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I. INTRODUCTION

For many applications, it is highly desirable
to develop an aircraft flight control system with
reconfigurable capabilities: able to detect and isolate
failures of sensors and/or actuators and then to employ
a control algorithm that has been specifically designed
for the current failure mode status. One means of
accomplishing this, in a manner that is ideally suited
to distributive computation, is multiple model adaptive
estimation (MMAE) [1—4] and control (MMAC) [5—7].
Assume that the aircraft system is adequately

represented by a linear perturbation stochastic state
model, with a (failure status) uncertain parameter
vector affecting the matrices defining the structure
of the model or depicting the statistics of the noises
entering it. Further assume that the parameters can
take on only discrete values: either this is reasonable
physically (as for many failure detection formulations),
or representative discrete values are chosen throughout
the continuous range of possible values. Then a
Kalman filter is designed for each choice of parameter
value, resulting in a bank of K separate “elemental”
filters. Based upon the observed characteristics of the
residuals in these K filters, the conditional probabilities
of each discrete parameter value being “correct”,
given the measurement history to that time, are
evaluated iteratively. In MMAC configurations, a
separate set of controller gains is associated with each
elemental filter in the bank. The control value of each
elemental controller is weighted by its corresponding
probability, and the adaptive control is produced as
the probability weighted average of the elemental
controller outputs. As one alternative (using maximum
a posteriori, or MAP, rather than minimum mean
square error, or MMSE, criteria for optimality), the
control value from the single elemental controller
associated with the highest conditional probability
can be selected as the output of the adaptive
controller.
Previous efforts investigated the application of

a MMAC algorithm to a short takeoff and landing
(STOL) F-15 [8, 9]. The system was modeled with four
elemental controllers designed for a healthy aircraft,
failed pitch rate sensor, failed stabilator, or failed
“pseudosurface”–a combination of canards, ailerons,
and trailing edge flaps. Conclusions from this study
indicated that the elemental filters must be carefully
tuned to avoid masking of “good” versus “bad”
models. This observation is not compatible with loop
transmission recovery (LTR) tuning techniques. Other
research efforts demonstrated the effectiveness of the
MMAC algorithm using seven elemental controllers
designed for a healthy aircraft, one of three actuator
failures, or one of three sensor failures [10, 11]. The
study included effects of single and double failures,
and partial failures as well as hard failures. It also
demonstrated the effectiveness of alternate techniques
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to resolve ambiguities using modified computational
techniques and scalar residual monitoring.
This research extends beyond this earlier work

in three important aspects. First, both longitudinal
and lateral-directional channels are considered,
rather than just considering longitudinal dynamics.
Second, out of necessity with the greater number of
sensors and actuators and cross coupling of channels,
disambiguation and failure declarations received
attention through purposeful pilot commands and
automatic control dithering as well as scalar residual
monitoring. Finally, it was decided not to design “just a
paper-study MMAC” composed of simplistic elemental
controllers, but to take an existing full-scale flight
control system (that of the VISTA F-16 (variable
in-flight stability test aircraft)) and to embed an
MMAE algorithm into its front end to provide failure
detection capacity. This is intended to provide a
more realistic evaluation of performance in an actual
implementation, at the expense of not providing
individual elemental controllers designed explicitly for
each failure status condition. As a result, the emphasis
is concentrated on failure identification performance
versus reconfigurable control characteristics. If the
failure mode is correctly identified, the algorithm is
considered to have operated successfully, even if (due
to lack of subsequent controller reconfiguration) the
resulting closed-loop system is unstable and this could
be addressed via MMAC versus MMAE-based control.

II. MMAC AND MMAE-BASED CONTROL

Let a denote the vector of uncertain parameters in
a given linear stochastic model for a dynamic system,
in this case depicting the failure status of sensors and
actuators of the aircraft. These parameters can affect
the matrices defining the structure of the model or
depicting the statistics of the noises entering it. In
order to make simultaneous estimation of states and
parameters tractable, it is assumed that a can take
on only one of K discrete representative values. If we
define the hypothesis conditional probability pk(ti) as
the probability that a assumes the value ak (for k =
1,2, : : : ,K), conditioned on the observed measurement
history to time ti:

pk(ti) = Pr[a= ak j Z(ti) = Zi] (1)

then it can be shown [1—4] that pk(ti) can be evaluated
recursively for all k via the iteration:

pk(ti) =
fz(ti)ja,Z(ti¡1)(zi j ak,Zi¡1)pk(ti¡1)PK
j=1fz(ti)ja,Z(ti¡1)(zi j aj ,Zi¡1)pj(ti¡1)

(2)

in terms of the previous values of p1(ti¡1), : : : ,pK(ti¡1),
and conditional probability densities for the current
measurement z(ti) to be defined explicitly in (12).

