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is implemented with the fully nonlinear six-degree-of-motion,

Simulation Rapid-Prototyping Facility (SRF) VISTA F-16 software

simulation tool. The algorithm is composed of a bank of Kalman

filters modeled to match particular hypotheses of the real world.

Each presumes a single failure in one of the flight-critical

actuators, or sensors, and one presumes no failure. For dual

failures, a hierarchical structure is used to keep the number of

on-line filters to a minimum. The algorithm is demonstrated

to be capable of identifying flight-critical aircraft actuator and

sensor failures at a low dynamic pressure (20,000 ft, 0.4 Mach).

Research includes single and dual complete failures. Tuning

methods for accommodating model mismatch, including addition

of discrete dynamics pseudonoise and measurement pseudonoise,

are discussed and demonstrated. Scalar residuals within each

filter are also examined and characterized for possible use as an

additional failure declaration voter. An investigation of algorithm

performance off the nominal design conditions is accomplished as

a first step towards full flight envelope coverage.
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I. INTRODUCTION

Current state-of-the-art flight control systems
(FCS) rely on costly physical redundancies to provide
required aircraft reliability and survivability. What is
desired is a FCS which can reduce, or even eliminate,
these redundancies by exploiting the functional
redundancies inherent in control surfaces and sensors.
Such a FCS must be able to operate safely when its
control surfaces and flight-critical sensors fail. Our
goal, then, is a fault tolerant, reconfigurable FCS. The
first step in that direction is a reliable failure detection
algorithm.
The Air Force Institute of Technology (AFIT/ENG)

has been working with Wright Laboratory (WL/FIGS)
to develop multiple model, Kalman-filter-based
algorithms for flight control applications [4, 6, 10,
13—17]. Past research utilized linearized “truth models”
for performance simulations with good results. This
effort has sought to increase confidence in these results
and further demonstrate the multiple model adaptive
estimator (MMAE) approach to failure detection by
applying the algorithm to a more realistic, high-order,
nonlinear, aircraft truth model–the most complete
simulation model currently available.
The following sections include a statement of

the problems which our research addresses, a short
overview of the MMAE algorithm, a discussion of
the models used, our results, and some concluding
remarks.

II. PROBLEM STATEMENT

The task at hand is to implement an existing
MMAE failure detection algorithm into as real a
simulation environment of the F-16 as possible in
order to facilitate a more realistic assessment of the
true potential of the algorithm [5, 6, 12]. Specifically,
we characterize the performance of the algorithm
at a single point within the flight envelope in the
following areas: single hard-over failure detection of
five actuators and seven sensors; all dual hard-over
combinations of these failures; and exploitation of
failure information present within the filter residuals
not specifically used by the MMAE algorithm. The
failures included in this work are left/right stabilator
(LS, RS), left/right flaperon (LF,RF), and rudder
(RUD) actuators, and forward velocity (VEL),
angle of attack (AOA), pitch rate (PIT), normal
acceleration (Az), roll rate (ROL), yaw rate (YAW),
and lateral acceleration (Ay) sensors. Additionally, we
characterize operation at points in the flight envelope
off the nominal design point to direct future work
towards algorithm full flight envelope coverage.

III. MMAE OVERVIEW

Fig. 1 shows a functional block diagram of the
MMAE algorithm. Its primary feature is a bank of
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Fig. 1. MMAE block diagram.

steady-state, discrete, Kalman filters operating in
parallel, with a vector of sensed measurements zi
and a vector of actuator control commands u as the
inputs of the algorithm. All filter designs are based
on the same reduced-order, linearized equations of
motion for our nominal point in the flight envelope,
but each hypothesizes a different failure condition. At
every sample period, each of these K filters produce
a state estimate x̂k, and a vector of residuals rk,
for k = 1,2, : : : ,K. The idea is that the filter which
produces the most well-behaved residuals, contains the
model which best matches the true failure status of the
aircraft [4, 8, 9].
Failure identification takes place in the conditional

hypothesis probability evaluator block. Each of K
failure hypotheses is assigned a probability of being
correct, pk, based on the following recursive equation:

pk(ti) =
fz(ti)ja,Z(ti¡1)(zi j ak,Zi¡1)pk(ti¡1)PK
j=1fz(ti)ja,Z(ti¡1)(zi j aj ,Zi¡1)pj(ti¡1)

(1)

where

fz(ti)ja,Z(ti¡1)(zi j ak,Zi¡1)

