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I. INTRODUCTION

A multiple model adaptive estimator (MMAE) is
composed of a parallel bank of elemental Kalman
filters, each based on a different assumed system
parameter or model. The observed properties of the
residuals from each elemental filter are then used
to evaluate the probability that the assumed model
of each filter best represents the current real-world
situation [8]. The purpose of this work is to discuss
the enhancement of the ability of the MMAE to
select the most appropriate elemental filter as system
dynamics vary. The MMAE used in this investigation
is one developed for the forward-looking infrared
(FLIR)/correlator tracker that can be used in a high
energy laser weapon system [10, 11, 17, 18]. The
investigation focuses on two areas: the selection of the
models to use in the elemental filters of the tracking
filter and the altering of the algorithm the MMAE uses
to make its estimate.
The tracking of airborne targets is currently

accomplished for this application with a conventional
correlator. This correlator tracker has several
limitations contributing to tracking errors. Two
important ones are as follows.

1) There is a time lag due to the time it takes the
correlator algorithm to correlate the current frame of
FLIR outputs to the previous frame and for the actual
pointing gimbals to point the FLIR sensor in the next
appropriate direction to keep the target in the center
of the field of view (FOV). The FOV is the number
of pixels the correlator and, later, the Kalman filter
(KF) uses in estimating target position. The FLIR
sensor is 300-by-500 pixels. Normally, 8-by-8 pixels
is the maximum sized tracking “window” used in the
algorithm.
2) Apparent target motion results from physical

phenomena like atmospheric jitter and bending and
vibration of the tracker optics. The correlator does
not distinguish true target motion from this erroneous
apparent motion.

A KF is added to the tracker to overcome these
limitations.
An “enhanced” correlator tracker is used so the

dynamics of the target can be modeled as linear
and the target shape need not be known [15]. The
correlator algorithm compares the current FLIR image
with a template instead of the image from the previous
time frame. The template estimates the target shape
by averaging the centered image over the previous 10
time frames. The “measurement” given to the KF is
the offset of the image from the center of the FOV, as
produced by the enhanced correlator. The resulting
linear KF reduces computational loading and gives
comparable performance to an extended KF that
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Fig. 1. Target acceleration PSD plots assumed by 3 possible elemental filter models.

could be used to process the raw FLIR data without a
correlator preprocessor [15, 4, 12].
An MMAE form is used when the target dynamics

are expected to change. In previous investigations, the
MMAE had little trouble moving from an elemental
filter tuned for benign target trajectories to one tuned
for harsher trajectories when the target initiates a
jinking maneuver. The problem comes when the target
returns to a more benign trajectory. The MMAE takes
longer to return to the elemental filter tuned for the
more benign trajectory. It has been conjectured that
part of this problem is due to the fact that, if target
models have acceleration power spectral densities
(PSDs) that overlap in the low-frequency region,
as in Fig. 1, all models are able to represent such
behavior by the actual target. On the other hand, when
the target vehicle truly exhibits harsh maneuvering,
only those models with non-zero acceleration PSD
values over the higher frequencies can be deemed
adequate [10]. In this investigation, the filter dynamics
models are selected to produce elemental filters with
nonoverlapping PSDs. First-order Gauss-Markov
models, as produced by low-pass filters driven by white
Gaussian noise, yield overlapping acceleration PSDs as
in Fig. 1, despite the fact that higher break frequencies
are meant to be indicative of more maneuverable
characteristics. In contrast, the model parameters of
second-order Gauss-Markov models using bandpass
filters can be selected so that the PSDs have minimal
overlap as in Fig. 4 (Section VI). The break frequency
of the PSD is driven by how fast the target can
change its velocity vector. The height of the PSD plot
represents the mean square acceleration magnitude
per unit frequency that the target is exhibiting and the
overall height is determined by the dynamics driving
noise of the filter model. The location and number
of cutoff frequencies of the PSDs for the elemental
shaping filters are additional design parameters to be
varied for tuning to a given application.