Notionally, the measurement history random vector
Z(ti) is made up of partitions z(t1), : : : ,z(ti) that are the
measurements available at the sample times t1, : : : , ti;
similarly, the realization Zi of the measurement
history vector has partitions z1, : : : ,zi. Furthermore, the
Bayesian MMAC output is the probability weighted
average [5—7]:

uMMAC(ti) =
KX
k=1

uk[x̂k(t
¤
i ), ti]pk(ti): (3)

Here uk[x(ti), ti] is a deterministic optimal full-state
feedback control law based on the assumption that
the parameter vector equals ak, and xk(t

+
i ) is the

state estimate generated by a Kalman filter similarly
based on the assumption that a= ak. If the parameter
were in fact equal to ak, then certainty equivalence
[5] would allow the LQG (linear system, quadratic
cost, Gaussian noise) optimal stochastic control to
be generated as one of the uk[xk(t

+
i ), ti)] terms in the

summation of (3).
More explicitly, let the model corresponding to ak

be described by an “equivalent” discrete-time model
[4, 5, 11] for a continuous-time system with sampled
data measurements:

xk(ti+1) =©k(ti+1, ti)xk(ti)+Bk(ti)u(ti) +Gk(ti)wk(ti)

(4)

z(ti) =Hk(ti)xk(ti)+ vk(ti) (5)

where xk is the state, u is a control input, wk is
discrete-time zero-mean white Gaussian dynamics
noise of covariance Qk(ti) at each ti, z is the
measurement vector, and vk is discrete-time zero-mean
white Gaussian measurement noise of covariance
Rk(ti) at ti, assumed independent of wk; the initial
state x(t0) is modeled as Gaussian, with mean xk0
and covariance Pk0 and is assumed independent of wk
and vk. Based on this model, the Kalman filter [11] is
specified by the measurement update:

Ak(ti) =Hk(ti)Pk(t
¡
i )H

T
k (ti) +Rk(ti) (6)

Kk(ti) = Pk(t
¡
i )H

T
k (ti)A

¡1
k (ti) (7)

x̂(t+i ) = x̂k(t
¡
i )+Kk(ti)[zi¡Hk(ti)x̂k(t¡i )] (8)

Pk(t
+
i ) = Pk(t

¡
i )¡Kk(ti)Hk(ti)Pk(t¡i ) (9)

and the propagation relation:

x̂k(t
¡
i+1) =©k(ti+1, ti)x̂k(t

+
i ) +Bk(ti)u(ti) (10)

Pk(t
¡
i+1) =©k(ti+1, ti)Pk(t

+
i )©

T
k (ti+1, ti)

+Gk(ti)Qk(ti)G
T
k (ti): (11)

The MMAE algorithm is composed of a bank of K
separate Kalman filters, each based on a particular
value a1, : : : ,aK of the parameter vector, as depicted
in Fig. 1. Instead of generating a control vector uk,
the MMAE generates a probabilistically weighted
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Fig. 1. MMAE algorithm.

state estimate vector, xMMAE(ti). In an MMAE-based
controller, this state estimate is used by the flight
control system to generate the control vector for the
aircraft. When the measurement zi becomes available
at time ti, the residual vector rk is generated in each
of the K filters according to the bracketed term in
(8), and used to compute p1(ti), : : : ,pK(ti) via (2).
Each numerator density function in (2) is given by the
Gaussian form:

fz(ti)ja,Z(ti¡1)(zi j ak,Zi¡1) =
1

(2¼)(m=2)jAk(ti)j1=2
exp[¢]

(12)

[¢]= [¡ 1
2r
T
k (ti)A

¡1
k (ti)rk(ti)]

(13)

where m is the measurement dimension and Ak(ti)
is calculated in the kth Kalman filter as in (6). The
denominator in (2) is simply the sum of all the
computed numerator terms and thus is the scale factor
required to ensure that the pk(ti)s sum to one.
One expects the residuals of the Kalman filter

based upon the “best” model to have a mean squared
value most in consonance with its own computed
Ak(ti) consistently over time, while “mismatched”
filters will have larger residuals than anticipated
through Ak(ti). Therefore, (2), (3), and (6)—(12) will
most heavily weight the filter based upon the most
correct assumed parameter value. However, the
performance of the algorithm depends on there being
significant differences in the characteristics of residuals
in “correct” versus mismatched filters. Each filter
should be tuned for best performance when the “true”
values of the uncertain parameters are identical to
its assumed value for these parameters. One should
specifically avoid the “conservative” philosophy of
adding considerable dynamics pseudonoise, often used
to guard against divergence, since this tends to mask
the differences between good and bad models. If, as a
result of such tuning, one of the filters should diverge
(which is clearly indicated by large magnitude residuals
or term computed in (13)), it can be restarted with the

current state estimate from the MMAE as computed
from the nondivergent filters.

