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Abstract-In order  to  compare piezoelectric  materials and  de- 
vices,  an  intrinsic  parameter,  the  motional  time  constant 7-jrn'  = 
( J ~ , ~ Q ~ ~ ) - '  for  a  particular  mode nc is  employed.  The use of ~ l ( ~ ' )  
follows  from  the  accommodation  of  acoustic loss in  the  elastic 
compliance/stiffness  and  the  establishment  of  material  coefficients 
that  are  elements  of  viscosity  matrices.  Alternative  and  fully 
equivalent  definitions  of TI are  given  based on the RC time 
constant derived  from  the  equivalent  circuit  representation  of 
a crystal  resonator,  acoustic  attenuation,  logarithmic decrement, 
and  viscosity or damping. For quartz  devices,  the  variation  of 
q : for  any simple  thickness  mode,  for  the I"X shear mode  for 
rotated E'-cuts, and with  diameter-thickness  ratio  for  AT-cuts  is 
discussed.  Other  factors  such  as  mounting loss and loss caused 
by crystal inhomogeneities  (dislocations,  defect  positions  in the 
resonator,  and  impurity  migration  under  vibrational  stress)  are 
briefly  considered  with  quartz  devices as the  model. Some  new 
piezoelectric  materialdmaterial  constantddevices  are  reviewed 
and  their  motional  time  constants  are  compared. A physical 
parameter,  composed of  acoustic  velocity,  piezoelectric  coupling, 
and T~ is  identified  which  aids in understanding the  maximum 
frequency  limitations of plate  resonators. 

I. INTRODUCTION 

A COUSTIC-WAVE  RESONATORS are used in RF cir- 
cuits in numerous  commercial  and military applications. 

The  values of the quality factor, Q, of these resonators (the 
ratio of the resonant frequency to the full width in frequency 
at half the maximum amplitude of the conductance [l]) are 
very high.  Thus, these high-Q resonators have  great value for 
use in radio, television, mobile telephone, and high accuracy 
clocks  for time-ordered communications  and position-location 
systems. 

In order  to  compare different piezoelectric materials and 
devices  an intrinsic parameter  is  employed. We begin with 
the well-known, experimentally  observed relation for high 
frequency plate resonators of quartz: 

Q .  f = constant. (1) 

From this, we invert the product of Q . W ,  to obtain a constant 
parameter having the dimensions of time: 

71'"' = (WTnQrn) -1 ;  ( 2 )  

where W ,  = 2.irfnr for a particular resonator mode m. 
Equation (2) permits calculation of the intrinsic Q of a mode, 
exclusive of extrinsic factors  such  as  mounting loss and 
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mass loading providing 7irn) is a known  constant  quantity, 
presumably related primarily to material parameters.  Although 
derived specifically from  quartz resonator data, we shall see 
below that 7 1  is more generally applicable. This intrinsic 
parameter 7 1  can alternatively be defined as a motional time 
constant  obtained  from the equivalent circuit for piezoelectric 
resonators, or be defined as a purely physical parameter related 
to a viscosity tensor of a material, whose  matrix  elements may 
be empirically derived  from acoustic attenuation and velocity 
measurements. As such, 71 connects electrical engineering  and 
physical descriptions of dissipation in acoustic wave materials 
and devices. 

This  paper reviews: i) the concept of motional time  constant 
and  its  relationship to acoustic loss; ii) losses  caused by 
impurities and their mobility in resonators, by defects  and 
their position in resonators, and by  hydrogen nonuniformity 
in quartz which affects the intrinsic Q; iii) intrinsic properties 
such as material constants of modem piezoelectric materials 
of interest for bulk acoustic wave (BAW)  and surface acoustic 
wave (SAW) resonator design;  iv) the analysis of real devices 
in terms of material parameters and resonator geometry using 
equivalent circuit parameters; v) the frequencyharmonic  limits 
on  achieving  resonance with plates; and vi) new and  advanced 
resonators in terms of their potential for lowering 71. 

One  objective  here is to demonstrate  to the user  community 
the value of coordinating  and integrating small and perhaps 
esoteric portions of the large amount of published information 
available  on piezoelectric resonator materials and  devices. 
These  seemingly individual and  disparate  observations  form 
a mosaic, presently incomplete but quite  suggestive, of phe- 
nomenological acoustic loss mechanisms  and their intercon- 
nections. 

