount of target height profile 

Image 

Fig. 5. Single frame plrocessing of ISAR image. 

in the imagery will tend to bias the least-squares 
line-fit towards the side of thc image (top or bottom) 
on which the height featun:s appear. 

The plan component is estimated by fitting straight 
lines to each deck edge by searching the Hough 
transform of the segmented image boundary for peaks 
at an angle parallel to the angle of the centerline. 
Most ships have long smoothly curving sides (known 
as a "fair curve"), so approximation of the deck 
edges as straight lines is a reasonable procedure. 
The plan component is estimated by the Doppler 
separation of the two deck edges. Estimation of the 
plan component is an important part of the automatic 
ISAR processing used to differentiate between height 
and width information. 

The remaining features are then extracted. Target 
end-points are obtained by examining image intensities 
near the centerline, and the width estimates are found 
by examining values in the Hough transform at angles 
90 deg from the centerline. By examining histograms of 
the number of target pixels extending in the Doppler 
direction beyond either side of the deck edges for each 
range cell, it is possible to determine the direction of 
any target height profile (right-side-up or inverted) 
within the image frame. ]f there is enough height 
profile, a peak-decomposition procedure [7] can be 
applied to the profile histogram to find the peaks likely 
to be the upright� (mast locations) and superstructure 
blocks. The locations of such features can be used 
to classify a ship target (by mensuration) when they 
are made invariant to the ship's aspect by measuring 
their percentage distance along the ship's length from 
the bow to the stern. Fig. 5 illustrates the feature 
extraction described above when applied to an ISAR 
image. 

A determination of which end of the target 
conesponds to the bow is based on the width 
measurements, superstructure locations, and the 
upright locations. A single decision is made for an 
image frame when features indicate unambiguously 
which end of the target is the bow; but in cases where 
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the features give an inconclusive determination, it is 
necessary to pursue two separate hypothesis for each 
target, one with the bow on the left and one with the 
bow on the right. 

C. Classification by Shape Correlation 

A single-frame model-based classification module 
was developed for good quality ISAR images which 
correlated them with projections of wire-frame models 
from a 50-ship database. For each model, the set of 
aspect and motion parameters is computed from the 
features extracted, and these are used to geometrically 
transform the wire-frame model into the same 2-D 
projection as the image. The aspect is determined 
from the range-extent measured between the bow 
and stern features of the image and the length of the 
model ship. An estimate of the yaw rate is calculated 
from the Doppler difference between the bow and 
stern, and the length of the ship. An effective roll and 
pitch rate, which arbitrarily apportions the vertical 
velocity bctween roll and pitch, is calculated from the 
Doppler extent beyond the deck edges of the height 
features. It is not possible to calculate the real roll 
and pitch values using a single image frame because 
the equations represent an underdetermined 
system. 

Using the aspect and motion parameters, the 
wire-frame models are rotated and scaled in the 
Doppler dimension to match the orientation of the 
target in the image; and are then correlated with 
the shape of the target (as defined by the segmented 
version of the original image). The shape of the 
target is compared with the shape of the wire-frame 
model by solidifying the wire-frame model, and then 
masking the segmented image over the model to 
count the number of pixels that show through. This 
procedure is then repeated by masking model over the 
image. A good match is indicated by low pixel counts 
for both masking operations. Ranking the results 
of the correlation demonstrates the classification 
potential of model-based predictions and also shows 
the effectiveness of the single-frame feature extraction 
process. If the single-frame feature extraction process 
is successful, then the correct target should be ranked 
near the top of the correlation list, and should be 
appropriately scaled and rotated to allow an easy 
confirmation of the choice by operator in"'pection. 
Fig. 6 illustrates the best ranked result of automatically 
fitting a wire-frame model to a selected ISAR image. 

Wire-frame models were utilized because they are 
easy to obtain and they are computationally cheap to 
use. Further application of model-based information 
for realistic interpretation problems would require 
target models which include shadowing and radar 
intensity estimates. 

