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ABSTRACT 

The denial of effective communications by enemy 
forces during hostile military operations has been a 
primary concern for military commandcrs since the 
inception of radio communications on the battlefield 
before World War 11. Since then, the electromagnetic 
environment has been in a constant state of evolution 
toward more sophisticated jam-resistant and convert forms 
of modulation. For example, exotic modulation techniques 
employing spread spectrum (SS) signaling are routinely 
used by our adversaries to provide their communication 
links an advantage over US and Allied jammers. More 
recently, these same spread spectrum modulation 
techniques are being refined to provide convert, low 
probability-of-intercept (LPI) features to the unintended 
interceptor. The thrust of this paper focuses on 
developments in the theory and algorithms for detection, 
characterization, and exploitation of advanced waveforms 
using new mathematical signal processing tools introduced 
within the past decade. Specifically, quadratic 
time-frequency signal representations, wavelet transforms, 
and cyclostationary signal processing are introduced. This 
overview demonstrates the importance of these advanced 
techniques in a clear and concise manner. Applications 
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and future research activities are described in this 
significant area that is gaining much attention in a variety 
of tcchnical fields. 

INTRODUCTION 

In the early days of electronic warfare an operator 
would tune his radio across the band listening for threat 
signals, likely in the form of voice modulation spoken in a 
foreign language. Upon detection, he would simply place 
his noise jammer at the same carrier frequency with as 
much power as possible. The operator, using his ears and 
brain, comprised the signal processor. Today, it is not 
possible for manual operators to identity threat signals 
efficiently and effectively because of the proliferation of 
complex waveforms used for voice, data, radar, navigation, 
and image transmission. 

the tasks of detection classification, identification, and 
exploitation in a complex environment of high noise 
intcrfcrcnce and multiple signals. Some waveforms are 
intentionally designed to makc the detection process 
ncarly impossible. Such signals are referred to as LPI or 
LPD waveforms, meaning they offer a low probability 
intercept or low probability-of-detection. After the signals 
are detected, the task of classification requires sorting into 
groups having similar characteristics. Parameters such as 
carrier frequency, modulation type, data rate, and time or 
angle-of-arrival are just a few of the fundamental features 
that distinguish one signal from another. Data bases are 
used to configure these signal parameters into arrays that 
are compared to existing knowledge or to establish new 

Modern electronic intercept systems must perform 
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Fig. IA. Stationary 

Fig. 1B. Non-Stationary 

Fig. 1. Stationary and Non-Stationary Signal 

records. The sorting and cataloging of signals leads to the 
process of identification, a critical step when effective 
electronic countermeasures are to be initiated and the 
jamming of ones’ own resources is to be avoided. Finally, 
the problem of effectively and efficiently jamming the 
signal is met. The electronic attacker must select a strategy 
that requires the least amount of resources, but yet offer 
the most effectiveness. Getting feedback regarding the 
success of your jamming is extremely helpful, but not 
always possible. A technique called “look-through’’ allows 
the jammer to observe his effectiveness on the target. This 
may be accomplished by stopping to listen periodically or 
listening through the jamming by using special filters. 
Overall, electronic attack can be thought of as a game and 
many of the strategies of game theory can be applied to 
the overall problem. Each of these initial processes: 
detection, classification, identification, and exploitation 
require advanced signal processing techniques. Many of 
the theoretical signal detection concepts in use today were 
advanced in the 1920’s and 1930’s during the early 
development of radar technology. But, in the last 20 years 
the development of exotic modulation schemes 
implemented through advances in digital signal processing 
gave rise to signals supporting higher information rates, 
greater channel capacity, and improved noise immunity. 
These same techniques are now being used to exploit thesc 
modern waveforms. 

TECHNIQUES 

A good understanding of the advances in signal 
processing technology requires a discussion of the 
fundamentals of Fourier Analysis. From this basic tool, 
more complex processes have evolved. Some of the more 
significant techniques currently being researched for 
Electronic Warfare applications are described below. 

