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Short Paper

Assemblability Based on Maximum Likelihood
Configuration of Tolerances

Arthur C. Sanderson

Abstract—An assembly is defined by a configuration of parts of known
geometries subject to tolerances in the pose, dimensions, and mating
relations among part features. Using a tolerance model based on matrix
transforms and Gaussian models of geometric variations [1], the pose
and dimensional tolerance models are considered asa priori models
of the assembly with nominal and variational components for both
position and orientation. The mating relations are regarded as linear
relational constraints, also with nominal and variational components.
With this formulation, estimation of the configuration of parts may
be posed as a maximum likelihood problem and solved by a Kalman
filter algorithm. The resulting maximum likelihood configuration of the
assembly may be used to evaluate the required deviation from nominal
and the assemblabilityas defined by the maximum likelihood clearance
from constraints. In addition, application of the technique to intermediate
subassemblies may be used to evaluate assemblability of specific steps and
discriminate among alternative assembly sequence plans.

I. INTRODUCTION

The design of products for assembly requires careful consideration
of many factors which influence the functionality and manufactura-
bility. While stability and relative precision of part positions are
often essential for the functional performance of assemblies, these
same requirements may make the product difficult to manufacture.
At the same time, dimensional clearance among parts is essential
to create paths for assembly operations, fine motion strategies may
utilize contact between parts to guide the assembly motions, and often
the addition of fixtures and supports may be necessary to maintain
stable intermediate configurations of the parts during assembly. The
planning of part designs, subassembly groupings, and assembly
sequencing [2] is critical to efficient and reliable manufacturing
processes.

In practice, part geometries are not manufactured precisely and
there is also uncertainty in each positioning operation. These un-
certainties may be represented by tolerance specifications on the
parts and the assembly relations. Reasoning about these tolerance
uncertainties is important to the understanding of the difficulty of the
assembly and may be critical to the determination of a sequence which
is feasible. A given sequence may cause the tolerances among parts
to accumulate (“propagate”) as the assembly operations proceed, and
the accumulated tolerances may result in an infeasible operation for
some percentage of the assemblies which are produced. Tolerance is
a representation of a stochastic geometry of the parts and positions,
so the resulting analysis and reasoning is inherently probabilistic.
The question is: Even if an assembly sequence is feasible for the
nominalgeometry of the parts, what is theprobability that, in practice,
tolerances may accumulate to make the resulting assembly infeasible?
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Are there some assembly sequences which will increase, or guarantee,
the probability of successful assembly? How should the design of
the parts, or the tolerancing of the parts be changed to improve the
assemblability? When is it cost-effective to loosen the tolerance on
parts in order to improve the reliability of manufacturing?

The representation of tolerance information has been key to the
analysis of this problem. The basic engineering standard for spec-
ifying tolerance relations is given by the ANSI Y14.5M-1982 [3]
standard, and these tolerances are applied to parts and standard
sub-part geometric features. In standard practice, dimensions and
positions are bounded by minimum and maximum values, and
these bounds are used to define the allowable variations among the
features. While form tolerances, such as variation in surface flatness,
are also of practical interest, they will not be discussed in this
paper.

Two classes of tolerance representation have been used for as-
sembly analysis. First, the direct interpretation of standard tolerance
specification suggests the use of inequality constraints and bounded
intervals. Fleming [4] analyzed the extremal configurations associated
with inequality constraints, and used symbolic reasoning to solve for
bounds. Takahashiet al. [5] analyzed sets of vertex-face contacts and
successively added contacts to find feasible configurations. Turner
[6]–[8] formulated the problem as a mathematical linear programming
problem and solved for configurations which satisfy the set of
linear inequalities associated with tolerances on three-dimensional
polyhedral models. In practice, this approach requires an ordering
specification to define chains of tolerance relations, and this ordering
of relations has been developed through manual analysis, or must be
specified by the designer. Inuiet al. [9], [10] have used bounding
polyhedra in the configuration space and sought to optimize an
objective function with the tolerance bounds.