Despite the limitations of the wire-frame models, 
they show the benefits of using a model-based 

(al 

(b) 

- ;�liljll! 
(c) 

Fig. 6. Automatic shape correlation. (a) ISAR image. 
(b) Best matching overlay. (c) Second best matching overlay. 

approach, having a fundamental advantage over 
data-driven classification approaches which would 
require data samples of each target at all aspects and 
orientations before it could be added to a data-driven 
classificr. 

IV. MULTI-FRAME PROCESSING 

The temporal characteristics of ISAR images 
make classification decisions based on single image 
frames unreliable. Classification should be based on 
information obtained from multiple image frames 
in a time series of ISAR images. Thus single-frame 
image processing should be as simple as possible 
to minimize processing expense. The processing of 
single image frames, by the methods described in 
this work, does not use iterative algorithms. The 
complete processing (including segmentation) of a 

single frame takes under 10 s on a uni-processor 
workstation, even using many LISP functions and 
unoptimized code. It should be possible to achieve 
real-time processing rates using specialized hardware. 
The speed of processing is achieved at the expense of 
a tradeoff in algorithm effectiveness and consistency. 
Because of the compromises, the algorithms will not 
always return results for each single frame of the 
quality shown in Fig. 6. To increase the performance 
of the feature extractors it would be necessary either 
to increase the amount of preprocessing applied to the 
data before the algorithms are applied, or to devise 
entirely new feature extraction algorithms to work with 
the raw data. This might involve a many-fold increase 
in processing time. The goal of this processing was to 
achieve a high feature-detection performance, while 
maintaining a very low false alarm rate. 

To achieve multiframe classification, feature 
extraction processing (which we call feature detection) 
and frame selection are performed on each of many 
individual ISAR image frames; and then frame 
selection criteria and multiframe "temporal" tests are 
applied to distinguish between real and false feature 
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detections. This means that if the feature detectors 
perform at low false alarm rates, only real target 
features will be consistently present over the temporal 
history that is built up as a sequence of images is 
processed. 

The use of multiple-frame processing has allowed 
the use of single-frame processing results even though 
they are not perfect. To clarify any ambiguity that 
exists, for the remainder of this work the feature 
extraction process that is performed for each individual 
image frame is referred to as feature detection, while 
the multiple-frame feature extraction process (which 
utilizcs thc frame selection and temporal relations) is 
called feature extraction. 

A. Frame Selection 

Since detection of the features discussed earlier 
relies on height profile information, a selection 
criterion is applied to the information extracted from 
each frame to determine whether the desired profile 
component is present. As part of the feature detection 
process, both an estimate of the plan component, and 
the height (which may also include a superimposed 
plan component) of the profile are extracted. For 
best extraction of the height features, the target 
presentation should be mostly profile with little or 
no plan component. The amount of plan component 
is easily measured as the separation between the two 
straight-line approximations of the ship sides. 

The amount of height profile is obtained from a 
histogram of the number of target pixels per range 
cell on the side of the target with the most pixels 
outside the plan component (see Fig. 5: Single Frame 
Profile). Indications of the amount of profile present 
can be obtained by a variety of measures: the standard 
deviation of the profile histogram; the numbcr of 
pixels in the histogram; the maximum height of the 
histogram; the median height of the histogram; and 
thc ratio of the number of target pixels found either 
side of the plan component. Furthermore, a significant 
number of pixels outside the plan boundary on the 
side opposite to the height profile side may indicate 
a frame unsuitable for reliable feature extraction. In 
devising a frame selection criterion from the feature 
extraction algorithms, it is important to obtain an 
absolute estimate of the profile height, rather than a 
relative measurement compared with the minimum or 
maximum values observed during a sequence. This is 
because some complete sequences of ISAR imagery 
may contain few or no profile images. When this 
happens, the resulting confidences in profile feature 
detections are much lower than for sequences with a 
larger numher of good quality profiles. The criteria 
described below were devised after an evaluation of 
the effectiveness of the feature detection algorithms for 
many different imagc sequences. 