11. VISCOSITY DEFINITION OF 7 1  

Lamb  and  Richter [ 2 ] ,  using physical principles involving 
a viscosity tensor, developed a theory for  calculation of 
the attenuation of acoustic waves in crystalline solids. They 
used microwave  (pulse-echo)  measurements  to  calculate  the 
numerical values of the viscosity matrix for  quartz at room 
temperature. In their  theory,  small material loss  was included 
by considering  the viscosity to be the imaginary part of the 
elastic stiffness [ 2 ] :  

c* = c +jw7/ ,  E ( 3 )  

where cE is the stiffness at constant  electric field.  For specific 
materials/devices,  which are not perfectly lossless, 7:"' is a 

U S .  Government Work not Protected by U.S. Copyright 



BALLATO  AND  GUALTIERI: HIGH-Q PIEZOELECTRIC RESONATOR MATERIALS 835 

2 -  

l -  

Q 1 1 " " ' 1 1 ' 1 1 ' 1 1 1 ' 1 '  
f 9 Q  -60 -30 Q +B t E Q  f90 
(t) (I) 0 (DECREES) ($1 

01-CUI AT-CUI 

Fig. 1. Time constant, r1. for the lF',Y shear mode of quartz plates of the 
orientation (17SF) 0 calculated from the data of [2]. 

constant which can  alternatively be defined by the equation 

= vm /cm > (4) 

where vm is the viscosity and cm is the  elastic  stiffness 
of the resonance  mode, e.g., the high  frequency  thickness 
modes of plates. For the pure shear mode in rotated  Y-cuts of 
quartz, 7 1  can be calculated using appropriately  transformed 
viscosity  and  stiffness  values. For this  mode,  excluding  a small 
piezoelectric  contribution, 7 1  = &/c&, where 

c& = c66 cos2 8 + c44 sin2 8 + 2c14 cos 8 sin 8 (5a) 

and 

T/& = 766 cos' B + sin' B + 27714 cos 8 sin Q. (5b) 

Equations  (5a) and (5b)  suggest that the viscosity and elastic 
stiffness  have the same  symmetry. In general, the tensorial 
symmetries of c and 77 can be shown to be identical.  Besides 
the stiffnesses,  the  piezoelectric and dielectric  constants  are  re- 
quired  for  a  full  characterization of acoustic wave propagation 
in dielectric  crystals. 

Fig. 1 gives  the value of 7 1  for the Y ' X  shear mode for all 
rotated  Y-cuts as a function of rotation  angle 8, using (5a) and 
(5b)  and the data  generated by evaluating  measurements of the 
viscosity in quartz  published by Lamb and Richter [2] .  Data 
points  reported by Bommel,  Mason,  and Warner [3] and  Seed 
[4]  also  are  indicated.  The  graph  shows that the BT-cut has 
nearly the lowest  intrinsic loss, about half that of the AT-cut, 
for  a  given  frequency. 

An alternate  description of acoustic  loss may  be described 
by the  use of the fluency tensor in those situations  where the 
elastic  compliances are appropriate [5] .  

111. RC TIME CONSTANT DEFINITION OF 7 1  

For a  plate  resonator of thickness 2h, and electrode  area 
A,  executing  simple  thickness motion with laterally uniform 
distribution of motion, the  design  parameters  follow  from 
considering the Butterworth-Van Dyke (BVD) equivalent  elec- 
trical circuit  representation  (see Fig. 2) of a  crystal  resonator 
in the vicinity of  any single  resonance.  The  elements of this 

"1 P 
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Fig. 2. Butterworth-Van Dyke equivalent circuit. This circuit is  an adequate 
representation of the vibrating crystal in the vicinity of any single resonance. 

where M = the  harmonic  for  a  particular mode m ,  t is the 
dielectric  permittivity in the  thickness  direction, and k 2  in (7) 
and ( 8 )  is the square of the piezoelectric  coupling  coefficient: 

ktm, = e & ' / q m ) ,  (9) 

with e(,) the  effective  piezoelectric  stress  coefficient.  The 
C(,, are the real roots of  an eigenvalue  equation. They deter- 
mine, with the mass density p, the piezoelectrically  stiffened 
phase  velocities 

21, = ( q m ) / p ) 1 ' 2 .  (10) 