A second approach to tolerance analysis is based on the repre-
sentation of geometric variations by probability distributions in the
kinematic configuration space of the parts. Whitney and Gilbert [1]
used Monte Carlo simulation techniques to choose optimal Gaussian
approximations to bounded distributions. They showed that matrix
transformations representing part and feature relations could be used
to propagate variational models through the assembly model. The
approach of Lee and Yi [11] is based on this representation and
evaluates the assemblability of two subassemblies with respect to the
pose tolerance and clearance of mating features among parts. They
use a bounding ellipse related to the Gaussian model, and examine
discretized samples of the bounding points of the ellipse to check the
existence of sufficient clearance to compensate for the pose tolerance.
The resulting characterization of the uncertainties is based on a type
of Monte Carlo simulation of the distributions and requires extensive
computation time for realistic examples.

The first approach, using bounded intervals, is most consistent
with the engineering standard representation, and yields hard bounds
on assemblability. However, the computational complexity grows
quickly with the number of parts, and is particularly difficult if
orientation is included. The second approach, the Gaussian model,
takes advantage of the computational properties of the distribution
and simplifies the serial propagation of tolerances. In addition, the
Gaussian model may capture many actual physical characteristics of
tolerances which the standard bounds do not.
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Fig. 1. Representation of assembly relations.

Fig. 2. Three part assembly with principal mating constraints in the
x-direction.

In this paper, the Gaussian approximation to tolerance distributions
[1] is used as a basis for maximum likelihood estimation of a
parts configuration which satisfies bothprior distributions defined by
pose and dimensional tolerances and mating constraints defined by
linear feature relations. The probability distribution of the resulting
maximum likelihood assembly configuration(MLAC) [12] provides a
basis for evaluating the consistency of the tolerance specifications
and the resulting assemblability of the parts. The intent of this
approach is to provide a relative assemblability, rather than an
absolute criterion for assemblability. The relation of the MLAC to the
nominal configuration and clearances may be used to rank alternative
designs and sequences. In addition, the comparison of the MLAC for
two subassemblies may be used directly to assess the feasibility of an
individual assembly step in a sequence, and therefore may be used to
evaluate the sequence itself. Because the Kalman filter estimation
is effectively a closed-form analytical solution to the estimation
problem, the computational requirements of this approach are far less
than in a Monte Carlo approach [11].

In Section II of this paper, we define the tolerance representation
for an assembly. In Section III, we describe the MLAC algorithm
for estimate of the maximum likelihood assembly configuration. In
Section IV, we describe results of four examples and their evaluation
for assemblability. Section V presents conclusions.

II. TOLERANCE REPRESENTATION

In this paper, an assembly,A, is represented as a set of parts,
fPig, configured in a global coordinate frame,FG, with origin OG.
Each part,Pi, has a local coordinate frame,Fi, with origin, Oi, as
shown in Fig. 1, which will be used to define the position of the part
in the global frame. Each part,Pi, has a set of geometric features,
fFijg, whereFij designates thejth feature on partPi. Each feature,
Fij , uniquely defines a local geometry (e.g., face, hole, tab etc.)
and will usually be chosen from a library of available features with
parameterized geometries (e.g., diameter of the hole). Each feature,
Fij , therefore also has a local feature coordinate frame,Fij , which

Fig. 3. Three part assembly with added constraints.

will be used to define the position of the feature in the part coordinate
frame.

Assuming that all the parts,Pi, are rigid, then we can define a con-
figuration,qi, of Pi as a specification (for example, a parameterized
homogeneous transformation,T [13]) of the position and orientation
of part frameFi with respect to global frameFG. The complete
assembly,A, is then specified by the configuration of all the parts
in FG, whereQ = (q1; q2; � � � ; qN) is the parameter vector of the
transformation. Each feature,Fij , of a part,Pi, is specified by its
parameterized configuration,rij , in the local part coordinate frame,
Fij . Given a nominal configuration,Q, the linearized configuration
of the feature,Fij , can be expressed inFG

xin = Tfqi; rijg: (1)

The resulting set of all nominal feature configurations in the global co-
ordinate frame isX = (x11; x12; � � � ; x21; x22; � � � ; xN1; xN2; � � �).