1) The plan-side pixel count outside the plan 
boundary opposite the profille side should be less than 
a threshold (200 pixels for our imagery). 

2) Plan width must be kss than a threshold (10 
Doppler cells for our imagery). 

3) The median height of the profile histogram must 
exceed a threshold (greater than 5 Doppler cells for 
our imagery). 

4) The profile histogram standard deviation should 
exceed another threshold (greater than 4.0 for our 
imagery). 

An important characteristic of this frame selection 
technique is that it is based on both a plan and a 
profile measure. Since the IISAR presentation of a 
target is dependent on the combination of its roll, 
pitch, and yaw motions, the amounts of plan view and 
profile view can vary independently of each other. 
Thus the image in a sequence containing the most 
profile may also have a lot of plan component. Since 
the appearance of plan component features can affect 
the extraction of profile features, it is important to be 
able to detect the presence of a plan component and 
take into account its effect on a given profile feature 
detector. Thchniques which measure the amount of 
profile only by measuring the Doppler extent are 
inadequate because two images with exactly the same 
amount of profile (caused by roll and pitch motion) 
may contain radically differing amounts of plan 
component (caused by yaw motion). 

B. Multiframe Feature Extraction 

Because of the time-valrying characteristics and 
quality of the imagery, many image frames are 
processed before making a determination of a feature 
detection (approximately 30 profile view frames). 
Feature detections are made independently for each 
image frame, and the consistency of location in the 
range dimension is used tOi select the features for 
further classification processing. Figs. 7 and 8 show 
the processing results accumulated over many images 
of a sequence: the first 22 framcs for Fig. 7, and 99 
frames for Fig. 8. The figures show both a single image 
frame and a series of histograms of feature locations in 
range. In each figure the image represents the current 
image frame being examined with the detected features 
indicated as follows. 

1) The image at the top left of each figure is 
a single ISAR image frame with the end-points, 
plan component, superstructure breaks, and upright 
locations, as determined by our feature detectors, 
marked. 

2) The "Single Frame Profile" shows the height 
in Doppler cross-range resolution cclls of the profile 
component (versus range) of the target in the 
illustrated image, and shows how features have been 
detected from the peaks of the profile histogram. 
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Fig. 7. Results of processing first 22 images. 
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Fig. 8. Results of processing 99 images. 

3) The other four plots in each figure a re 
histog rams of the cumulative feature detections over 
the image sequence. 

4) The plot at the lower left of Figs. 7 and 8 
shows the sums over all processed frames of the lcft

width and the right-width as defined in Fig. 4. The 

larger of the two often indicates the stern end of the 
ship. 

The three histograms on the right-hand side on 
each of Figs. 7 and 8 display the number of detections 
of each feature for each range bin in the image, 
accumulated over the sequence of images. 
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The histogram at the lower right of the figures 
showing the end-point detections gives an indication 
of how much the location of the detected end-point of 
the target can vary from frame to frame. Although it 
is necessary to measure the locations of other features 
as percenlages of the number of range cells between 
the bow and stern, it is not possible to convert the 
location of each detected feature into a percentage 
for each individual frame because of the variability 
in thc single-frame end-point locations. Instead it is 
necessary to use the most frequent end-point range 
positions over many frames to determine the bow/stern 
reference locations. 

The use of feature detections which are consistent 
in range depends on certain assumptions: 1) the 
azimuth aspect of the target does not change 
significantly during the time of observation and, 
2) the image is stabilized in range throughout the 
image sequence and does not drift. In practice these 
assumptions often hold, but not always. To compensate 
for range drift, it is necessary to "range register" each 
frame. The particular image frame from which the 
feature was detected must pass the frame-selection 
height profile criterion before a feature detection is 
added to the multiframe histograms. Only one frame 
selection criterion (described above) is used for all of 
the features shown. Improved performance might be 
obtaincd by using different frame selection criteria for 
each feature detector, based only on the consistency 
and performance of that particular detector. 