III. MODELING EFFORT

Aerodynamic Model: A six-degree-of-freedom
nonlinear aerodynamic model provided data to
generate a linearized perturbation model utilized in
this study. The data base resides within the Flight
Dynamics Laboratory at Wright-Patterson AFB, OH.
The linearized model includes increments for pitch
attitude, pitch rate, angle of attack, velocity, roll angle,
sideslip angle, roll rate, and yaw rate. Normal and
lateral accelerations are computed. Control effects
are given by left and right stabilators, left and right
flaperons, rudder and leading edge flaps. The model is
developed with constant thrust.
Flight Control System: The flight control system

(FCS) model is a Fortran representation of the VISTA
F-16 FCS [13, 14]. The model realistically depicts
the true system by including longitudinal, lateral, and
directional channels. Each channel provides command
force gradients, command limiting, signal magnitude
and rate limiting (accomplished in controller software),
gain scheduling, biases, filtering characteristics,
and true surface position and rate limiting. Sensor
measurements are corrected for position error where
applicable. The flight control system requires seven
sensor inputs for proper performance: velocity, angle
of attack, pitch rate, normal acceleration, roll rate, yaw
rate, and lateral acceleration.
The development of a detailed model allows

for a realistic evaluation of the MMAE algorithm.
The FCS and linearized aerodynamic models
were validated separately and as a system using a
six-degrees-of-freedom nonlinear simulation. Results
indicated excellent correlation, provided that the
constraints of the linear aerodynamic perturbation
model were not violdated. Given the short convergence
times typical for a fault detection and isolation
algorithm, this is not a restrictive constraint.
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IV. ALGORITHM IMPLEMENTATION

Hypothesized Failures: For the single failure
scenarios, the parameter space, denoted by the vector
quantity a, was discretized into twelve hypothesized
hard failures: left stabilator, right stabilator, left
flaperon, right flaperon, rudder, velocity sensor, angle
of attack sensor, pitch rate sensor, normal acceleration
sensor, roll rate sensor, yaw rate sensor, and the lateral
acceleration sensor. Additionally, the no-failure aircraft
condition was included to provide an initial system
configuration prior to failure transition. Total or
“hard” actuator failures are modeled by zeroing out
the appropriate columns of the control input matrix B
and hard sensor failures are modeled by zeroing out
the corresponding rows of the measurement matrix H.
Only hard failures and no-failure conditions

are used for the design of elemental filters for the
MMAE, but “soft” failures are also simulated during
testing (with the desire that the MMAE would form a
probability-weighted average of estimates based on the
associated hard failure and no-failure assumptions).
Partial or soft actuator failures are modeled by
multiplying the appropriate column of the control input
matrix B of (4) by a factor of effectiveness. Soft sensor
failures are modeled by increasing the variance in the
R matrix.
Dual failure scenarios are similar to the single

failure scenarios until the first failure is identified.
Upon identification (the criterion used was that the
probability in the elemental filter must be above
0.9 for 10 sample periods), a new bank of filters is
loaded. Each filter in the new bank assumes the
previously identified single hard failure and any other
hypothesized second hard failure, including no other
failure. See Fig. 2. A no-failure filter is also included
to allow the system to back out of the decision tree
structure in the event that a misidentification occurs.
Bayesian Form: The final probability-weighted

average of the state estimates, computed as shown
in Fig. 1, is produced by a Bayesian form of the
MMAE algorithm. Practical implementation reqires
a lower bound when computing the probabilities
according to (2). The addition of a lower bound
precludes the algorithm from assigning any single pk(ti)
a value of zero, which would prevent it from being
considered in future probability computations. From
the iterative nature of (2), if pk(ti¡1) were assigned
a value of zero for one of the filters, subsequent
probability calculations for that filter would also assign
a probability of zero (i.e., pk(ti) = 0). The addition of a
lower bound provides another favorable characteristic.
The number of iterations required to increase a very
small, but non-zero, pk is directly proportional to the
magnitude of the pk. By providing a lower bound,
we allow pk values, previously not important to the
combined state estimate, to increase in a timely
manner if the system failure status changes. This

Fig. 2. Hierarchical structure for multiple failures.

lower bounding is a simpler means of allowing for
time-varying hypothesis probabilities than explicitly
modeling hypothesis transitions, as by Markov process
models [4].
Beta Dominance: As discussed earlier in Section

II, the probabilities, pk(ti), are calculated according to
(2). Earlier efforts [2, 4, 6, 10] noted that the leading
coefficient preceding the exponential term in (12) does
not provide any useful information in the identification
of the failure. As discussed in Section II, the likelihood
quotient,