In practice, designers usually do not specify assembly designs in
terms of independent nominal parts positions, but rather in terms of
relations between features from different parts. For example, a mating
contact between surfaces, or between a peg and hole, are common
constraints which define the final configuration of the assembly.
In this work, we will assume that such relative constraints can
be expressed aslinear functional constraints on the global feature
positions,X

Z = HX (2)

where Z = (z1; z2; � � � zM) is a vector of constraint parameters
(e.g., clearance values) andH is a matrix defining the feature
constraint relations. For example, a simple clearance constraint in
the x-direction between face 1 ofP2 and face 3 of Part 4 might be
written

z1x = [1 � 1]
x21

x43
: (3)

Such linear relations on the parameters ofX can account for most of
the common mating, clearance, and alignment constraints in common
use for specification of assemblies. If parts placements and geometries
were precise, then the nominal specification of the assembly,Q,
would always be consistent with the relational specification given
by (2). As described below, this is not the case in practice, though
for purposes of the analysis here we will assume that the assembly
constraints have been provided by the designer and define a unique
nominal configuration,QN .

Parts are not manufactured exactly to their nominal geometries,
and therefore the feature configurations described byrij will vary
from their nominal values

rij = rij + uij (4)

whereuij is a random vector of noise variation terms. For the analysis
here, we will assume thatuij is described by a Gaussian distributed
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random vector with mean zero and covarianceCij . We will also
often assume that the random variations in feature geometries are
independent among features, though this is not strictly necessary to
the formulation.r0

ij may be thought of as a parts feature tolerance
model, and the Gaussian assumption used for the representation of
part feature geometries adopts the model of Whitney and Gilbert [1].

The placement of parts in the assembly process is also not precise,
and we adopt a similar Gaussian model for the variations in part
positions defined by

qi = qi + vi (5)

wherevi is a random vector of noise variation terms, also with zero
mean and covarianceCvi.

The combination of the random models of part and placement
geometries provides a representation of the random configuration of
parts features in the global coordinate frame

xij = Tfqi + vi; rij + uijg (6)

= T
0fqi; rij ; wijg (7)

wherewij is also a Gaussian random vector defining the random
component of the convolution of the two distributions and having
zero mean and covarianceCwij . The set of random vectorsX 0 =
(x0

11; x
0

12; � � � ; x
0

N1; � � �)

X = T
0fQ;R;Wg (8)

will be considered thea priori model for the assembly configuration,
since it incorporates placement and parts variations, but does not
impose relational constraints.

The second part of the formulation is based on a similar stochastic
model for the constraint relations. Each relative constraint parameter,
zkl, may also be specified with some tolerance,dkl. The resulting
constraint equations take the form

Z = HX +D (9)

whereD = (� � � ; dkl; � � �) is a random vector described by a Gaussian
distribution with mean zero and covarianceCD. It should be noted
that these constraint tolerances are usually represented as uniform
or skewed and bounded distributions, and therefore it is not obvious
that a Gaussian model will be meaningful. However, as described in
[1], they still provide a useful description, and in particular the goal
of this work is to formulate arelative assemblability measure, rather
than an absolute model. We will again assume that the constraint
tolerances are independent, though that is not strictly necessary.

III. M AXIMUM LIKELIHOOD ASSEMBLY CONFIGURATION

Given a stochastic model of the assembly tolerances and relations,
we can address the question of assemblability in terms of the
probability that parts will fit together as specified. In this formulation,
the model developed in Section II and summarized in (8) and (9),
provides the basis to estimate theexpectedconfiguration of the parts
and the likelyvariance in the configuration of the parts given all
the tolerance information. The variance or range of configurations
within which the assembly is probably feasible may be interpreted as
a criterion for assemblability.