=
1

(2¼)m=2jAk(ti)j1=2
exp([¡ 1

2rk(ti)
TA¡1k (ti)rk(ti)]):

(2)

In these equations, fz(ti)ja,Z(ti¡1)(zi j ak,Zi¡1) is
the probability density function of the current
measurement z(ti), conditioned on the hypothesized
failure status (a= ak) and previously observed
measurement history Z(ti¡1), based on a filter’s
residuals rk and internally precomputed residual
covariance Ak. When actual residuals are in
consonance with filter-computed covariance Ak, the
exponential term in (2) is approximately [¡m=2],
where m is the measurement dimension. With an

incorrect hypothesis, the magnitude of that exponential
is much greater, yielding a deweighted pk for that
hypothesis from (1) and (2). In practice the pks are
artificially lower bounded (pkmin = 0:001) to prevent
“lock-out” and the leading term 1=[(2¼)m=2jAk(ti)j1=2]
is stripped to prevent a bias towards declaring sensor
failures [1, 5, 6, 11—16]. The algorithm is started up
with the no-failure hypothesis presumed. The output
of this block is a vector of probabilites which can be
used to declare a failure and also weight the state
estimates as also shown in Fig. 1. The output of the
algorithm is a probability weighted state estimate.
In this application, the state estimate and linear
combinations thereof are then passed directly as
inputs to the existing Block 40 FCS for the VISTA
F-16 (rather than using the raw measurements as in
the existing FCS). This results in the “MMAE-based”
control shown in Fig. 1.
Not shown in Fig. 1, but nonetheless important to

effective operation of the MMAE algorithm, is dither.
Dithering is the term given to purposeful commands
sent to the actuators which “shake up” the system
state. For the MMAE to detect failures, it must have
some activity in the state vector from which to discern
abberant behavior. Past research has investigated
various forms of dithering which are subliminal to the
pilot [12]. This application uses those results directly.
The architecture of Fig. 1 is used for both single-

and dual-failure hypotheses. To reduce the number
of filters required on line, a hierarchical approach,
shown in Fig. 2, is employed. To begin with, only the
K single-failure hypothesis filters are on line. Upon
declaration of a failure, a new bank of filters is brought
on line from memory storage. This bank contains
filters designed for the declared failure, all dual failure
combinations which include that failure (the doubly
subscripted hypotheses in “Level 1” of Fig. 2), and the
no-failure hypothesis (to “back out” of the decision
tree if necessary).
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Fig. 2. Hierarchical structure.

IV. MODELS

The “truth model” used in this research is
the VISTA F-16 aircraft simulation hosted in the
Simulation Rapid-Prototyping Facility (SRF) at the
Flight Controls Division of the Flight Dynamics
Directorate, Wright Laboratory [2, 3]. This is a
high-order, fully nonlinear, six-degree-of-freedom
simulation which includes the Block-40 FCS. During
nonrealtime simulation runs, the truth model provides
required inputs u and zi to the MMAE and the
MMAE returns its estimated ẑi to the FCS.
The design models used in the Kalman filters

are based on small-perturbation-assumed, linearized,
state-space equations of motion which are provided
by a subroutine within the SRF VISTA F-16 software.
Simple first-order lags (i.e., reduced-order models) are
augmented to the state-space formulation to account
for actuator dynamics. Wind buffeting is accounted for
by incorporating a zero-order Dryden wind model, and
sensor noise is included as well [7]. A full development
of all models can be found in [4].

V. SINGLE FAILURE IDENTIFICATION RESULTS

Untuned MMAE: The MMAE design described
in Sections III and IV is implemented into the SRF
VISTA F-16 simulation. All twelve single failures, as

well as the no-failure case, are each run a total of 10
times to give results with statistical confidence. Fig. 3
displays the results. This figure contains 13 strip plots,
each of which showing the mean (over 10 runs) time
history of the probability that the failure hypothesis on
which it is based is correct when that failure is actually
introduced at 3.0 s into the simulation. It is readily
apparent from the plots that the design is unacceptable
at this point. Clearly, there are higher order effects
for which our filter design models cannot account.
While there is good stimulation within the appropriate
channels when a failure is introduced, there are just
too many false alarms and missed alarms.
Tuned MMAE: In order to account for unknown

higher order effects and improve on the performance
of Fig. 3, we go about tuning the filters through
addition of pseudonoise. In this research, we explore
four methods of tuning which can exploit any
available insight into the problem, three of which are
incorporated into the final design.
Method 1: Direct Pseudonoise on Longitudinal