Lk(ti) = r
T
k (ti)A

¡1
k rk(ti) (14)

compares the residual with the internally computed
residual covariance of the hypothesized filter. Filters
with residuals that have mean square values most in
consonance with their internally computed covariance
are assigned the higher probabilities by the MMAE
algorithm. However, if the likelihood quotients were
nearly identical in magnitude for all k, the probability
computations would be based upon the magnitude of
the determinants of the Ak(ti) matrices, resulting in an
incorrect assignment of the probabilities. This effect is
known as “beta dominance”. Because sensor failures,
as simulated by zeroing out a row of H, yield smaller
Ak(ti) values, “beta dominance” produces a tendency to
generate false alarms about sensor failures.
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Previous efforts removed the term preceding
the exponential in (12). Since the denominator of
(2) contains the summation of all numerator terms,
excluding the terms preceding the exponentials in the
calculation of the probabilities does not alter the fact
that the computed probabilities sum to one.
Scalar Residual Monitoring: Incorrect or

ambiguous failure identification may be resolved
through the use of scalar residual monitoring. Eqs.
(2), (12), and (13) demonstrate the relationship of
the probability calculations, the probability density
function, and the likelihood quotient. These three
equations demonstrate the dependency of the
probability calculations on the magnitude of the
likelihood quotient, (13). The likelihood quotient is
merely the sum of scalar terms relating the product
of any two scalar components of the residual vector
and the internally computed covariance for those two
components. If a sensor failure occurs, the single scalar
term associated solely with that sensor should have a
residual value whose magnitude is much larger than
the associated variance in all of the elemental filters
except for the filter designed to “look” for that sensor
failure. Scalar residual monitoring can be used as an
additional vote when attempting to reduce or eliminate
failure identification ambiguities.
Purposeful Commands: Failure detection and

isolation using the MMAE algorithm requires a
stimulus to disturb the system from a quiescent state.
The performance of the MMAE algorithm depends
upon the magnitude of the residuals within incorrect
filters having large residual values. Residuals are
the difference between measurements and filter
predictions of those measurements. Incorrect filters
will provide poor estimates relative to the filter based
on the “true” system status. Small deviations from a
quiescent state will be virtually indistinguishable from
system noise, providing poor failure detection and
identification. Having justified the need for stimuli
to “shake up” the system, rationale was developed
to select stimuli, control deflections, and improve
performance. Previous efforts selected a pitch down
maneuver to aid in the identification process for
the longitudinal axis of an aircraft, with generally
favorable results [8—11]. However, fundamental
differences exist between earlier research and this
effort. Earlier efforts concentrated on applying
the MMAC algorithm, evaluating its performance,
and designing algorithms to maintain stability and
control in the longitudinal axis. A longitudinal pitch
down maneuver was sufficient to provide enough
system excitation for good performance. A three-axis
sophisticated control system requires excitation in
multiple axes to provide adequate residual growth
in filters whose hypothesis does not reflect the true
system failure status. The purposeful commands used
in this effort were longitudinal stick pulls, lateral stick
pulses, and varying amounts of rudder application.

Ordinary aircraft maneuvering would probably be more
than sufficient to provide adequate excitation and good
performance; straight-and-level flight would be more
challenging (though less flight critical) for a failure
detection system.
Autonomous Dithering: Autonomous dithering

enhances failure detection and identification
by providing sufficient excitation in benign
nonmaneuvering flight conditions or as a
pilot-selectable option. A number of dither signals
were evaluated, including square waves, triangle
waves, combinations of these forms, and sine waves.
Pulse trains using a square wave form produced
good performance with one drawback, failures are
not detected until the application of the pulse.
Additionally, pilots may find the application of a
dither signal of sufficient strength to provide good
failure detection and isolation objectionable, unless
they were able to turn such dithering on or off
themselves. Sufficient data was not available to relate
pilot comments and normal and lateral accelerations
in this application, so dithers were developed to
be as subliminal as possible while yielding desired
identifiability of failures.

V. PERFORMANCE

The application of the MMAE algorithms to the
VISTA F-16 aircraft in a low dynamic pressure case
provided an interesting test for this technique. The
flight condition, 0.4 Mach at an altitude of 20000 ft,
demonstrated algorithm performance in a low dynamic
pressure scenario. Earlier efforts studied the VISTA
F-16 at a higher dynamic pressure and emphasized
different failure scenarios and characteristics [15].
The goal was to evaluate the ability of the MMAE
algorithm to detect and isolate failures within the
flight control system and not to evaluate the ability
of the controller to maintain control of the vehicle
after the identification of the failure. An added benefit
of using the VISTA F-16 flight control system was
the absence of any single-failure induced loss of
control. Dual failure elemental filters were designed
for every two-failure actuator and sensor combination.
The figures presented in this section are single data
runs as opposed to Monte Carlo runs averaged
over a number of runs, in order to exhibit real-time
signal characteristics (Monte Carlo runs were used
to corroborate performance attributes over multiple
experimental trials).
For single-failure plots, the following elemental

filter abbreviations are used: FF, fully functional; A1,
left stabilator; A2, right stabilator; A3, left flaperon;
A4, right flaperon; A5, rudder; S1, velocity sensor; S2,
angle of attack sensor; S3, pitch rate sensor; S4, normal
acceleration sensor; S5, roll rate sensor; S6, yaw rate
sensor; and S7, lateral acceleration sensor. Dual-failure
plot nomenclature is described subsequently.
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Fig. 3. Probabilities for left stabilator failure using purposeful roll
command.