From (8), we considerX 0 as ana priori model of the configuration
of the assembly, including both position and orientation. The relations
among parts described by (9) impose a set of constraints on the final
configuration, and the actual assembly and its feasible variations will
be described by satisfaction of both equations. In this section, we
wish to estimate the configurationX which minimizes the mean
square error

J = EfX̂T
X̂g (10)

whereE is the expected value. The general form of (8)–(10) define a
problem in mean-square estimation of a random variable with a linear
measurement model with statistical independence of the process and
measurement noise. In this case, the constraint vector,Z, takes the
place of a traditional measurement process [14]–[17].

Based on this linear constraint model and Gaussian probability
density functions, the minimum mean-square error estimator is found
to be alinear estimator,X̂, for the assembly configuration,X, and
is given by the following expression [16]:

X̂ = CXH
T
C
�1

D Z (11)

where the covariance of the estimateX is given by

CX̂ = C
�1

X +H
T
C
�1

D H
�1
: (12)

The same estimator could be written in terms of the Kalman gain,K

CX̂ = [I �KH]CX (13)

where

K = CXH
T (HCXH

T + CD)
�1
: (14)

Equations (11) and (12) may be used to compute the estimates ofX

and the covariance estimates for any set ofa priori distributions and
any set of relational constraints on the assembly. GivenN parts in the
assembly, their nominal configuration,QN , and their placement and
parts covariances (tolerances), the computation requires the following
steps.

1) Specify the parts relations,H, which define the assembly,
as well as the constraint parameters,Z, and the constraint
tolerances,Cu.

2) Use (12) to compute the estimate of the covariance matrix,Cx,
for the assembly configuration which is most likely to satisfy
the constraints given the nominal configuration.

3) Use (11) to compute the maximum likelihood estimate of the
assembly configuration,̂X.

4) Integrate (numerically) the resulting Gaussian distribution of
parts configurations with respect to the actual constraint toler-
ance bounds in the configuration space of the assembly. The
resulting integral,PA, is the probability that the maximum
likelihood configuration lies within the specified tolerance
bounds, and may be interpreted as a measure ofassemblability.

5) Examine the probability of individual degrees of freedom of the
distribution relative to their constraint tolerance bounds, and
identify those specific parts and degrees of freedom which are
least likely to be within constraints. These may be interpreted as
a measure of assemblability of the specific parts and identifies
parts and features which may be good candidates for redesign.

6) For any two subassembliesB1; B2 " A, repeat steps (2),
(3). The resultingX̂B1 andX̂B2 are the maximum likelihood
estimates for each of the two subassemblies. For each specific
constraint relation betweenB1 and B2, the probabilities of
meeting tolerance constraints,PB1 and PB2 can be com-
puted, and serve as measures of assemblability for the two
subassemblies. Any set of candidate assembly sequence steps
may be compared in terms of these probabilities, and the
total probability for the sequence may be used to evaluate
alternatives.

IV. EXAMPLES

Based on the formulation of the problem in Section III, several
examples may be used to illustrate this approach. In order to visualize
these tolerances, one-dimensional cases will be emphasized in the
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TABLE I
VARIANCE AND ASSEMBLABILITY FOR THE ASSEMBLY IN FIG. 3

WITH SEQUENCE 1-2-3 FOR INCREASING PARTS TOLERANCES

Fig. 4. Four part assembly example.

TABLE II
ASSEMBLABILITY FOR THE ASSEMBLY SHOWN IN FIG. 4 FOR TWO

DIFFERENT SEQUENCES AND TWO DIFFERENT PARTS TOLERANCES

examples. The analysis applies to arbitrary dimensions including
orientation.