II. MMAE ALGORITHM

This section reviews the basic structure of the
MMAE, highlighting features pertinent to this
investigation. Full mathematical development of these
concepts is found in Maybeck [8, p. 130]. The KF is a
predictor/corrector algorithm. In the predictor function
a model that describes the true system dynamics is
propagated through one time increment, producing an
estimate of states of interest of the true system. In this
effort the true system dynamics are those displayed
by the airborne target being tracked. The states of
interest are the position, velocity, and acceleration
of the target, and the apparent motion of the target
due to atmospheric jitter. Certainly in this application
many parameters describing the dynamics of motion
of the target are unknown or can change over time.
The target or its potential dynamics will not be known
exactly a priori. However, there is a physical limit on
the range of the dynamics a tracker can be expected to
see. This range of possible dynamics is described by a
parameter vector a. This vector is discretized over its
continuous space into j distinct points, each forming
the basis of the predictor portion of an individual KF
called an elemental filter.
The elemental filters are tied together in an

MMAE as in Fig. 2. In this configuration, each of the
j elemental filters propagates one time increment,
producing an estimate of the states, x̂k(t

¡
i ) for each

k = 1,2, : : : ,j. Then the single measurement, z(ti), is
brought in and a residual, rk(ti), is calculated for each:

rk(ti)
¢
= z(ti)¡Hk(ti)x̂k(t¡i ) (1)

where Hk(ti) is the measurement output matrix,
and the minus sign in the superscript means before
the measurement update. Now the MMAE can
make an adaptive estimate of the state based on
the characteristics of these residuals. A hypothesis
conditional probability is calculated for each elemental
filter being based on the most correct parameter value,
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Fig. 2. MMAE structure [6, p. 132].

producing pk(ti):

pk(ti) =

1
(2¼)m=2jAk(ti)j1=2

expf¡ 1
2r
T
k (ti)A

¡1
k (ti)rk(ti)gpk(ti¡1)

Pj
g=1

"
1

(2¼)m=2jAg(ti)j1=2
expf¡ 1

2r
T
g (ti)A¡1g (ti)rg(ti)gpg(ti¡1)

# (2)

where Ak(ti) is the computed residual covariance of the
kth filter:

Ak(ti) =Hk(ti)Pk(t
¡
i )H

T
k (ti)+Rk(ti) (3)

Pk(t
¡
i ) is the state estimate error covariance, Rk(ti)

is the covariance of the measurement noise, and
m is the number of measurements. There are two
“measurements”, x and y position offsets in the FLIR
image plane computed by the enhanced correlator. The
sum of the probabilities is 1,

Pj
g=1pg = 1, because

of the divisor in (2). The probability calculation is
recursive. Since the current probability calculation
includes the previous value, if the probability for
any filter pk goes to zero at one sample time, that
probability will remain zero for all subsequent time
increments. Tactics to prevent this lockout of a filter
are varied [8, p. 130; 13, p. 18]. The one used here is
the lower bound (a value of 0.001 is used). Each pk is
set to the lower bound if its calculated value is below
that bound. Then the denominator in (2) is recalculated
so the sum of probabilities will still be one.
The state estimate for the MMAE before

measurement update is then:

x̂(t¡i ) =
jX
k=1

pk(ti)x̂k(t
¡
i ) (4)

and similarly for the estimate after the measurement
update at t+i . This is called a Bayesian MMAE
estimate. A variation on this is the maximum
a posteriori (MAP) estimate. In this case, the
probabilities are calculated as in (2) and the MMAE
estimate is set equal to the x̂k(ti) corresponding to the
largest computed probability, pk(ti).

The MMAE makes the adaptive estimate of the
state based on the characteristics of the residuals.
It is important that there be significant differences
between residuals from the elemental filter designed
for a specific trajectory and the other elemental filters
so the correct elemental filter can be selected, that
is, have the largest pk(ti). Two things contribute to
distinctive residuals among the elemental filters. First,
the model upon which the filter is based must be
specific for an expected trajectory. Hence the use of
second-order Gauss-Markov models for acceleration.
Each elemental filter is designed for a trajectory
displaying a specific range of acceleration frequency

content. For example, how fast the plane responds to
stick input will contribute to the frequency content
of the resulting trajectory, as in the trajectory of an
air superiority aircraft versus that of a cargo plane.
Second, the filter must be tuned specifically for the
expected trajectory. If pseudonoise is added, as in
conservative tuning practices with nonadaptive filters
[7, p. 339], it can blur the distinction between residuals
of competing filters in the MMAE structure, and
thereby incapacitate the adaptive mechanism of the
MMAE algorithm [8, p. 133].
In addition to these two considerations, the