Diagonal Qd Entries
In the first method, we look to compensate for

our reduced-order dynamics model equations by
adding pseudonoise to the dynamics model. From
Fig. 3 we note significant false alarming in the normal
acceleration (Az) channel and some in the angle of
attack (AOA) channel as well. This insight directs
us to do tuning in the longitudinal channel first. To
accomplish this, we insert a fictitious source of discrete
white noise (w0dk ) of diagonal covariance Q

0
d into the

dynamics model equation of the filters

xk(ti+1) =©kxk(ti)+Bdku(ti) +Gdkwdk (ti)+w
0
dk
(ti)

(3)

and specifically adjust the longitudinal diagonal entries
(Qdμ ,Qdu ,Qd® ,Qdq). The advantage here is that one can
tune directly on individual states (pitch angle, velocity,
angle of attack, pitch rate) and, with insight, correct
for dynamics model deficiencies. Fig. 4 shows the
probability convergence results when using this tuning
method.
The improvement is quite good. With a few

exceptions, the forward velocity sensor (VEL) and left
stabilator actuator (L ST) most notably, unambiguous
single-failure detection has been achieved. False alarms
and missed alarms are nearly eliminated. It should be
noted however that with increases in pseudonoises
can come decreases in speed of performance.
Performance improvements gained in some channels
through addition of pseudonoise can cause sluggish
performance in others, and in the extreme, lead to
missed alarms. This tradeoff must always be considered
in the context of any application.
Method 2: Direct Pseudonoise on R Entries
A second method which we use to improve

performance in the VEL channel adds white noise
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Fig. 3. Single-failure probability convergence, untuned (i.e., as tuned in [12]—[14]).

directly to the entries of Rk, which is the covariance
of the measurement corruption noise vk(ti) in the
assumed measurement model:

zk(ti) =Hkxk(ti)+ vk(ti): (4)

This enters into the Kalman filter equations via the
filter-computed residual covariance:

Ak(ti) =Hk(ti)Pk(t
¡
i )H

T
k (ti) +Rk(ti) (5)

which impacts (1) and (2) directly. The advantage
here is that one can tune directly in a sensor channel
which is experiencing performance difficulty by
varying the values of the diagonal entries in Rk
(Ru,R®,Rq,RAz ,Rp,Rr,RAy).
Fig. 5 shows the performance improvement which

can be achieved using this method. Comparing the
VEL plot in Figs. 4 and 5, one can see that we’ve
gained unambiguous failure detection at the cost of
speed of response.
Method 3: Direct Pseudonoise on Lateral Diagonal

Qd Entries
For the third method of tuning, we return to the

concept of Method 1, adding pseudonoise directly
to states through Qd. This time however, we seek
to eliminate the ambiguity still present in the left
stabilator (L ST) channel. The L ST plot in Fig. 5
shows this probability “bouncing” at the onset of
failure. From data not explicitly shown in Fig. 5,

the ambiguity is determined to be coming from the
yaw channel. We therefore seek to demonstrate the
technique of Method 1 further and improve
performance by tuning the lateral diagonal Qd entry Qdr .
Fig. 6 displays the result of this tuning method. A

comparison of the L ST and YAW plots from Figs. 5
and 6 shows that we can eliminate the ambiguity in
the L ST channel at the cost of some performance
degradation in the YAW channel.
Having performed the tuning in Methods 1,

2, and 3, we arrive at a design which provides
unambiguous failure detection capability in all channels
with no false alarms. No attempts are made to do
any optimization with the tuning, since explicit
performance specifications are not provided at the
outset. Rather, Fig. 6 demonstrates the potential of
the MMAE failure detection algorithm.
Method 4: Tuning for Actuator Uncertainty
This last method attempts to account for model

deficiencies related to actuator effects. It is not
included in our final design, but presented for possible
future use. Here, a fictitious source of scalar white
noise wB(t), of strength q, is added to the model
dynamics equation, from which (3) is generated as an
equivalent discrete-time model [8]:

_x(t) =Ax(t) +Bu(t)+Gw(t) +Bact colwB(t) (6)
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Fig. 4. Single-failure probability convergence, Qdlong tuning.

where Bact col is the column of the original B
corresponding to the actuator of interest. Here,
the continuous pseudonoise is brought through
the relevant actuator dynamics stripped from the
basic unaugmented state-space representation; the
corresponding covariance differential equation for the
Kalman filter propagation cycle would then be:

_P(t) =AP(t) +P(t)AT+GQGT+Bact colqB
T
act col:

(7)

The advantage is that one can directly tune in order
to address poor single actuator failure detection
performance.