As Fig. 8 shows, after a fair number of profile (40 
out of 99) frames have been found, the upright and 
superstructure locations can be determined easily. The 
detection algorithms and the multiframe extraction 
have not been tested sufficiently to determine 
confidence levels for each detector. However, the 
example histograms indicate that the determination 
of binary (feature or not-feature) decisions for each 
range cell is easy when enough profile images have 
been processcd. After further testing of the feature 
extraction algorithms, it should be possible to partition 
the number of detections into confidence levels. It 
has not been necessary to use sophisticated statistical 
techniques for these decisions about feature extraclion; 
and this has becn taken as an indication of the 
reliability of the methods. 

V. MULTI FRAME CLASSIFICATION 

A. Multiframe Procedure 

In this rescarch, classification techniques have been 
kept simple. The focus has remained on the feature 
extraction process. The classification algorithm used is 
a continuation of the ship-recognition work developed 
by Booker and Hota [2] and more recently Musman, 
Chang, and Booker [6]. It utilizes the database of 
a decision-aid developed at the Naval Research 

Laboratory (NRL) to assist human interpreters when 
classifying ISAR images. The basic classification 
operation of the demonstration system utilizes 
Bayesian belief networks [2] to combine subjective 
uncertainty estimates associated with the automatically 
extracted target features. These features, described in 
the previous two sections, are the following. 

1) target range extent (a minimum length for the 
observed target), 

2) locations of superstructure breaks (all target 
locations where the superstructure noticeably changes 
height) given as a percentage of the range extent of the 
image, 

3) percentage of the target range extent covered by 
superstructure, 

4) the number of major uprights on the target 
(these are normally the masts), 

5) upright locations as a percentage of the range 
extent, 

6) mast/reference ratio (the ratio of the highest 
mast compared with the median height of the profile, 
needed to compute the target projection parameters), 

7) profile shape correlation (a correlation of 
an aggregation of the 5 best profiles with a stored 
characteristic profilc shape for cach possible ship 
class). 

The classifier utilizes the feature locations (as 
percentages of the distanc(�s between bow and stern) 
stored in the decision-aid database and, with the 
exception of profile shape correlation, it measures 
the difference between each automatically extracted 
location and the corresponding one for each target 
class in the database. It allocates an error "point" for 
each 1% that the observed feature location differs from 
one in the database. Thus an exact percentage match 
gives 0 points, a difference of 3% off gives 3 points, 
etc. 

The upright locations are matched with an error 
score of up to 10 "points" (10% error, relative to 
the length of the ship), and 0, 5 or 10 "points" are 
allocated for the number of uprights (depending 
on whether the number detected equals, differs 
by 1, or differs by 2 from t.he actual number of 
uprights for the target in the database). The error 
measurements and penalties are then turned into 
subjective likelihoods, whieh represent how well thc 
given error value may mat1ch a known target. The 
likelihood values were developed by extrapolating the 
results of testing the feature extraction algorithms on 
a limited set of test data, generalizing those results 
to produce the subjective likelihood estimates. For 
each feature and each target, the values represent 
the likelihood that the observation matches a 
specific type of target as compared with matching 
random noise. The advantage of this approach 
is that the classification results yield an intuitive 
indication of how wcll the observed features 
match each specific target: if the results are close 
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Fig. 9. Classification results for Fig. 8. 

to 1.0, thcn thc observed features exactly match the 
target; if the results are 0.5, then the observed features 
are just as likely to be random noise, as opposed to 
a specific target; and if the results are 0.0, then the 
observed featurcs arc bclievcd not to match the specific 
target. 