The Fourier Transform 

examination of time and frequency separately through the 
use of the Fourier Transform. The Fourier Transform and 
its digital implementation, the FFT (Fast Fourier 
Transform), allow the decomposition of a signal into 
individual frequency components and their amplitudes. 
However, the major drawback of these tools is that time 
and frequency information cannot be combined to tell how 
frequency content is changing in time. For example, if you 
look at the light coming from the sun above the earth’s 
atmosphere, it is steady state and its frequency content is 
the same over millions of years. If we look at thc sun’s light 
at the surface of the Earth, the frequency content changes 
dramatically during sunrise and sunset. We refer to the 
first case as a stationary event and the second a 
nonstationary event. A stationary signal is independent of 
time, whereas, a non-stationary signal changes over time. 
Figure 1 illustrates stationary and non-stationary signals 
through the use of the Short-Time Fourier Transform 
(STFT). The STFT is also known by the names 
“Windowed Fourier transform” and “spectrogram.” 
Almost all digital signal processing systems use the STFT 
since the environment is typically sampled over some 
time-interval, processed (i.e., FIT), and then output to its 
intended function. This process is continually repeated. 
But what is important to realize is that a only a portion of 
the RF environment is analyzed during a small time 
segment. 

signal in both time and frequency simultaneously. The 
basic idea is to Fourier analyze a small part of the signal 
around the time of interest to determine the frequencies at 
that time. Since the time interval is short compared to the 
whole signal, the process is called taking the short-time 
Fourier transform. In implementing the STFT, researchers 
began to experiment with the window. How large should 
the time interval be? What if we shape the window to give 
more weight to the central points and less weight to the 
end points? Different windows will produce different 
short-time distributions. Unfortunately the estimates of 
the properties of the signal are window dependent making 
interpretation of the results difficult. 

Traditional signal analysis deals with the 

The STFT was the first tool devised for analyzing a 

Time-Frequency Distributions 
The motivation for the study of time-frequency 

distributions is to improve upon the STFT. The basic 
concept is to devise a joint function of time and frequency 
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Fig. 2. Time-Freqeuncy Distribution for Multiple Signals 

that will describe the energy of the signal accurately in 
both time and frequency. The word “distribution” may be 
puzzling to some. One should think of it as a 3D surface 
plot of how the energy is “distributed” in the time 
frequency cells. For example, in Figure 2, the 
time-frequency distribution for several signals is shown. 
Present in this plot is a linear chirp moving down in 
frequency, a frequency hopping signal increasing in 
frequency, and a frequency varying signal having 
non-linear properties. A time-plot of the sum of these 
three waveforms is toward the left running up the page. 
The power spectral density i:; shown below the main figure. 
The nature of these signals is not obvious from either the 
time-plot or the power spectral density. That 
time-frequency distribution clearly provides a clearer 
representation of the characteristics of these signals. The 
time-frequency distribution tells not only what frequencies 
exist, but at what time each existed making multiple signals 
much easier to separate and identify. In other words, the 
power spectrum density tells us the frequencies that 
existcd for the whole duration of the signal. The 
time-frequency distribution allows us to determine the 
frequencies at a particular time. 

What exactly is wrong with the STET you might 
ask? The STFT is easily understandable and it gives a good 
time-frequency representation for many signals. However, 
it can be shown mathematically that the STFT does not 
satisfy what are called “marginal energies.” Hence, 
something is being added or subtracted from the 
representation. If the joint density of the time-frequency 
distribution satisfies the individual intensities in time and 
frequency, “marginal energies” are satisfied. But, for the 
STFT this condition is not satisfied. To do so would 
require an arbitrarily small window in both time and 
frequency. This is contradictory. A small window in time 
results in a wide frequency window. The concept known as 
the Uncertainty Principle states that good time and 
frequency resolution cannot be simultaneously achieved. 
One must be sacrificed at the expense of the other. 
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Fig. 3A. STFT 
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Fig. 3B. Wigner-Ville 