VI. DUAL-FAILURE IDENTIFICATION

Using a filter design which incorporates tuning
Methods 1, 2, and 3 from the previous section, we
proceed to investigate the ability of the MMAE
algorithm to detect a second failure. The dual-failure
scenarios are simulated with the first failure occurring
at 3.0 s and the second two or more seconds later.
This allows enough time for the first failure to be
declared before the second is inserted. Other ways
of inserting the second failure are possible, but this
one allows us to focus on the second failure detection

performance with the single-failure performance
acheived in Fig. 6 as a baseline. The results shown
in Fig. 7 are qualitatively placed into one of four
categories. “Good” results demonstrate second failure
performance commensurate with, or better, than that
achieved for a lone single failure (see Fig. 6). They
are often characterized by a probability lock and hold.
“Fair” results demonstrate performance somewhat
degraded from when a lone single failure occurs.
These are often characterized by significant dropouts
from probability lock. “Poor” results demonstrate
performance drastically degraded from when a single
lone failure occurs. They are often characterized by
some spiking in the correct probability channel, but no
lock whatsoever. “ND” results indicate no detection.
The second failure is completely missed or falsely
declared.
From Fig. 7, we see that in general, dual failure

probability performance is quite good. In fact, owing
greatly to the addition of pseudonoise, our dual failure
performance within the more realistic, nonlinear,
aircraft simulation environment produces better results
than that seen initially in the linearized simulations of
past research [12, 14]. There exists however, a couple
of trends within the trouble spots worth mentioning.
Over eighty percent of the dual-failure difficulties

lie within three identifiable problem areas: first
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Fig. 5. Single-failure probability convergence, Qdlong and R tuning.

failure= stabilator, second failure= flaperon, and yaw
sensor/rudder ambiguity. The two rows associated with
the stabilators (LS, RS) show a high concentration of
shaded squares (“Fair”, “Poor”, and “ND” ratings).
We attribute this primarily to diminished state
excitation. During benign flight conditions such as
are used in this research, the system state must be
artificially excited by control surfaces. Without state
excitation, there can be no failure detection. Research
is being conducted on optimal, subliminal, methods
for “dithering” the control surfaces, but in our case,
continuous, subliminal, sinusoids are used. When a
stabilator actuator fails, a primary source of control
authority is lost. With no reconfigurability in our dither
strategy, state excitation via dithering is significantly
diminished, resulting in difficulties declaring the
second failure. The second problem area is reflected
in the concentration of shaded squares in the LF
and RF columns, i.e., when the second failure is a
flaperon. This problem is also traceable to system state
excitation, but for a different reason. The Block-40
FCS features an aileron-to-rudder interconnect (ARI)
which provides for “feet on the floor” coordinated
turns. In this application, it also provides unwanted
coupling when we attempt to dither the flaperons
and rudder at separate levels. The result of ARI

interference is less-than-desirable deflection levels of
the flaperons. This reduces its effect on state excitation
and subsequently, its actuator failure identifiability.
Fig. 6 shows the comparative weakness in single failure
performance for flaperons, and the difficulties are
exacerbated in the second failure case. When the first
failure is a stabilator, overall reduced state excitation
hurts performance, and when the first failure is a
sensor, it could be the lack of that sensor’s pertinent
information which degrades detection performance.
Removing the ARI for dithering could alleviate this
problem area. The last problem area results from the
inherent yaw sensor/rudder ambiguity. When the yaw
sensor fails, there is no way to detect a rudder actuator
failure, and when the rudder actuator fails, there is not
enough yaw axis excitation to discover a yaw sensor
failure at all. Addition of a rudder position sensor, or
some third source of information, would alleviate this
problem.
These dual-failure results are particularly

encouraging because the tuned algorithm did not
experience a proportional, or exponential, increase in
performance difficulty when going from single to dual
failures. The failure detection algorithm has proven
itself capable within the nonlinear, high-order F-16
simulation environment which is the closest thing to
real world characteristics.
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Fig. 6. Single-failure probability convergence, Qdlong, R, and Qdlat tuning.