Fig. 2 shows a three-part assembly with principal mating con-
straints in thex-direction. The nominal parts positions,q1; q2; q3,
and geometriesr21; r31 are shown in the figure. The tolerances
are described as bounds on part placementqi and part geometries
rij . These tolerances are modeled by Gaussian distributions with
variances in thex-direction for placement:�21 = �22 = 0.01, and
for parts geometries:�2ij = 0.0025. The problem is formulated as
described in Sections II and III with resulting expressions (omitting
x11 for simplicity)

X = [x12; x21; x22; x31; x32]
T (15)

H =
�1 1 0 0 0
0 0 �1 1 0

(16)

Cx =

�211 0 0 0 0
0 �220 �220 0 0
0 �220 �221 + �220 0 0
0 0 0 �230 �230
0 0 0 �230 �231 + �230

: (17)

The resulting covariance depends on the order of assembly. For se-
quence 1-2-3, the resulting variance�220 = 0.0050 and the probability
of feasible assembly isPA = 1:0, since this sequence is always
feasible. However, the sequence 1-3-2 results in a probabilityPA =
0.5 and�220 = 0:0100 for the cases when assembly is feasible.

Fig. 3 shows a more difficult assembly with an additional constraint
in the x-direction by featureF13. For this case the expressions
become (omittingx11 for simplicity)

X = [x12; x13; x21; x22; x31; x32]
T (18)

H =
�1 0 1 0 0 0
0 0 0 �1 1 0
0 1 0 0 0 �1

: (19)

For this case, the resulting probabilityPA may be calculated for
several possible values of the parts tolerances. Results of these
calculations for this model are shown in Table I. As the parts
tolerance becomes larger, the final assembly configuration tends to
deviate more widely from the nominal and the resulting probability
of feasible assembly decreases.

Fig. 4 shows an example with two degrees of freedom,x and
O. This example is derived from an industrial case study of high-
tolerance connector assemblies for fiber optic cable connectors. The
tolerance on both position and angle of these devices is quite high
due to the requirements for alignment of optical paths. In addition,
the assembly steps are critical to the process in order to enable proper
alignment of both of the parallel paths.

In this case, the clearance on the upper holes is wider than the
clearance on the lower holes,r11 > r41; r12 > r42, so that the order
of assembly becomes important to the assemblability. Table II shows
results of the assemblability analysis for the four obvious assembly
sequences with calculation of the assemblability of the final part for
each case. This result shows that the first sequence, 1-2-3-4 (1-3-2-4),
is less difficult to assemble than 4-2-3-1 (4-3-2-1).

V. CONCLUSION

The formulation of the assemblability problem described in this
paper is an exploration of techniques which would provide a more
efficient and computationally tractable approach to determining the
assemblability of a given design and assembly sequence. The ap-
proach suggests a relative measure based on Gaussian approximations
to actual parts distributions and the use of maximum likelihood as
a means to achieve analytical solutions. The results described here
from relatively simple problems and geometries are promising and
consistent with an intuitive interpretation of the problems. Further
investigations and experiments with more realistic problems and
larger numbers of parts will be necessary to evaluate the practical
feasibility of this approach.
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A High Integrity IMU/GPS Navigation Loop
for Autonomous Land Vehicle Applications

Salah Sukkarieh, Eduardo M. Nebot, and Hugh F. Durrant-Whyte

Abstract—This paper describes the development and implementation
of a high integrity navigation system, based on the combined use of
the Global Positioning System (GPS) and an inertial measurement unit
(IMU), for autonomous land vehicle applications. The paper focuses on
the issue of achieving the integrity required of the navigation loop for use
in autonomous systems. The paper highlights the detection of possible
faults both before and during the fusion process in order to enhance the
integrity of the navigation loop. The implementation of this fault detection
methodology considers both low frequency faults in the IMU caused by
bias in the sensor readings and the misalignment of the unit, and high
frequency faults from the GPS receiver caused by multipath errors. The
implementation, based on a low-cost, strapdown IMU, aided by either
standard or carrier phase GPS technologies, is described. Results of the
fusion process are presented.