MMAE algorithm itself will be altered in an attempt
to affect elemental filter selection. The magnitude of
the residuals squared comes into the pk calculation
in the exponential term as seen in (2). However, the
residual covariance, Ak(ti), enters into the exponential
and the leading coefficient, potentially resulting in a
larger pk for the elemental filter that does not have
the smallest magnitude residuals. For example, a filter
tuned to expect harsh trajectories normally has larger
dynamics noise strength. This makes the corresponding
denominator jAkj tend to be of larger magnitude,
while also making the term within the exponential a
smaller magnitude negative number. The exponential
terms thus make the probability calculation tend to
favor the filter tuned for harsher trajectories when the
residuals from several filters are of similar magnitude.
However, the leading coefficient will be smaller for
the larger jAkj and should counter the exponential.
This particular trait of the probability calculation is
suspect when the “wrong” elemental filter is selected
in a particular application [8, 9, 17] and various “fixes”
can be used. For example, Stevens [9, 17] suggested
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removing the leading coefficient on the calculation of
the conditional probability density that goes into the
computation of the hypothesis conditional probability
pk, via (2) i.e., removing the terms preceding the
exponentials in both numerator and denominator of
(2), for a problem that caused the MMAE to show an
artificial bias towards elemental filters with small jAkj.
This suggestion may not be useful since, in the class
of problems of interest in this research, one would like
to enhance a bias toward elemental filters with small
jAkj. The presence of the determinant in the leading
coefficient would tend to counter the empirically
observed sluggishness of the MMAE in returning to
a benign-model elemental filter when a target vehicle
stops maneuvering. However, an associated concept,
called “maximum entropy” design [16], alters both
the leading term and the exponential term by setting
Ak to I in all filters (due to lack of confidence in the
filter-computed Ak values; the impact of Ak is thereby
removed) [10]. This may, in fact, prove useful in
reducing the sluggishness of returning high probability
to a benign-model elemental filter when a target
stops maneuvering. Removal or nonremoval of the
coefficient, and maximum entropy design, combined
with use of elemental filters with nonoverlapping
acceleration PSDs, should provide sufficient design
freedom to improve tracking.

III. TRUTH MODEL

The truth model is the model of the real world that
creates the inputs for the MMAE. In this research the
truth model must do the following two things:

1) The true position of the target image in the
FLIR detector is simulated. The true position is used
to determine how well the tracking algorithm works.
2) The truth model provides the measurements

for the tracking algorithm to use as input. The
measurements are the average intensity of IR radiation
seen by each of the 64 pixels in the 8-by-8 “tracking
window.” To generate this, the apparent location
of the target is found. The apparent location is the
sum of the true target position and the apparent
position jitter due to atmospheric distortion of the
IR wavefront. This measurement array is presented to
the enhanced correlator. It generates a template from
the 10 previous measurement frames and determines
how much the center of intensity of the current
measurement frame has moved from the center of
intensity of the template. It is these offsets in the x
(azimuth) and y (elevation) directions in the FLIR
detector plane that are the measurements input to the
MMAE algorithm.

A complete description of these is presented in [14].
Only pertinent aspects are presented here.
The target is maneuvering in an Earth-centered/

Earth-fixed (I or “inertial”) frame whose origin is

defined at the FLIR detector. The trajectories used
in the investigation are created as a position vector
in this inertial frame. Several trajectories are used.
The airborne target stays at a constant altitude (zI
direction) with constant velocity in the negative xI
direction throughout the 6 s simulation. The motion
dynamics are introduced in the yI direction via:

vIy(t) = A! cos(!t+Á)+B m/s: (5)

The amplitude A of the cosine wave would vary,
limited by the maximum acceleration the manned
target would pull. This acceleration due to the
sinusoidal velocity can also be written

aIy(t) = A!
2 sin(!t+Á) m/s2: (6)

The bias B and phase Á variables are used in more
elaborate trajectory construction; for example, creating
a target pulling a jinking maneuver in the velocity
domain so that it will not have discontinuities in
acceleration [14]. This velocity vector is projected
onto a two-dimensional position vector in the detector
plane, (xD and yD).
The image of the target in the detector frame will

undergo apparent motion due to the IR wavefront
propagating through the atmosphere. The model used
for this was developed by The Analytical Sciences
Corporation [19] and is discussed in [11, p. 10].
The mathematical model for atmospheric jitter is a
three-state linear shaping filter driven by unit-strength
zero-mean white Gaussian noise. The transfer function
is

yta
wta

=
Kab2

(s+ a)(s+ b)2
: (7)

The poles and other important parameters are

a= 14:14 rad/s

b = 659:5 rad/s

K = 0:382109544¾ta

¾ta = 0:447:

The variable, ¾ta, is the standard deviation of
the output yta. The subscript ta refers to the true
atmospheric model. Mercier calculated the gain K
[11, p. 76]. The jitter effect is assumed independent
of the direction of interest in the detector plane, so the
state-space model is developed independently in each
xD and yD direction.