VII. RESIDUAL MONITORING

Research performed in the past identified an
additional source of failure information within the
residual terms of the algorithm, rk [12]. Kalman
filtering theory predicts that residuals within
well-matched filters ought to be zero-mean, white,
Gaussian, and of covariance Ak. It has been suggested
that simple tests be constructed which exploit these
predictable characteristics [12]. A running average, for
example, might constitute a zero-meanness test, while
the number of zero crossings could test for whiteness,
and magnitudes might be used in a variance test.
Noting though, that our models are poorly matched
initially and that substantial amounts of pseudonoise
are required for good probability convergence, these
predictable characteristics may no longer be valid. We
wish to examine the scalar residual terms to see if such
simple “additional voter” tests still exist.
To perform this investigation, the single-failure

algorithm utilizing tuning methods 1, 2, and 3 is
once again employed. Here, for each simulated
single failure, the time histories of the seven scalar
residuals (forward velocity, angle of attack, pitch
rate, normal acceleration, roll rate, yaw rate, lateral
acceleration) are recorded. For any given failure, the
residuals in which we are interested come from the

fully functional hypothesis filter and that particular
failure hypothesis filter. This is because they are the
best matched filters during the unfailed (0 to 3 s and
failed (3 to 8 s) portions of a single-failure simulation.
Fig. 8 shows data representative of sensor failures.
A pitch rate sensor failure is inserted at 3.0 s) in
each of ten simulations and the results averaged for
statistical confidence. The first column presents the
fully functional hypothesis filter residuals and the
residual plots of the second column are from the failed
pitch rate sensor hypothesis filter.
There are a number of trends observable from

Fig. 8. First of all, over the first three seconds,
when the fully functional hypothesis filter is correct,
residual characteristics aren’t white or Gaussian in
general. This can be attributed to model mismatch,
as anticipated. The second readily noticeable trend is
that, with the exception of the pitch rate residual, the
behavior of both sets of residuals is nearly identical.
The pseudonoise added in Section V to account for
model mismatch has effectively blurred the distinction
between the two failure hypotheses. Only within the
pitch residual do we observe evidence of any predicted
behavior. This is because sensor failures show up
directly and immediately within their respective scalar
residual: it is here where the effects are strongest.
Focusing then on the pitch rate residual pair, we see
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Fig. 7. Dual-failure performance summary matrix.

that zero-mean, white, Gaussian behavior has been
maintained (if only in the affected scalar residual)
when the assumed hypothesis is correct. Oscillations
and bias are observable in the fully functional pitch
rate residual after the failure has been inserted, while
a cessation of such behavior is simultaneously noted in
the failed-sensor filter pitch rate residual. Effectively,
for sensor failures, the zero-meanness and whiteness
tests are retained, with the variance test being lost
owing to pseudonoise addition. Fortunately, the noted
oscillations provide an opportunity for a replacement
test. The input dither which comes through the
failed scalar residual can be readily detected since
we know the frequency of dither ahead of time.
These results indicate that for sensor failures, scalar
residual monitoring remains a viable failure detection
technique.
No such definitive failure indication is seen for

actuator failures. Unlike sensor failures, the effects
of an actuator failure must propagate through the
system and, in general, reveal itself in multiple sensors.
Therefore, there is no one scalar residual to seek for
an additional vote. The problem is that our tuning
efforts mask the predicted effects in much the same
way as we observed in the unaffected sensor scalar

residuals in Fig. 8. However, there is some useful
information which shows up in the yaw residual for
rudder failures and in the acceleration residuals for
stabilator and flaperon failures. It is conceivable
that some kind of comparison test between the
fully functional and failed hypothesis scalar residual
counterparts could be generated as an additional
vote. This would have to be pursued further in future
investigations.
Tuning for probability convergence as done in

Section V and residual monitoring are not mutually
beneficial. Because probability convergence is our
primary goal, we must accept the degradation in
residual monitoring performance. Based upon these
results however, we needn’t abandon it entirely. Good
indications of sensor failure still exist, and with some
appropriate logic code, can be exploited in the future.