Fig. 3. Cross-Terms Produced from 
Wiper-Ville Distribution 

To satisfy the marginal conditions, other 
distributions such as the Wigner Distribution (WD) have 
been developed. The WD is a quadratic (non-linear) 
distribution that will produce interference terms, also 
called cross-terms, when multiple signals are analyzed. 
Although the WD provides improved time and frequency 
resolution, the presence of the cross-terms is a 
disadvantage. A variant of the WD, called the 
Wigner-Ville Distribution (WVD) incorporates smoothing 
to decrease the effect of cross-terms by using independent 
windows in time and frequency. The WVD) is also a 
quadratic distribution but through the choice of the length 
of the time and frequency windows, reduced cross-term 
suppression is obtainable. Figure 3 illustrates the 
generation of cross-terms from two chirp signals through 
the use of the WVD. Other distributions have been 
developed both to minimize the effects of cross-terms and 
because they are simpler to implement in software. The 
main stumbling block in attempting to use the wide variety 
of time-frequency analysis methods available is the fact 
that their behavior is dramatically different from one 
problem to the next and each has peculiar properties. It is 
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important to recognize that even though a distribution 
may not behave properly in all respects or interpretations, 
it may still be useful if a particular property is to be 
exploited. This point is emphasized in Figure 4 using 
topdown plots of the Wigner-Ville, Choi-Williams, and the 
Rihaczek-Margenau distributions on identically the same 
signal environment. Although, each distribution is 
different in appearance, they are equivalent in the sense 
that each can be obtained from the other and they each 
contain the same amount of information. They are very 
different, but nonetheless each has been used successfully 
for particular applications. These are just three 
possibilities out of a large number of choices, all with 
different behavior. There has been considerable 
controversy in the past few years regarding the choice of a 
quadratic time-frequency distribution for the analysis of 
non-stationary signals. The numerous distributions which 
have been proposed may be interpreted as smoothed 
versions of the WD, with the type of smoothing 
determining the amount of attenuation of interference 
terms, loss of time-frequency resolution, and mathematical 
properties. Here again, the choice of the best distribution 
depends on the nature of the signals to be analyzed and on 
additional issues such as the mathematical properties 
required and limitations in computation and storage. A 
successful application of time-frequency distributions 
presupposes some degree of expertise on the part of the 
user. It is seldom possible to view time-frequency analysis 
as a “black box” where the signal is input and some clear 
and meaningful result is automatically obtained as the 
output. Some prior knowledge about the signal must 
generally be known in order to select the most suitable 
distribution and adapt the parameters to the signal, [l, 21 
are outstanding sources for a description of many or the 

Fig. 4B. Choi-Williams more common~time-frequency distributions. 
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Fig. 4C. Rihaczek-Margenau 

Fig. 4. Differences in Various 
Quadratic Distributions 

Wavelets 
The Wavelet Transform (WT) is of interest for the 

analysis of non-stationary signals, because it provides still 
another alternative to the STFT and many of the quadratic 
time-frequency distributions. The basic difference is in 
contrast to the STFT, which uses a fixed signal analysis 
window. The WT uses short windows at high frequencies 
and long windows at low frequencies. This helps to diffuse 
the effect of the Uncertainty Principle by providing good 
time resolution at high frequencies and good frequency 
resolution at low frequencies. Unlike many of the 
quadratic functions such as the Wigner-Ville and 
ChoiWilliams distributions, the WT is a linear 
transformation therefore extraneous cross-terms are not 
generated. There is one other major difference between 
the STFT and the WT. The STFT uses sines and cosines as 
an orthogonal basis set to which the signal of interest is 
effectively correlated against. The WT uses special 
“wavelets” which usually comprise an orthogonal basis set. 
The WT then computes coefficients, which represents a 
measure of the similarities, or correlation, of the signal 
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with respect to the set of wavelets. In other words, the WT 
of a signal corresponds to its decomposition with respect 
to a family of functions obtained by dilation’s (or 
contractions) and translations (moving window) of an 
analyzing wavelet. A filter bank concept is often used to 
describe the WT. The WT can be interpreted as the result 
of filtering the signal with a set of bandpass filters each 
with a different center frequency f. In the STFT case, the 
bandpass filter’s bandwidth is independent of the center 
frequency. In contrast, the bandwidth of the WT is 
proportional to f or equivalently, the filter’s quality factor 
Q (Q  = f / bandwidth) is independent off.  In other words, 
the WT can be viewed as a “constant-Q” analysis. 