Single Hard Actuator Failures: Fig. 3 demonstrates
a left stabilator failure induced at 3.0 s. Prior to the
insertion of the failure in the truth model, essentially
all of the probability is properly contained within the
FF elemental filter. At 3.0 s, the failure is inserted
and the left stabilator elemental filter (A1) collects the
probability. The time delay between failure insertion
and failure detection is approximately 0.2 s. In this
scenario, a purposeful roll command is used to excite
the roll channel (a roll command aids the algorithm
in not only identifying the stabilator failure, but which
stabilator has failed). Small dither signals of magnitude
less than 0.2 gs are used to excite the pitch and yaw
channels to enhance failure detection. The roll step
command is inserted into the flight control system at
3.0 s and has a magnitude of 13.5 lateral stick lbs adn
is held for 1.55 s. The side stick application times were
selected to coincide with the failure insertion at 3.0 s
(to excite the system and generate residual growth)
and to demonstrate the detection capability with the
command in and with the command released. All
of the single hard actuator failures resulted in good
performance (quick detection, proper identification,
failure declaration remains locked).
Single Soft Actuator Failures: Two types of

excitation signals are utilized throughout the research
effort: purposeful commands and autonomous dither
signals. Autonomous dither signals provide failure
detection capability in benign (i.e., nonmaneuvering)
flight conditions. Fig. 4 demonstrates a 50% reduced
effectiveness rudder failure using a subliminal dither

Fig. 4. Probabilities for 50% reduced effectiveness rudder failure
using subliminal dither pulse.

Fig. 5. Probabilities for angle of attack sensor failure using
subliminal dither pulse.

pulse. In this scenario, three sinusoidal dither signals
are applied to the pitch, roll, and yaw channels, of
amplitudes 12.5 lbs, 11.0 lbs, and 30.0 lbs, respectively.
Prior to the failure insertion at 3.0 s, the probability
is contained within the FF filter. After the failure
insertion at 3.0 s, the probability is shared between
the FF elemental filter and the complete rudder
failure (A5) elemental filter. This correlates very
well with the anticipation that the probability should
be equally shared between the two filters. In this
straight-and-level flight condition, the subliminal dither
pulse is sufficient to identify a partial rudder failure
and properly blend the outputs of the two filters.
This scenario highlights the strengths of the Bayesian
approach. For scenarios with a reduction in actuator
effectiveness below 50%, the failure is typically not
detected. For scenarios with a reduction in actuator
effectiveness greater than 75%, the algorithm behaves
the same as a hard actuator failure. These results
are reported for a straight-and-level flight condition;
maneuvering flight may produce better detection
capability since more of the actuator effectiveness is
demanded for good flight performance.
Single Hard Sensor Failures: Fig. 5 demonstrates

an angle of attack sensor failure using a subliminal
dither signal. The failure is induced at 3.0 s, and it is
identified by the angle of attack (S2) elemental filter at
3.1 s: within 0.1 s. All of the single hard sensor failures
are identified quickly and accurately.
Single Soft Sensor Failures: Single soft sensor

failures are modeled by increasing the variances in
the R matrix. Scenarios with variances increased
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Fig. 6. Single scalar velocity residual for FF filter given left
stabilator failure.

by a factor of 2 to 10 have been evaluated, and the
performance is generally poor. In some cases, the
failure is detected after 3 or more seconds. When
inspecting the scenarios, a spiking phenomena is
observed in the probability plots. The spiking occurs
in the correct filter in virtually every scenario, but the
total probability is not sufficient for detection by the
algorithm. More work must be done in this area of
failure detection, including allowing sensor bias shifts,
which should be easier to detect than increased noise
variance.
Residual Monitoring for the Single Failure Scenarios:

As explained in Section IV, residual monitoring
provides additional voting when confronted with
ambiguities. Research efforts demonstrated good
residual monitoring performance when used with
a sinusoidal dither signal. Figs. 6 and 7 present
the single scalar velocity residuals for the FF and
failed-left-stabilator elemental filters, respectively. In
this scenario, a left stabilator failure is inserted into
the simulation at 3.0 s. From Fig. 6, it can be seen
that the FF elemental filter has the correct hypothesis
until 3.0 s. The velocity residual appears white and
is within the +=¡ 2:0¾ bounds as computed by the
elemental filter. After 3.0 s, the velocity residual for
this elemental filter violates the +=¡ 2:0¾ bounds
and has a frequency that matches the sinusoidal dither
frequency. In contrast, Fig. 7 presents the velocity
residual for the left stabilator elemental filter. Prior
to 3.0 s, the velocity residual violates the +=¡ 2:0¾
bounds and has a frequency that matches the sinusoidal
dither frequency. At 3.0 s, the characteristics of
the velocity residual noticeably change. Almost
immediately, the residual appears white. By 3.3 s the
residual lies within the +=¡ 2:0¾ bounds and remains
within the bounds for the duration of the simulation.
For the scenarios addressed in this effort, the velocity,
normal acceleration, lateral acceleration residuals
provide the most meaningful indications of failure
transitions.
Dual Hard Failures: Table I presents the

nomenclature for interpreting the dual failure plots.

Fig. 7. Single scalar velocity residual for left stabilator filter given
left stabilator failure.

Fig. 8. Probabilities for right flaperon failure followed by left
stabilator failure using sinusoidal dither signal.

The filter abbreviations are identical in meaning
to the single failure elemental filter prior to
the identification of the first failure. After the
identification of the first failure, a new bank of filters
is brought on line, as shown in Fig. 2. At this point the
designations change, and each elemental filter symbol
represents the first failure and a second hypothesized
failure as indicated by the symbol. The FF designation
remains the same throughout all of the scenarios
(single and double failures). As an example, after a
left stabilator failure has been identified and a new
bank of filters if brought on line, the elemental filter
designations change meaning. In this example, the
left stabilator (A1) elemental filter remains the same.
The designator A2 is interpreted as the dual stabilator
elemental failure filter, the A3 designator is interpreted
as the left stabilator and left flaperon failure filter, and
so on.
Fig. 8 represents a right flaperon failure followed

by a left stabilator failure. The right flaperon failure
is inserted into the simulation at 3.0 s followed by
the left stabilator failure at 6.0 s. The bank switching
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TABLE I
Multiple Failure Nomenclature After Bank Switch

Fig. 9. Probabilities for pitch rate sensor failure followed by roll
rate sensor failure using sinusoidal dither signal.

criteria is satisfied at 3.6 s, after which the elemental
filter designators assume their new definitions (as
just discussed). Prior to 3.0 s, the FF elemental filter
contains the probability. The failure is inserted into
the simulation at 3.0 s and detected by the right
flaperon (A4) elemental failure at 3.2 s. Between 3.2
and 3.6 s, the majority of the probability is shared
between the left flaperon (A3), the right flaperon
(A4), and the rudder (A5) elemental filters. At 3.6 s,
the bank is switched. The new bank assumes a right
flaperon failure and any other second hypothesized
failure. Between 3.6 and 4.0 s, the probability is shared
between the right flaperon (A4) elemental filter, the
FF elemental filter, the right flaperon and rudder (A5)
elemental filter, and the right flaperon and angle of
attack sensor (S2) failure filter. Between 4.0 and 6.0 s,
the probability is contained in the right flaperon (A4)
failure filter. The second failure is inserted at 6.0 s into
the truth model. Except for a small spike in the right
flaperon and right stabilator (A3) filter, the probability
collects in the right flaperon and left stabilator (A1)
failure filter within 0.2 s. In this scenario (straight and

Fig. 10. Probabilities for rudder failure followed by angle of
attack sensor failure using sinusoidal dither pulse.

level flight), the sinusoidal dither signal applies the
excitation signal. By increasing the signal strength, the
failure identification performance can be enhanced;
however, the dither signal can no longer be labeled
subliminal. Maneuvering flight usually produces
improved performance over benign flight conditions.
Fig. 9 presents a dual sensor failure. A pitch

rate sensor failure is induced at 3.0 s. The failure is
identified at 3.2 s. At this point in the simulation,
the bank switching criterion is met and a new bank
of filters is brought on line. The new bank of filters
assumes a pitch rate failure and any other second
hypothesized failure. The roll rate sensor failure is
induced at 6.0 s. With the exception of a temporary
dropout, the elemental filter assuming both a pitch
rate sensor failure and a roll rate sensor failure
contains all of the probability after 6.2 s. Dual sensor
failures generally provide good results.
Fig. 10 demonstrates a mixed actuator and sensor

failure. In this scenario, a rudder failure is induced
at 3.0 s. The rudder failure is identified at 3.3 s and
a bank switch occurs before 3.4 s. The new bank of
filters assumes a rudder failure and any other second
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TABLE II
Multiple Hard Failure Summary Matrix