IV. ELEMENTAL FILTER DESIGN

Models are developed to describe the atmospheric
jitter and the target acceleration process. From
these models, the appropriate matrices for the KF
equations are generated. The models are developed
in the continuous-time domain, then the equivalent
discrete-time version is found [14].
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The atmospheric jitter for the filter equations is
modeled as a stationary first-order Gauss-Markov
process. This is the output of a first-order lag driven
by white Gaussian noise of strength q [7, p. 184]. The
differential equation for the first-order lag model is
_x(t) = (¡1=T)x(t) +w(t) with noise described with
Efw(t)g= 0 and Efw(t)w(t+ ¿)g= q±(¿) where
q= 2¾2=T. The correlation time is T and the mean
squared value of the output is ¾2. The appropriate
values are Tfa = 0:0707 s and ¾

2
fa = 0:2 pixels

2 in
each direction. The subscript fa denotes the filter
atmospheric model. The jitter is created in the truth
model with three states. In the interest of keeping
the number of states down, the filter tracks only the
dominant single pole at 1=Tfa or 14.14 rad/s.
Two kinds of acceleration models are developed.

The acceleration can be modeled as a first-order
Gauss-Markov process, leading to three filter states
for each axis in the detector plane:

_p(t) = v(t)

_v(t) = a(t)

_a(t) = (¡1=T)a(t) +w(t)
(8)

where the noise is zero-mean with strength of q=
2¾2=T. The variables, p, v, and a are position, velocity,
and acceleration, respectively. The values for Tfm
and ¾2fm are selected for each elemental filter. The
subscript fm denotes the filter model of actual target
motion (versus apparent motion due to atmospheric
jitter, with subscript a). This acceleration model has
been implemented in this particular tracker many
times before [5, 6, 18, 20].
The target acceleration process can alternately be

modeled as a second-order Gauss-Markov process by
driving a second order linear system with unit-strength
zero-mean white noise [7, p. 185]. Four states for each
direction are required to model the motion rather that
the three of the previous model. A two-pole transfer
function is selected that will model an acceleration
process with an appropriate PSD selected by the
researcher. This transfer function can have two real
poles or a complex pair. Matrix-X [2] is used to
find a corresponding state space form, and desired
steady state conditions are established. The two-state
acceleration model is augmented with the position and
velocity model and the model is applied to both axes
yielding the eight-state state vector:

xfm =

2666666666666664

pfmx

pfmy

vfmx

vfmy

bfmx

bfmy

cfmx

cfmy

3777777777777775
(9)

where the variables b and c are the two states that
together generate a scalar acceleration output.
Augmentation with the two atmospheric states is
then accomplished so that the proper Hf matrix is
[I2£2 02£6 I2£2].

V. SIMULATION PRODUCTS

Two kinds of MMAEs are of interest here. One
has elemental KFs based on first-order Gauss-Markov
models for acceleration. The second MMAE has a
mix of elemental filters, some based on first-order
Gauss-Markov acceleration models, and some based
on second-order Gauss-Markov acceleration models.
The performance of the MMAEs is evaluated by

calculating the statistics of the errors committed by
the filter in estimating the states. The error is the
estimate from the MMAE minus the state from the
truth model. For this investigation, a Monte Carlo
study is accomplished to get these values. In a Monte
Carlo study, many samples of the error are simulated
and the sample statistics are computed [7, p. 329]. An
infinite number of samples are required to get the true
statistics of the stochastic process model. However,
usually a smaller number of samples will converge
to a value that is close to the true value. Previous
investigations [11, p. 43; 3, p. 28; 1, pp. 26, 33] have
shown acceptable convergence in 10 runs.
The mean error is calculated as [17, p. V-3]:

E(ti) = 1=N
NX
n=1

[xt(ti)¡ x̂f(ti)] = 1=N
NX
n=1

e(ti)

(10)

with the variance given by

¾2(ti) =
1

N ¡ 1
NX
n=1

e2(ti)¡
N

N ¡ 1E
2
(ti) (11)

where N is 10. The mean error is E(ti) while the error
for one run of the Monte Carlo study at one time
ti, is e(ti). Possible values of the generic true and
filter-computed variables xt and xf are the position
of the target (denoted px and py) and apparent
position of the centroid (denoted yx and yy) in the
detector plane, i.e., the sum of target position states
and jitter position states. Error statistics are kept at
each t¡i and t

+
i and for each of the x and y directions

in the detector plane. The statistics are evaluated in
two forms, a plot of the data versus ti or a temporal
average from 0.5 s to the end of the run. The average
is started at a half second so the initial transients do
not affect the averages.
Also available from each Monte Carlo study

is information on the magnitude of rTk (ti)rk(ti),
rTk (ti)A

¡1
k (ti)rk(ti), the leading coefficient of the pk
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Fig. 3. PSD plot of real-pole MMAE.

calculation, and the time history of the pk calculation.
Recall that the relative magnitudes of first three
terms determine which elemental filter will have the
largest pk assigned. This probability calculation is one
of several characteristics of the MMAE algorithm
being investigated to determine how best to help the
MMAE select the correct elemental filter for tracking
a particular target. To aid this investigation, these
terms are evaluated separately.