The  static  capacitance C, arises from the "real" capacitor 
formed by the electrodes of area -4 placed on the  dielectric of 
thickness 2 h  and permittivity F .  C1 and R I ,  in contrast,  are fic- 
tional circuit  elements  arising  because of the piezoelectrically 
driven motion. Each contains  the  geometrical  factor (,4/2h) 
or its inverse  [see  (6)-(8)],  multiplying material factors. We 
can define two quantities that are  functions of material only. 
These  are the motional  permittivity ry) and the motional 
resistivity P,("': 

- ('Zl)(2h/A) = t / r ( h f )  
1 -c1 (1 1) 

(12) 

P,(*{) = R Y ' ) ( A / ~ ~ )  = (1/q (7r~w/2e)2 = 71/rjnf) 

where d n r )  = Co/C~'") = (1/2) ( ~ M / 2 k ) ~ .  In the product 

the geometrical  factors  cancel and T ~ ,  excluding  temperature 
and device-related  loss  effects, is independent of harmonic 
and geometry. 

Although applied  here,  for  purposes of uncomplicated il- 
lustration,  to  a flat plate resonator  executing  simple  thickness 
motion, the BVD  circuit  parameters may  be related to p ,  F, 
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TABLE I 
FQUIVALENT DEFINITIONS OF THE TIME CONSTANT 71 

Definition 7, (seconds)  Remarks 

Equivalent 
Electric R,C,=P,”rIM w.’L,C,=l 
circuit 

r , = l / w , Q ,  = P I ’  

Q , = ( I / R n )  (LIICI)“’ 

A=attenuation/length 
Acoustic 

Attenuation ZVA/~,,’  v=acoustic velocity 
(neperslmeter) 

= (c/p)“’ 

Log-Decrement 6 / n w ,  acoustic  wave 
Acoustic  6=decrement  pnr  period o f  

c=effectivs elastic 
constant;  q=absolute 
viscosity  in (kgln-sec) 

p(J’u/at’)=c(J’u/Jx’)+ 
or  Damping 
Viscosity 

?/C 

7cat/ax’at) 

e, c, v, and geometry in more involved  cases  as  well.  The 
time constant defined here in terms of the  product RlCl 
suggests that it is a  resonator  parameter.  However, it has a 
more fundamental  interpretation in terms of the elastic  stiffness 
and viscosity  factors  appearing in the elastic wave equation: 

p (a2u/at2) = c(d2u/dz2) + (a3u/dz2dt) ;  (14) 

where U is the displacement.  Because of this, TI may  be 
equivalently  evaluated  from the results of attenuation and 
velocity  measurements.  Equivalent  definitions of 71 are  given 
in Table I.  

A. Material  Constants 

Piezoelectric  materials  for  acoustic wave devices  have 
changed markedly over the past twenty years in terms of 
both the types of materials  available and the  quality of the 
individual  samples.  The total family of acoustic wave materials 
now used, or under  development,  includes  piezoelectric  glass- 
ceramics having crystallographic and polar  orientation and 
crystals of symmetry  classes  mm2,  32,  3m,  4mm,  6mm, 
and 43m.  The  symmetry  classes 6mm and 33m  also  occur 
frequently in piezoelectric  semiconductor  materials that are 
now available in both bulk and thin-film configurations.  The 
various reported values of the material constants of interest 
for BAW and SAW device  applications have been brought 
together and recently  published [6]. 

The  relevant  material  constants  include mass density p ,  elas- 
tic stiffness c ~ ~ ,  piezoelectric  stress e,x, dielectric  permittivity 
tij, and thermal  expansion  coefficients aiJ. Viscosity data 
are, at present, not abundant.  Except  for the semiconductor 
materials, only data  published  after 1978 are  included in 161, 
since  the  reference  literature  (Landolt-Bornstein)  amply  covers 
those  years  prior to 1978 [7]. 