hypothesized failure. At 6.0 s, an angle of attack
sensor failure is induced. With the exception of a
single spike, all of the probability is contained within
the rudder-failure- and angle-of-attack-sensor-failure
elemental filter by 6.1 s.
Multiple Hard Failure Results: Table II summarizes

the multiple hard failure results. The column header
lists the left stabilator (LS), the right flaperon (RF),
the rudder (RD), the velocity sensor (VS), the angle
of attack sensor (AOA), the pitch rate sensor (PR),
the normal acceleration sensor (NZ), the roll rate
sensor (RR), the yaw rate sensor (YR), and the lateral
acceleration sensor (NY). The right stabilator and
left flaperon are not included since no additional
insight is gained by evaluating these failures. The first
column lists all of the second failures. Any dual failure
scenario can be evaluated by finding the intersection
of the appropriate column (first failure) and row
(second failure). The terminology within the table
is in some sense subjective and is defined as follows:
ND (no detection–the signal was not detected in the
appropriate elemental filter); Poor (some probability
spiking occurred in the appropriate failed filter); Fair
(probability lock–the probability in the appropriate
filter was at 0.988 (max) for some appreciable period
of time); Good (probability lock and hold–the
probability in the appropriate filter was at 0.988 for
some appreciable period of time and was consistently
0.988 through the end of the simulation run at 8.0 s).
The ND and Poor results are shaded to accentuate the
problem areas. Particularly evident from this shading is
that there is much less difficulty if the first failure is a
sensor rather than an actuator. In many cases, this can
be attributed to the loss of actuator effectiveness when
employing a dither excitation signal. The four outlined
cells (LSRS, VSLS, RFRD, RFPR) are examples of
initial poor performance improved by changing the
dither signal strength and/or modifying the dither
signal form. For these four cases, the preliminary

performance with the original dither signal was either
ND or Poor. By modifying the dither signal once the
first failure is detected, the performance is significantly
enhanced. In many cases, the dither signal can still
be considered subliminal. The increased dither signal
strength compensates for the loss of actuator authority,
resulting in a match of the original unfailed aircraft
responses to the dither. Due to time constraints,
only four of the shaded areas were retested with an
improved dither signal; however, the four cases were
chosen to cover a representative set of failures. A
dual actuator case demonstrates the most difficult
failure detection point for the MMAE algorithm.
Physically it would be quite easy to detect dual failed
actuators through purposeful commands. Results
indicate that the remainder of the shaded regions could
be improved by increasing the dither signal strength.
The results are good for all dual failure combinations
in which the first failure is a sensor, except for three
velocity sensor cases adn one lateral acceleration case.
The velocity sensor failures which involve a stabilator
can be attributed to a reduction in the excitation dither
signal magnitude brought about by the loss of actuator
authority. This is easily corrected by increasing the
dither signal strength to prefailure excitation levels,
as demonstrated in the Good rating in the VSLS
block of Table II. The other two exceptions involve a
second failure of the yaw rate sensor. A known bias
exists in the yaw rate sensor residuals. The solution
to this problem would be to reinitialize or restart
the filter periodically to maintain a very small bias
below a predetermined threshold. The threshold would
be established empirically based upon the failure
identification performance. Overall, the results for the
multiple hard failure scenarios are good.
Dual Failure Residual Monitoring: By using

sinusoidal dither signals, dual failure residual
monitoring can provide additional voting when
ambiguities arise. Results demonstrate [14] clear failure
indications for the first and second failures. Typically
the most interesting residuals are provided by the
FF filter, the first failure elemental filter, and the
second dual failure elemental filter. Each of these
three filters provide a vote in the determination of
the true system status. For the dual failure scenarios,
the most useful residuals are the velocity, pitch rate,
normal acceleration, and the lateral acceleration. Other
residuals provide less obvious indications of the failure
status.
Simultaneous Failures: Failure scenarios included

dual failures separated by 3.0, 0.5, and finally 0.1 s
(simultaneous). For the first scenario tested, namely
a right flaperon failure followed by a left stabilator
failure, the dual failures are identified and rated as
Good by the subjective rating system if the separation
is 3.0 or 0.5 s. For the simultaneous failure (0.1 s
separation), the left stabilator failure is detected first
and the bank switch occurs. Some spiking occurs in
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each of the flaperons but the second failure is not
detected. This result is consistent with Table II. For the
first two relatively widely separated failures, the results
agree with the RFLS block in the table (Good). The
last simultaneous case resulted in a LSRF scenario and
the results again agree with Table II (Poor). Increasing
the dither signal strength would compensate for the
degradation in actuator effectiveness and significantly
improve the rating. The other three failure scenarios
that were investigated, a normal acceleration sensor
failure and a pitch rate sensor failure, a roll rate sensor
failure followed by a lateral acceleration sensor failure,
and a roll rate sensor failure followed by a rudder
failure are rated Good for the widely separated (3.0,
0.5 s) and simultaneous (0.1 s) failures.
Overall Performance Trends. Single Failures: Single