VI. PERFORMANCE EVALUATION

Manned aircraft will show a range of frequency
content for acceleration. A cargo plane traveling
straight and level will have an acceleration that shows
power in a PSD below a cutoff of 0.25 rad/s (Tfm =
4 s). An air superiority craft pulling evasive maneuvers
can show power at frequencies greater than a cutoff
of 1.3 to 1.7 radians per second. Manned craft should
show no power content above a frequency cutoff of
about 2.5 rad/s [10]. This readily translates to three
elemental filters. One is based on an acceleration
model that is a low-pass filter with cutoff at 0.25 rad/s.
It is referred to as the “benign” filter. This is the
same benign filter used by previous investigations [18,
p. 69; 5, p. 67]. The second, called the “intermediate”
filter, is centered between 0.25 and 0.8 rad/s. The last,
the “harsh” filter, is centered between about 0.6 and
2.5 rad/s. The second-order filters are designed within
these rough limits.
In order to tune each of these three filters created

with an acceleration model having a particular
frequency range in mind, a trajectory showing an
acceleration with that frequency, as described in (5),
is used. These three trajectories are called “basic” to
the particular MMAE because they are the frequencies
about which the PSDs of the elemental filter models
are centered. A tuned value of q is selected for each
elemental filter by tracking each trajectory with the
appropriate elemental filter only (not the MMAE).

The initial second-order filter investigated was
the filter based on an acceleration model with two
real poles. The transfer function G(s) describing
the acceleration model that is the basis for the
intermediate filter is

G(s) =
1:715(s+0:1768)

(s+1:4305)(s+0:3531)
: (12)

The transfer function describing the acceleration
model that was the basis for the harsh filter is

G(s) =
5:2(s+1:0111)

(s+2:0222)(s+5)
: (13)

The result of this investigation was similar to using
three first-order elemental filters in the MMAE. This
was attributed to the similarities in the PSD plots
at the low frequency end. That is, the PSD of the
model for the harsh filter encompasses the benign and
intermediate model PSDs, as shown in Fig. 3.
The potential for overlap is inherent in a real-pole

model when the dynamics driving noise strength
is as high as was deemed necessary for tuning of
each elemental filter. Therefore, a notch filter was
designed. The notch filter is based on an acceleration
represented as the output of a white-noise-driven
linear model with the transfer function:

G(s) =
ks

s2 +2³!ts+!2t
(14)

where ³ was 0.2 and ! for the intermediate and harsh
filters were 0.62 and 2.8 rad/s, respectively. The small ³
gave minimal overlap of the PSD plots for the benign
and intermediate filters. The !s selected centerd the
notch filters at the same frequencies as the real pole
filters were centered. These were tuned in the manner
described above.
The MMAE thus designed was allowed to track

each basic trajectory. However, the probability plots
showed almost identical traces for the benign and
intermediate trajectories. The benign and intermediate
filter models were not different enough from each
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Fig. 4. PSD plot of MMAE with notch elemental filter models.

Fig. 5. Target position; detector plane; jinking trajectory.

other to track their basic trajectories. Therefore, a new
intermediate filter was chosen based on an acceleration
model that shows a peak at ! = 1:32 rad/s in a PSD
plot. The MMAE with this new elemental filter was
designated “¡2.” The peak fell between the peaks for
the models at 0.62 and 2.8 rad/s. The filter was tuned
for a trajectory with ! = 1:32 rad/s and an amplitude
of 9 m. A plot of the tuned MMAE-2 is shown in
Fig. 4.
This “notch MMAE-2” was allowed to track targets

undergoing accelerations with frequencies of 0.01, 1.32,
and 2.8 rad/s. The probability plots are in Fig. 7; to be
discussed more fully later. This notch filter is used for
the probability calculation analysis.
As a result of these efforts, we finally see a proper

difference in elemental filter selection when the
MMAE is tracking the benign and the intermediate
trajectories. The harsh filter remains uncontested in
tracking the harsh trajectory. The benign filter attains
the highest probability on the benign trajectory after
about 0.6 s. There is a lot of switching between the
benign and intermediate filters for the intermediate
trajectory. The times of switching, 0.6, 1.1, 1.7, and
2.5 s are not related to anything obvious in the