VIII. FLIGHT ENVELOPE RESEARCH

A final area of interest in our research is to
investigate the robustness of the MMAE failure
detection algorithm. The SRF simulation environment
provides a unique opportunity to test our design
throughout the flight envelope. As a first step towards
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Fig. 8. Residual monitoring pair for pitch rate sensor failure.

full envelope coverage, we wish to determine whether
gain scheduling or perhaps a manageable number
of discrete designs will be more appropriate. To do
this, we take our single-failure design, operate it at
flight envelope points away from the nominal, and
characterize the performance. Specifically, discrete
steps are taken along the Mach and Altitude axes
until performance degradation becomes unacceptable.
This region defines a local envelope which we can
discretize for further investigation. In Fig. 9, points 1
through 20 comprise this local envelope of interest.
Four extrema, points 21 through 24, are also included
for longer range trends. The exhaustive single-failure
simulation of Section V is then run at each of the 24
points so that trends in performance degradation can
be observed. For space considerations, probability
convergence plots are not included here [4]. Instead,
the important trends are discussed in some detail.
This research provides three important results

which will serve to guide further work in this area:
accurate trim variables are critical to acceptable
performance; false alarms rather than missed alarms
are the limiting factor; and lack of robustness points to
a need for gain scheduling.
First, recalling that our design is perturbation

based, and noting that sensor values and control

variables passed to the algorithm are absolute, there
is a heightened emphasis placed on trim values.
Specifically, our design requires a nominal steady-state
value for stabilator deflection as well as forward
velocity, angle of attack, and normal acceleration.
The algorithm uses these values to subtract off the
appropriate inputs in order to generate perturbation
inputs. We find that if these trim values are not
accurate, an initial perturbation error is generated
which leads to false alarms. Therefore, future
consideration must be given to an accurate method of
maintaining these trims. Possibilities include scheduling
based on simulation data, or perhaps some form of
on-line determination.
A second finding is that false alarms are the

limiting factor in performance degradation. One
might intuit that lower dynamic pressure with the
same dithering strategy would result in lower state
excitation and more missed alarms, while higher
dynamic pressure with the same dithering strategy
would violate small-perturbation hypotheses and result
in false alarms. Our research doesn’t bear this out.
In both directions of dynamic pressure change, false
alarms become the problem, and we attribute this
to model mismatch. Recall that the MMAE design is
based on a linearized model about a given trim. Before
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Fig. 9. Flight envelope research points matrix.

dynamic pressure can have the impact just described,
model mismatch effects inherent when operating at
a different point in the envelope dominate. Fig. 3
demonstrates the general effect of model mismatch,
namely that false alarms present the pressing concern.
Interestingly, points 9, 12, Nominal (NOM), 17, and
19 of Fig. 9 define an axis of approximately constant
dynamic pressure along which reasonably acceptable
performance is achieved. So while higher and lower
dynamic pressure, along with model mismatch, yield
false alarms, variations corresponding to constant
dynamic pressure and current levels of tuning seem
to yield minimal degradation.
The third and final result indicates that gain

scheduling may be the best way to approach
full-envelope coverage. One need only look at the
small region of operability in Fig. 9 (0.03 Mach,
3000 ft) to see that our algorithm isn’t very robust.
This seems smaller, still, considering the addition of
substantial pseudonoise which might have masked the
model mismatch we induce off nominal. The small
neighborhood effectively prohibits the possibility of
having a small number of discrete designs cover the
envelope. Gain scheduling or a similar concept will be
required in future developments of this technology.

IX. CONCLUSIONS

The SRF VISTA F-16 simulation provides an
opportunity to apply the MMAE failure detection
algorithm in as near a real-world environment as is
currently possible and further determine its potential.

From this application, we learn that model mismatch
due to reduced order, linearized modeling leads to
false alarms and must be accounted for via addition
of pseudonoise to assumed design models. Upper
limits on pseudonoise addition do exist, however,
which if passed, result in missed alarms. Intelligent
pseudonoise addition such as that demonstrated in
Methods 1 through 4, though, can result in acceptable
probability convergence. Also, the algorithm did not
suffer from insurmountable difficulties when the level
of complexity was raised from single to dual failures.
Finally, additional model mismatch which results from
operating away from trim quickly yields false alarms.
Thus, a lack of robustness points to a gain scheduling
approach to full flight envelope implementation.
Overall, the MMAE performed well against the

fully nonlinear truth model environment. With no
performance specifications driving our research,
there was no pressing effort to optimize the results.
Implementation-specific requirements must always be
considered, with the techniques just described being
applied appropriately. The results of this effort argue
strongly for continued research and development in
this area.
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