Another interpretation of the WT is associated with 
multiresolution analysis, where the decomposition, with 
respect to an orthogonal basis set, is performed by an 
iterative scheme based on high pass and low pass filtering 
followed by downsampling. The signal is then decomposed 
into a discrete set of orthogonal details from which the 
signal can be exactly reconstructed. This offers the 
potential for signal and data compression. Still another 
interpretation suggests that the bank of filters represents a 
set of “matched” filters whose outputs represent the 
degree or correlation to a signal feature of interest. It is 
important to note that, within certain technical constraints, 
the “mother wavelet” may be chosen arbitrarily. This 
means that an analyzing wavelet with properties especially 
suited to the analysis of some particular class of signals, 
such as spread spectrum waveforms, may be chosen to 
support a given application. 

Discrete Wavelet Tramtwm- Haar Wavelet om BPSK 
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Fig. 5. Signal Analysis with a Haar Wavelet 
on a BPSK Signal 

Figure 5 illustrates the use of a Fast Wavelet 
Transform (FWT) on a BPSK modulated signal. More 
signal detail is visible at the lower end of the vertical axis. 
The actual BPSK keying can be clearly extracted at the 
1/64 scale and the carrier can be extracted U128 scale. 
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Fig. QA. Time Domain Implementation 
of 2nd Order Cyclostationary Process 
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Fig. 6B. Frequency Domain Implementation 
o f  2nd Order Cyclostationary Process 

Cyclostationarity 

by essentially all digital signals and some naturally 
occurring waveforms. As before, a stationary signal is one 
whose statistics do not vary with time. Therefore, a 
stationary signal can be sampled at periodic intervals 
without being concerned that the signal may he changing 
over time. A cyclostationary signal is periodically 
stationary. That is by delaying the signal by some amount, 
the statistics do not vary with respect to the signal before 
the delay. By processing signals as cyclostationary, we can 
take advantage of the periodic features of a waveform. 
These preiodicitites arise from modulating, sampling, 
keying, scanning, coding, multiplexing, and other similar 
operations, or from naturally occurring periodic events or 
the motion in rotating machinery. 

(PSD) function fully characterized the second-order 
statistical behavior in the frequency domain of a stationary 
random signal, the spectral correlation density (SCD) 
function fully characterizes the second-order statistical 
behavior in the frequency domain of a cyclostationary 
signal. That is, unlike stationary signals, such as thermal 
noise, some spectral components in cyclostationary signals 
will correlate with each other. There are two intuitive ways 
to view the concept of cyclostationary signal processing: in 
the time domain and in the frequency domain. In the time 
domain, consider a simple delay-and-multiply operation as 
shown in Figure 6A. If the signal contains a periodic 
component, and if the delay is chosen properly, a strong 
sinusoid will be present at the output. The computation of 
the SCD consists of performing this operation over a wide 
range of delays. Taking the Fourier Transform of each of 
these outputs will produce the SCD. In the frequency 
domain, Figure 6B, consider up-shifting the frequency 
spectrum of interest by some small amount then 
down-shifting the spectrum by the same amount and the 

Cyclostationarity is a statistical property exhibited 

In the same way that the power spectral density 
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Fig. 7. Spectral Correlation Density 

computer correlation of the two spectrums. If there is 
correlation between shifted spectral components, spectral 
lines will be generated. Repeating this process over a 
range of frequency shifts will also produce the SCD. 
Figure 7 illustrates a typical SCD for a BPSK signal 
showing both the carrier frequency (16 Hz) and data rate 
(0.5 Hz). The end view plot helps read these rates. The 
cycle frequency equates to the amount of frequency shift 
in the frequency domain interpretation of the SA. 