trajectory acceleration. The average rTk (ti)rk(ti) is
smaller for the intermediate filter but the leading
coefficient in the probability calculation gives the
benign filter an advantage due to its smaller magnitude
dynamics driving noise strength. The y position rms
error plot showed ripples due to filter switching. There
are trajectory trends remaining in the y position error
plots for both the intermediate and harsh trajectories,
still of a small magnitude, less than half a pixel for
the t+i plots. This is due to less-than-optimal state
estimation by the filter.
The trajectories considered thus far were tied to

the elemental filters in the MMAE as we investigate
filter selection. In other words, the simulated “real
world” was one of the three nominal trajectories for
all 6 s of the simulation. A trajectory was created
to simulate a target in an evasive maneuver by
concatenating 2 s of each nominal trajectory type
together. As with the basic trajectories used above, the
motion dynamics were added only to the y direction.
The y position in the detector plane for this jinking
motion is shown in the plot in Fig. 5. In the inertial
frame the target experiences about 7.3 gs acceleration
in the dive.
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Fig. 6. Probability plots; notch MMAE-2; jinking trajectory. Benign filter, solid line; intermediate filter, dashed line; harsh filter, dotted
line.

The “notch MMAE-2” was allowed to track
this trajectory, giving the probability plot of Fig. 6.
The first part of the trajectory was benign. Thus the
probability plots match pretty well the corresponding
probability plots for the benign trajectory in Fig. 7.
The diving part of the trajectory was a piece of the
harsh trajectory so it is expected that the harsh filter
would be selected for that part. As seen in Fig. 5, the
harsh trajectory was inserted at 2 s but care was taken
by using the phase and bias variables in the velocity
equation of (6) to ensure no discontinuities in the
acceleration or jerk domains. Therefore, the target
slowly fell into the dive and filter selection was delayed
for about 0.3 s, as seen in Fig. 6. At 4 s, the trajectory
with ! = 0:62 rad/s was inserted. This is evident in the
trajectory plot in Fig. 5, but filter selection did not
begin to change until past 5 s. The benign filter was
being selected when the simulation ended.

A. Examining the Hypothesis Probability Calculation

As discussed in Section II, there are alternatives in
the way the hypothesis probability is calculated. The
probability calculation is given in (2). It is proposed
to set Ak(ti) equal to I2£2 in the exponential, in the
leading coefficient, or in both. This leads to four cases.

1) Use the traditional calculation as in (2) and (3)
as has been done thus far. At issue here is that, when
the residuals of each of the elemental filters are such
that the exponentials in (2) are of the same magnitude,
the leading coefficient causes the MMAE to select
the “more benign” filter because it tends to have the

smaller dynamics driving noise and thus the smaller
jAk(ti)j. However, the A¡1k (ti) in the exponential causes
the calculation to favor the “harsher” elemental filter
because it has the greater dynamics driving noise. This
investigation will help in deciding if removing one or
both of the Ak(ti)s will aid in tracking.
2) Leave the leading coefficient as it is in (2),

but set Ak(ti) equal to I2£2 in the exponential. This
should enhance the ability to return high probability
to the benign elemental filter when a target stops
maneuvering and returns to a benign flight trajectory.
3) Remove the leading coefficient. Setting Ak(ti) to

I2£2 in the leading coefficient would leave a constant
multiplier that is the same for all elemental filters. The
multiplier is set to one which will allow the exponential
term to select the “correct” elemental filter when the
residuals from each are about the same magnitude.
The MMAE should favor the “harsh” filter.
4) Remove the leading coefficient and set Ak(ti)

equal to I2£2 in the exponential. This is the maximum
entropy application discussed in Section II. Only
residual magnitudes (absolute magnitudes, not scaled
relative to anticipated rms residual size) will determine
filter selection.

Each of these probability calculations is referenced
in the sequel by case number, as given above.
The notch MMAE-2 is allowed to track its basic

trajectories with each of the four hypothesis probability
calculations, resulting in the probability plots of
Figs. 7—10. The probability plot for Case 2 in Fig. 8
shows the benign filter selected more for the benign
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Fig. 7. Probability plots; notch MMAE-2; basic trajectories. Benign filter, solid line; intermediate filter, dashed line; harsh filter, dotted
line.

and intermediate trajectories. This is expected because
the magnitude of the residuals, rTk (ti)rk(ti), in the
exponential is about the same whether tracked by
the benign or intermediate filters. The determining
factor will then be the leading coefficient. The leading

coefficient is greater for the filter with the weakest
dynamics driving noise. The harsh trajectory is tracked
by the harsh filter because, by far, it gives the smallest
magnitude of residuals. The error plot shows an
increased magnitude for the first 0.5 s because of the
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Fig. 8. Probability plots; notch MMAE-2, Case 2; basic trajectories. Benign filter, solid line; intermediate filter, dashed line; harsh filter,
dotted line.