The mast/reference ratio is the height of the highest 
mast compared with the median height of the profile; 
and 1 error "point" is scored for each 0.2 difference 
between the results of the image sequence and an 
entry in the database, once again limited to 10 "points" 
for the worst possible match. This score represents the 
design characteristic of ships which utilizes the fact that 
some ships have vcry tall masts, and somc have much 
shorter masts. 

The 1-D profile height correlation is a 
square-error correlation of the average of the 5 best 
height-normalized Doppler profiles in the image 
sequence (as determined by the frame selection 
criterion) compared with a characteristic target 
height profile for each possible target class stored 
in the decision-aid database. This score is ranked 
from 0 "points" for an exact match down to 50 as 
the match gets worse. In practice no ship ever gets 
a perfect score for the profile correlation; and while 
the correct ship may not be the best ranked ship, it 
is usually ranked in the top 10 in a 50-class problem. 
This profile correlation is distinctly different from 
the 2D-shape correlation reported in Section III; but 
is designed to achieve the same basic results using 
only one-dimensional shape (Doppler extent) 
information. 

B. Multiframe Results and Discussion 

Fig. 9 is an example of the classifier's application to 
the ISAR image sequence of Fig. 2. Despite its rather 
simplistic approximation of uncertainty measurements 
and the small number of features used, the correct Ship 
is ranked at the top of the final classification list. The 

results of similar testing on images of many other 
targets confirms the validity of the result shown. 

Thc fcaturcs uscd to obtain thc classification 
scores are compared with feature locations from the 
operator-aid database. This contains locations that a 
human interpreter would be likely to detect. Although 
the automatic detectors are designed to detect these 
same features, each automatic detector has its own 
characteristic way of rccognizing a feature. Thus, the 
automatically extracted superstructure breaks are not 
exactly the same as those that would be extracted by 
a human interpreter. If a database of feature locations 
were created from a characteristic evaluation of each 
automatic detector, even better classification results 
would be achieved. 

The classifier described here has used only a small 
number of the potcntial fcaturcs that can be extracted 
from the ISAR imagery, Others might include: bow 
curvature, stern shape, mast type, and superstructure 
shape. The advantage and appeal of this approach 
to automating the ISAR ship classification process is 
that the features extracted from the imagery are the 
same ones as those used by human interpreters. This 
makes verification of the performance of the feature 
extraction algorithms very easy. 

This work has concentrated on the development 
of cheap, robust algorithms which can be tested 
on representative samples of data. Testing has 
demonstrated that the multiframe processing 
techniques arc reliahle enough to permit the automatic 
selection of good quality image frames. 

The estimation of a target's ISAR projection plane 
described in Section III is an important prerequisite 
to the approach of Miltonberger, et aI. [5], in which 
a multihypothcsis decision space is used to refinc 
successive estimates of target aspects for each possible 
target. In the work described here, no attempts have 
been made to use such an approach. The use of a 
multihypothesis decision space is difficult to extend 
into the multiframe domain, and can only realistically 
be used on single frames after an evaluation of the 
quality of the image frames has been made. The 
approach described here specifically attempts to 
address this image quality issue by developing a robust 
frame selection measure. 

VI.  DISCUSS ION 

An approach for automatic ISAR ship recognition 
has been described. It has been shown how the 
processing of single ISAR image frames is limited 
by the time variability of the ISAR imagery . To 
combat this. multiframe processing appropriate to 
ISAR's temporal characteristics has been devised. 
The techniques are computationally simple enough to 
allow extensive testing of the algorithms on general 
purpose computers. This work is an example of a 
bottom up (extract features and then classify) process, 
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learning enough from the image sequences to reduce 
significantly the number of candidate ships. This 
allows a subsequent analysis of a few single frames, 
automatically selected and processed in greater detail. 
Processing these selected image frames can then utilize 
the time history information obtained from the whole 
image sequence, but then utilize more computationally 
expensive feature extraction techniques and perhaps 
even model-based predictions computed from complex 
models capable of predicting shadowing and radar 
scattering intensities. 
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