APPLICATIONS 

Much work is underway to develop more advanced 
signal processing techniques which will more effectively 
and efficiently exploit modern digital communication and 
radar signals. These techniques are directed at improving 
the tasks of detection, classification, and identification. 
The traditional STFT has been applied to signal 
processing problems in many different areas including 
electronic warfare. Some of the major applications for the 
STFT include time-varying signal analysis, system 
identification and spectral estimation, signal detection and 
parameter estimation, speaker identification, speech 

coding, estimation of the group delay or the instantaneous 
frequency of a signal, and complex demodulation. Besides 
processing received signals, these same STFT algorithms are 
used to synthesize signals using inverse transform techniques. 
Some applications of STFT synthesis techniques are 
time-varying filtering, non-linear noise removal, room 
dereverberation, time-scale modification, dynamic range and 
bandwidth compression, and waveform design. 

While many conventional statistical signal 
processing methods treat random signals as stationary, 
cyclostationary techniques take advantage of periodicities 
associated with signals. Cyclostationary signal processing 
has been shown to be very useful for signal processing 
tasks such as the separation of spectrally overlapping 
signals and reliable extraction of information from 
spectrally overlapping signals. For example, information 
such as emitter location, modulation type, and carrier and 
clock frequencies can more easily be removed in congested 
R F  environments through cyclostationary signal 
processing. The presence of signals buried in noise and/or 
severely masked by interference can also be more easily 
detected by exploiting the spectral redundancy associated 
with cyclostationarity. Estimating parameters such as the 
time difference-of-arrival at two reception platforms or the 
direction of arrival at a reception array on a single 
platform is improved over conventional systems that 
ignore cyclostationarity. 

for the analysis and processing of non-stationary signals for 
which separate Time-domain and frequency-domain 
analysis are not adequate. Researchers have applied the 
Wigner Distribution for signal detection, spectrum and 
instantaneous frequency estimation, and pattern 
recognition. Synthesis techniques have been used to 
perform time-varying filtering, multi-component signal 
separation, and window and filter design. A quadratic 
time-frequency representation known as the ambiguity 
surface has been used extensively in radar and 
communications. In the radar case, an estimation of the 
distance and velocity of a moving target is made, where the 
distance and velocity correspond to the “range” and 
“Doppler shift” parameters. The cross-ambiguity surface 
provides pertinent information about the performance of 
the maximum-likelihood estimator, thus aiding in the 
design of the transmitted signal. Synthesis techniques can 
also be used for isolating a desired component of a 
multicomponent signal, provided the signal term of 
interest does not overlap significantly with other signal 
terms. 

Wavelet theory provides a unified framework for a 
variety of signal processing applications. For example, 
wide use is found in multiresolution signal processing and 
speech and imagc compression and enhancement. While 
conceptually, the WT is a classical constant-Q analysis 
concept, applied mathematicians have recently recognized 
the many different views and applications stem from a 
single theory. Still another alternative to the STFT, the 

Time-frequency representations are powerful tools 
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main application of the WT iin signal processing will be in 
non-stationary signal analysis. The zooming property of 
wavelet analysis allows a very good rcpresentation of 
discontinuities in the signal. For example, as applied to 
image processing, the WT is very good at detecting and 
enhancing edges. This property is useful for pulsed radar 
signals, detecting the frequency transitions of frequency 
hopping radios, or any abrupt transitions characteristic of 
the signal-of interest. Perhaps the biggest potential use for 
wavclet analysis is in signal compression, thus allowing 
increased bandwidth efficiency. 