nontrivial (and inappropriate) contribution of the
benign filter.
The probability plots of the study of Case 3

in Fig. 9 shows the harsh filter tracking all the
trajectories. This is expected since the leading

coefficient is removed. The leading coefficient
tends to be smallest for the harshest filter while the
magnitude of the rTk (ti)A

¡1
k (ti)rk(ti) that remains in

the exponential is smallest for the harsh filter. This
makes the probability the largest for the filter with

160 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 31, NO. 1 JANUARY 1995



Fig. 9. Probability plots; notch MMAE-2; Case 3; basic trajectories. Benign filter, solid line; intermediate filter, dashed line; harsh filter,
dotted line.

the greater dynamics driving noise strength when the
residuals are not very different between elemental
filters. Because the harsh filter does all the tracking,
the standard deviations of the errors are greater than
for the MMAE for Case 1.

The probability plots for Case 4 in Fig. 10 look
much like the plots for Case 1 except with a much
slower response. The benign and intermediate
filters fight for both the benign and intermediate
trajectories.

WHEATON & MAYBECK: SECOND-ORDER ACCELERATION MODELS FOR AN MMAE TARGET TRACKER 161



Fig. 10. Probability plots; notch MMAE-2; Case 4; basic trajectories. Benign filter, solid line; intermediate filter, dashed line; harsh filter,
dotted line.

Given these probability plots and these nonvarying
trajectories, Case 2 or 4 would be acceptable. There
is less switching, the harsh filter does track the harsh
trajectory (the hardest job), and either the benign
or intermediate filters (or both) show adequate

performance tracking either the benign or intermediate
trajectories. The slow response time that makes these
plots look so smooth would make these probability
computation options unacceptable in tracking an
evading target that exhibits a range of trajectory
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Fig. 11. Probability plots; notch MMAE-2; Case varied; jinking trajectories. Benign filter, solid line; intermediate filter, dashed line;

harsh filter, dotted line.

characteristics in a short time period. Thus, Case 1
would be preferred.
The notch MMAE-2 is allowed to track the jinking

trajectory using Cases 2, 3, and 4. The probability plots
are in Fig. 11. Recall, the probability plot for the notch

MMAE-2 for Case 1 tracking the jinking trajectory is
in Fig. 6.
For Case 2, the probability plot looks very similar

to the probability plot for Case 1, except that the
switch from the benign to harsh filter after 2 s is
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TABLE I
Average Position Errors for First-Order (FO) and Notch (N2) MMAEs. Cases 1 and 4

delayed by almost 0.3 s, as is the switch from harsh
to benign after 5 s. The plot does show the desired
improvement in removing high probability from the
harsh elemental filter from t= 4:0 s on, but at the
expense of the intermediate one contributing to the
MMAE estimate during t= 2:6 to 3.6 s. The Case
3 option causes the MMAE to select only the harsh
filter. For Case 4, the switch after 2 s is delayed and
the one after 5 s did not even take place. Using this
option appears to disable the MMAE and it cannot
make a decision, even a wrong one, quickly. Given
these responses, only the Case 1 option is acceptable.

B. MMAE Based on First-Order Models

Since previous research has used first-order
acceleration models, a comparison must be made
to determine which MMAE tracks better, one with
all elemental filters based on first-order acceleration
models or the MMAEs with some of the elemental
filters based on second-order models. One “first-order”
MMAE is designed. The elemental filters have the
correlation times of 4, 0.5, and 0.125 s for the benign,
intermediate, and harsh filters, respectively. These
values place the break frequency for the intermediate
filter between the peaks for the intermediate and harsh
notch models. The break frequency for the harsh filter
is slightly above the peak of the harsh notch model.
The lower bound for the probability calculation is
held at 0.001. The MMAE is used to track the basic
trajectories, those with !s of 0.01, 1.32, and 2.8 rad/s,
and the jinking trajectory. The PSD plot for these
acceleration models is that presented in Fig. 1. Only
the probability calculation options 1 and 4 are used
(as described in Section VI-A) while tracking the basic
trajectories and the jinking maneuver.
The probability plots for the first-order MMAE

are almost identical to that of the notch MMAE-2 for
either probability calculation option and any trajectory
and so are not presented. There is no difference in

the mean position error magnitudes relative to the
magnitude of the standard deviations over the 10
Monte Carlo runs between the two kinds of MMAE or
the two probability calculation options. Table I shows
a compilation of the average position errors for the
four Monte Carlo studies. The key comparison is for
probability calculation Case 1 since that option yields
an MMAE that gives the best performance with regard
to filter selection. For the intermediate trajectory,
the notch MMAE-2 has smaller mean errors. For the
harsh trajectory, the first-order MMAE has smaller
mean errors but slightly larger standard deviations.
Neither the first-order MMAE nor the notch MMAE-2
outperforms the other based on the criteria used for
the evaluation.