hard actuator and sensor failures are easily identified.
Results indicate only one “forced” misidentification
in over 2000 runs. The application of a rudder kick
and hold when attempting to identify a rudder failure
resulted in a declaration of a yaw rate failure. The
result was not surprising since a rudder failure and a
yaw rate failure appear similar in the state variables.
When the rudder failed, the lack of a rudder input
produced very little yaw rate, resulting in a situation
in which the algorithm could not distinguish between a
rudder failure or a yaw rate sensor failure. By applying
differential stabilator and flaperon inputs, a yaw rate
could be produced to resolve the ambiguity. Single soft
actuator failures resulted in good performance when
the actuator effectiveness is reduced below 50%. The
failure results for a reduction below 75% effectiveness
match the hard failure results. For scenarios with
actuator effectiveness between 50 and 75%, a sharing
of the probability is observed between the two filters
with the most correct hypothesis as anticipated.
Single soft sensor failures, modeled by increasing a
measurement noise variance by a factor of 2 to 10,
demonstrate poor results. Some spiking phenomena
is present in the probability for the elemental filter
with the correct hypothesis, but the overall probability
levels are not sufficient to ensure good performance.
A larger variance might produce better results.
Results have demonstrated the algorithm is sensitive
to bias shifts, and a soft sensor failure modeled by a
large enough bias shift would be detected. Residual
monitoring is very useful, when combined with a
sinusoidal dither signal or purposeful command, to
provide an additional vote when attempting to resolve
ambiguities.
Overall Performance Trends. Multiple Failure:

Multiple hard failure results indicate good
performance when the first failure is a sensor. For an
actuator first failure, the results are typically degraded.
By rerunning a subset of the ND or Poor cases and
increasing the dither signal strength, the results for the
first actuator failure subset are significantly improved.
Overall, all of the test runs support the claim that the

MMAE algorithm can accurately identify dual hard
failures. Residual monitoring is useful in dual failure
scenarios when the system is excited using a sinusoidal
dither signal. Residual monitoring, using a sinusoidal
dither signal, provides clear indications of failures
through the “whiteness”, frequency, and magnitude
(in relation to the filter computed 2¾ bounds) of the
residual. An implementable algorithm might remove
any residual bias and count the zero crossings to
determine the “whiteness” of the signal. Simultaneous
failures provide results consistent with Table II.
While many dither wave forms were considered

and tested, the sine wave dither form yielded the
best performance. The signal is continuous, arguably
subliminal, and demonstrates good performance.
It is extremely useful in resolving ambiguities. The
continuous nature of the wave (versus intermittent
pulse trains) provides constant failure detection
coverage and can easily be modulated in amplitude
or frequency to provide the best detection signal for
a given failure scenario. A continuously alternating
frequency may provide even better algorithm
performance at all flight conditions. Amplitude
modulation accounts for varying dynamic pressures,
atmospheric disturbances, or aircraft status (increased
dither signal strengths being required if an actuator
failure or partial failure has been declared). In this
effort, wideband dither signals were not investigated,
but sinusoidal dither forms did provide better overall
performance than pulse train forms.

VI. SUMMARY

A MMAE algorithm has been evaluated for single
and multiple actuator and sensor failures illustrating
the performance of the algorithm when applied to
a VISTA F-16 FCS using a linearized aerodynamic
model. A modified Bayesian approach allows for a
blending of state estimates and provides lower bounds
on computed probabilities to enhance algorithm
convergence properties. Compensation for “beta
dominance” enhances algorithm performance by
not allowing the term preceding the exponential
in (12) to enter into the calculations. This term
biases the calculation of the probabilities toward
the elemental filter with an Ak(ti) matrix having the
smallest determinant thus increasing sensor failure
false alarms. Scalar residual monitoring effectively aids
in resolving ambiguities.
For single failures, the algorithm demonstrates

good convergence characteristics during purposeful
commands and dither signals. Optimizing the dither to
improve algorithm performance is effective. However,
large dither signals cannot be considered subliminal
and may be considered objectionable by a pilot;
allowing him to turn the dither on and off may be
more useful practically.
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For multiple failures, the algorithm demonstrates
good convergence for hard actuator and sensor failures.
For actuator first failures, an increased dither signal
strength is required to compensate for the loss of
actuator effectiveness in exciting the system states.
Actuator soft failures provide good results when
the actuator effectiveness is reduced below 50%.
Sensor soft failures (modeled by moderately increased
measurement noise) are not well detected, but do not
impact control performance much either. Simultaneous
failures produce results consistent with identical
failures separated in time by three seconds. Residual
monitoring is useful in multiple failure scenarios when
coupled with a sinusoidal dither signal.
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