FUTURE RESEAKC 

As military communication, radar, and navigation 
systems become more complex, frequency employing 
sophisticated anti-jam (AJ) or LPI signaling schemes to 
provide robustness or covertness, the performance 
limitations of the traditional radiometric energy dctector 
becomes significant. Feature extraction techniques 
become increasingly more difficult as the covert 
communicator attempts to suppress and conceal his 
features. Electronic countermeasures become more 
difficult and less effective as .AJ techniques arc 
implemented. Classical radiometric methods for energy 
detection are highly susceptible to unknown and changing 
noise level and interference activity. For example, spread 
spectrum modulation techniques make it difficult for the 
radiometer detectors to function because the signal is 
spread in bandwidth to obtain some processing gain in the 
presence of interfcrence. Spread spectrum may also 
cmploy spectral overlapping techniques such as 
code-division multiple access (CDMA) which will confuse 
the radiometer since multiple, similar looking signals, 
share a common bandwidth. New signal detection and 
features extraction systems are needed to effectively 
exploit these new waveforms in today’s complex signal 
environment. Developing new signal countermeasure 
techniques and assessing the performance of these 
techniques against a candida{ e AJ/LPI waveform designs 
requires new theoretical based approaches and 
computational tools and techniques. 

with costly and complex instruimcntation or through 
computer analysis. Computer algorithms have been 
developed which analyze and graphically display the results 
of the data for user interpretation. However, new transforms 
are currently being developed that provide improved 
graphical representations of time varying data beyond that of 
conventional FFTs. Pattern recognition techniques will be 
merged with artificial intelligence technology and neural 
networks to develop automated analysis and interpretation of 
signal data in real-time. By establishing a database of 
signatures signals will ultimately be automatically recognized 
and an optimal jamming strategy generated. 

Spectral correlation analysis instruments or 
cyclostationary algorithms will become standard 

Timc-series data analysis is presently performed either 

equipment in communications laboratories and production 
facilities with either commercial or educational missions. 
Analysis systems could bc designed for quality control 
monitoring, testing, system design, performance 
evaluation, teaching, and research and development. Fault 
Testing and prediction are possible through the analysis of 
time-series vibration data of rotating mechanical systems 
such as engines. Higher-order cyclostationary moments 
and cumulants are being researched to find new 
techniques and algorithms for signal detection, 
characterization, and exploitation against LPI waveforms 
or against signals in difficult environments. 

place regarding advanced signal processing techniques in 
the last 15 years. Computer models and simulations have 
shown the advantages of thesc techniques. Recently, 
algorithms have been developcd which speed the data 
processing of these potential techniques to realizable 
goals. Hardware is being developed and integrated into 
current military systems using many of these, or related, 
techniques. Industry needs to be made aware of the 
possibilities that advanced signal processing techniques 
offers, for cxample, new signal processing techniques are 
currently being developed which cxploit the periodic 
nature of naturally occurring signals. Periodic, cyclic, or 
rhythmic phenomena arise naturally in many areas of 
disciplines. Some of the fields where periodic, time-series, 
data are analyzed include medicine, biology, meteorology, 
climatology, hydrology, oceanology, and economics. The 
techniques that are being researched for the detection 
characterization, and identification of LPI waveforms 
show great promise in these other scientific and 
commercial fields. Quadratic time-frequency distributions 
have served as useful analysis tools in fields as diverse as 
quantum mechanics, optics, acoustics, bioengineering, 
image processing, and oceanography. These techniques 
have been used to analyze speech, seismic data, and 
mechanical vibrations. An exccllent example is usc of 
these techniques for recognizing cardiac patterns in the 
fields of medicine and biology. Wavclets and 
time-frequency distribution are being used for the 
detection of elcctroencephalogram (EEG) spikes, 
ventricular fibrulation in electrocardiograph (ECG) 
patterns, and a variety of other biomedical related 
waveforms. Research efforts have been made and continue 
to make important groundwork contribution to EW 
programs, but also continue to provide research benefits to 
other applications. 