C. Proximity Check for Filters

There is some difficulty defining an intermediate
filter that will allow the MMAE to select the “correct”
elemental filter for a particular trajectory. The
elemental filters were initially defined by what is
known about how major classes of manned aircraft
perform. This proved inappropriate despite the various
modifications applied to the MMAE in this research.
These difficulties motivate a proximity check to
determine how practically the parameter space could
be divided for a three-filter MMAE. The issue is, how
much acceleration PSD overlap is permissible before
elemental filter selection becomes inappropriate or
ambiguous? In other words, how much separation
between notched PSD regions should be maintained
in order to generate unambiguous and correct filter
selections?
The first difficulty encountered was the MMAE

selecting the benign filter to track a simulated
trajectory that should have yielded high probability
weight for the intermediate notch filter. This benign
filter is needed in the MMAE because any airborne
target is capable of presenting a trajectory with
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acceleration power in the low frequency range, as
in a level flyby. Therefore, the benign filter will be
held constant and the intermediate notch filter is
moved to higher frequencies. Two more intermediate
filters are defined, resulting in a MMAE-3 with !i3 =
1:92 rad/s and a MMAE-4 has !i4 = 2:32 rad/s. For a
performance check, only the benign and intermediate
filters are allowed to contribute to the MMAE while
it tracks a target with the respective newly defined
intermediate trajectory. For both the notch MMAE-3
and MMAE-4, the benign filter probablity fell to 0.2
within the first half second and only the intermediate
filter contributed to the estimate thereafter.
An obvious remaining point to investigate is,

how “close” can the intermediate and harsh notch
filter models get in their PSD representation and still
track the intermediate and harsh trajectories? To this
end, MMAEs 2, 3, and 4 are allowed to track their
respective intermediate trajectory, the harsh trajectory,
and a sinusoidal trajectory with an ! between the PSD
representation of the filter models, called the middle
trajectory.
In both the notch MMAE-2 and the notch

MMAE-3, the harsh filter is selected to track the
harsh trajectory and not the intermediate trajectory.
In the notch MMAE-2, the middle trajectory is
tracked by both notch elemental filters; neither is more
“correct”. In contrast, the notch MMAE-3 and the
notch MMAE-4 each select the intermediate filter
to track their respective middle trajectories and the
latter MMAE selects the intermediate filter to track
even the harsh trajectory. This latter MMAE has
the intermediate and harsh elemental filter models
designed too closely in the parameter space. Notch
MMAE-3 gives better performance for filter selection.

VII. CONCLUSIONS

The parameter space is suitably discretized with
the notch MMAE-2 or the notch MMAE-3. These are
three-elemental-filter MMAEs, each with a benign
filter based on a first-order acceleration model (T =
4 s) and a harsh filter based on a notch acceleration
model (! = 2:8 rad/s). The intermediate filter is
based on a notch model with ! = 1:32 rad/s for notch
MMAE-2 or ! = 1:92 rad/s for notch MMAE-3. In
comparison, the first-order MMAE is designed with
break frequencies (T is 4, 0.5, and 0.125 s for the three
elemental filters) close to the roll-off frequencies of
the notch MMAE-2 and the resulting models also
represent a suitable discretization. The suitability of
the discretization can be corrupted by improper tuning.
The probability calculation option that gives

acceptable results with regard to both filter selection
and error magnitudes is 1 (the “basic” hypothesis
probability calculation). The maximum entropy
option allows the MMAE to take too long to select
an elemental filter clearly. The errors increase for

this option with the harsher trajectories because the
more benign filters are allowed to affect the MMAE
estimate too much.
The MMAE based on the first-order acceleration

models performs basically the same as the MMAE
based on the second-order models. The standard
deviation of the position errors are somewhat smaller
for the notch MMAE but the magnitudes of the mean
errors are about the same for each MMAE over all the
trajectories tested.
The greatest motivation for trying the second-order

filter models (and looking at the acceleration models
in the frequency domain of the PSD plot) was to get
an MMAE that would assign greater probability to a
filter based on a less harsh model more quickly after
a target stops maneuvering. This happened with Case
1 in Fig. 6 and somewhat with Case 2 in Fig. 11. The
first-order MMAE appears to do this as well as the
second-order MMAE, while still having reasonable
error magnitudes and an acceptable probability time
history through the whole simulation. Since it entails
lower computational loading, the first-order MMAE
would be preferable.
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