Index Terms—Autonomous systems, global positioning system, inertial
measurement unit, Kalman filter, navigation.

I. INTRODUCTION

The commercial development of large autonomous land vehicles in
applications such as open-cast mining, agriculture and cargo handling
requires the corresponding development of high integrity navigation
(localization) systems. Such systems are necessary to provide knowl-
edge of vehicle position and trajectory and subsequently to control the
vehicle along a desired path. The need for integrity in such systems
is paramount: undetected, erroneous, position or trajectory data can
lead to catastrophic failure of the autonomous vehicle.

A growing number of research groups around the world are
developing autonomous land vehicle systems for various applications
(see [2], [4]–[6], and [13] for example). However, few of these works
make explicit the essential need for system integrity that will be
necessary in any future commercial development of this technology.
Further, while many systems use Global Positioning System (GPS)
and inertial technology, there has been no real application to under-
stand, quantify and overcome the issue of failure and integrity in
navigation systems based on these sensor technologies. This paper
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specifically addresses this issue in the context of autonomous land
vehicle applications.

The focus of this paper is on the implementation of fault detection
techniques that increase the integrity of the inertial measurement
unit (IMU)/GPS navigation loop for land vehicle applications. The
implementation processes adopted follows a decentralized data fusion
philosophy and have been developed to ensure modularity. This
ensures that the ability of the loop to detect the occurrence of
faults is not prejudiced by the specific accuracy of the IMU or GPS
sensors employed. This paper begins in Section II by providing the
essential background on IMU and GPS sensor technologies in the
context of sensor faults and the sensors specifically used in this paper.
Section III presents the IMU error model implemented which forms
the basis of the Kalman filter state model. Section IV focuses on
faults, their nature and the means of detection in IMU and GPS
systems. The nature of these faults and the means for detecting them
are described. Section V details the implementation of this system
with respect to the tuning of the filter and the resulting error growth.
Section VI presents the vehicles used to test the loop along with
the effect of the environment on the sensors. Finally, Section VII
provides a series of experimental results that demonstrate the accuracy
and integrity of the resulting system. Conclusions are then provided.

II. SENSORS

The accuracy of the navigation loop is dependent on the accuracy
of the IMU and GPS sensors implemented. The greater the accuracy
of these sensors, the greater the accuracy of the overall navigation
loop. Brief descriptions of IMU and GPS sensors follow. For further
detail on IMU’s refer to [3] and [11]. For GPS refer to [9].

A. IMU

The primary advantage of using an IMU on outdoor land vehicles is
that the acceleration, angular rotation and attitude data is provided at
high update rates. Thus the velocity and position of the vehicle can
also be evaluated. Unlike wheel encoders, an IMU is not affected
by wheel slip, which is encountered by the majority of land vehicle
applications. There are however disadvantages to using an IMU. The
errors caused by bias in the sensor readings accumulate with time
and inaccurate readings are caused by the misalignment of the unit’s
axes with respect to the local navigation frame. These errors will be
discussed in Section IV-A.

The IMU implemented in this work comprises of three accelerom-
eters, three gyros and two pendulum gyros. These sets of sensors
provide the acceleration, rotation rate and tilt of the vehicle respec-
tively, in the body frame, at a frequency of 84 Hz.

B. GPS

The GPS receiver is an external or absolute sensor, thus the
errors in the data it provides are bounded. However, the GPS unit
is a low frequency sensor, thus providing the state information at
low update rates. There are two forms of accurate GPS receiver
technologies implemented in this work: standard differential and
carrier phase differential. High frequency faults arise when the GPS
signals undergo multipath errors. These errors occur when the GPS
signal is reflected off one or more surfaces before it reaches the
receiver antenna. This results in a longer time delay of the signal
and hence affects the fix of the standard differential receiver and
also alters the phase of the signal thus affecting the carrier phase
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