Considerable theoretical development has taken 
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DARSAT-1 

Observation Satellite: 
adar (SAR) Image 

The first RADARSAT image was acquired under conditions 
of darkness, overcast skies, rain, and strong wind, a t  5:41 p.m. 
local time on the evening of November 28,1995. The satellite 
was in the ascending, east-looking pass of its 348th orbit and its 
imaging mode was a Standard 1 beam, with an incidence angle of 
23 degrees. The image shows a portion of Cape Breton Island, 
Nova Scotia, Canada, and is centered at latitude N 46” 27’ 05” 
and longitude W 060” 18’50”. It covers a n  area of 132 km x 156 
km with a spatial resolution of about 25 m, and was obtained 
from an altitude of close to 800 km. 

lines, harbour structures, railways, and much of the city of 
Sydney, including the three wharves in Sydney Harbour, are 
evident. Local roads and runways at Sydney Airport are readily 
identified. These are indicative of RADARSAT’s utility in land 
use mapping and urban mapping. 

Coastal Delineation: Shorelines and coastal features, which are 
often obscured by fog or  clouds, are clearly visible. The steep cliff 
of Cape Smokey, the coastal inlet of Ingonish Harbour and its 
barrier beaches along the northeastern shore of Nova Scotia are 
evident. Middle Head peninsula, which divides North and South 
Ingonish Bays, is also seen. RADARSAT’s coastal monitoring 
capability is not only important to Canada but also to many other 
parts of the world, especially the predominantly cloud covered 
tropics. The identification of coastal features is also useful in 
environmental monitoring programs. 

Surface Landform: This image reveals the linear features of 
the drumlin fields (elongated hills shaped by glaciers) in the 
Island’s Mira region. The prominent Aspy Fault and other major 
faults and boundaries between rock types are easily identified. 
These illustrate RADARSAT’s sensitivity to surface topography 
and landforms, making RADARSAT a valuable tool for 
detecting surface mineral deposits and geological features. 

Cultural Features: Appearing as bright spots, buildings, power 

Ship Detection and Monitoring: Ship detection and surveillance 
of activities in shipping lanes highlight another RADARSAT 
capability. I n  this image, the ship Portland Carrier and its 
V-shaped wake can be seen. The shape of its wake indicates that 
the ship was inbound towards Sydney Harbour. 

sensitivity to wind effects on the ocean surface, especially where 
the water is exposed to the full force of the winds. The mapping 
of currents, sea state, and many other ocean features for weather 
forecasting, ship routing and fisheries resource management is 
possible. 

Forestiy: West of Ingonish, south of the Cheticamp reservoir 
(white), it is possible to see the forested areas (darker) damaged 
by the spruce budworm outbreaks of the 1970s and 1980s. 

The purpose of the RADARSAT program of the Canadian 
Space Agency is to provide radar imagery on an operational basis 
to commercial, government and scientific users worldwide. 
RADARSAT’s onboard tape recorder and RSI’s international 
network of distributors and ground stations ensure that users 
around the world will have access to high-quality images of the 
Earth, regardless of weather and light conditions. 
RADARSAT-1, funded by the Federal and Provincial 
Governments, was built by the prime contractor Spar Aerospace 
Ltd. The satellite launch on 4 November 1995 was supplied by 
the United States in return for radar imagery for use by NASA 
(National Aeronautics and Space Administration), NOAA 
(National Oceanic and Atmospheric Administration) and other 
US Government agencies. 

Communications Branch, 6767, route de I’ACroport, 
Saint-Hubert, Quebec J3Y 8Y9; Telephone (514) 926-4351, Fax 
(514) 926-4352, WWW Site http://radarsat.space.gc.ca/, Site 
RADARSAT sur WWW http://radarsat.espace.gc.ca. 

Ocean Su8ace: The bright patches show RADARSAT’s 

For more information, contact: Canadian Space Agency, 
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