An example of a  promising  material,  under  development 
now, is  langasite  (La3GasSi014) [8]-[12]. This  material has 
the  same  symmetry  class as a-quartz  (class  32).  Large  good- 
quality  single  crystals  are  already  available [ 1 l]. The  material 
constants  for  langasite  are  given in Table 11, as an illustration of 
the  information  available in 161. These can be  used to evaluate 
TI using the time constant  definition.  For  langasite, using 

TABLE I1 
MEASURED PROPERTIES OF LANGASITE AT ROOM TEMPERATURE 

Pormula symmetry  References 

La,Qa,siO,, 32 [8-111 

Property [ E l  [ 9 1  [l01 [ I l l  
Iunits) 

Density p 5.754’ 5.743 
(lo3kg/m’) 

5.751 

c,, 190.3 188.9(-58.71 130.2(-47) 190.2(-47) 

cI1 106.3 104.6(-218) 106.3(-100) 106.3(-1001 
Elastic c,, 101.2 96.8(-101) 91.9(-130) 91.9(-130) 
Stiffness 
(Con- c,, 15.2 14.3(-154) 14.7(-370) 14.7(-370) 

(QPal % 261.9 262.2(-135) 262.1(-94) 

c,, 52.4 53.3(-79.7) 53.82(-30) 53.41-30) 

CS 43.2 42.2(139) 42.0(+36) 42.35(+36) 

Piezo- 
Electric 
Strnss 

e,, -0.45 -0.44(-2400) -0.45 

e,, 0.077 0.07(-5000) 
(C/& 

0.077 

Di- 
electric 
Constant c’,, 49.32  43.10(-618)’ -43(-760)’ 43.2(-760) 

c’,, 18.87 18.86(4471@ 19.0(1531 

If.) 
Thermal a , ,  
Expansion 

(5.84) (5.11) (5.15) 

ol3 (4.03) (3.61) (3.65) 

Note: Numbers in parentheses are temperature coefficients x 10-6/K. *See 
[12]. @These values are for E ’ .  +See graph in [lo). 

published data [S], [9],  [13], 71 can be calculated  for  the  non- 
temperature  compensated X-cut (pure  longitudinal mode along 
[ l  1201) to be  4.2  fs.  A  temperature  compensated  cut  (both 
first- and second-order  temperature  coefficients EO at room 
temperature)  is  the 1’-cut (pure  shear mode along [lolo]). 
For this mode, 71 is 6.3 fs. The  motional time constants 
were  calculated  using  acoustic  attenuation and velocity  values 
reported in 1131. It is  expected that acoustic wave devices 
research  on  this  material  will flourish over  the  next few years; 
see  Section  VI-C. in this  connection. 

In general,  the values of material  constants  are  derived  from 
measurements on real  crystals and are,  therefore, influenced 
by crystal  stoichiometry,  purity, and defects. What we have 
learned  from  extensive R&D with quartz material will help us 
to understand acoustic loss in future  crystal  systems. A short 
discussion of some of these  factors  for the case of a-quartz 
follows. 

IV. IMPURITIES 

The  growth of high purity  crystals  is  a  prerequisite  for 
high-&  devices. For AT-cut  quartz at room temperature. TI 

is -10 fs with corresponding  relaxation  frequencies ( 1 / ~ 1 )  at 
Hz or  a  wavenumber ~ 3 . 3 3  x lo3 cm-’ in the  infrared 

region.  This  provides an intuitive  connection with the use of 
infrared absorption  as  a  quality  control  measure  for  inspection 
of cultured  quartz.  The  IR  absorption can be related to an 
intrinsic Q or QIR which is  found  to be correlated with the 
mechanical Q of resonators made from the material. 

A. Hydrogen in @-Quartz 

In the case of hydrothermally grown quartz, it seems  clear 
that hydrogen is the  major  impurity.  Aines et al. [l41 have 
found that near  the  seed, the dominant  impurity  is  molecular 



BALLATO AND GUALTIERI:  HIGH-Q  PIEZOELECTRIC  RESONATOR MATERIALS 837 

WAVENUMBER, cm-’ 
7000 5000 4000 

1300 1500 1700 1900 2100  2300 2500 2700 
WAVELENGTH, nm 

Fig. 3. Near-infrared polarized spectra of a typical quartz sample. Displayed 
are spectra recorded with E 1 1  C (solid line), E I C (dotted line), and 
background 0-H stretch (dashed line).  Beam path was parallel to the  seed 
plate and 3.44 mm from the seed. Sample thickness was 2.44 cm [14]. 

H2O. The  H20 concentration decreases away from the seed 
while OH- rises  in concentration. Typically, the H20 level 
remains above the OH- level  up  to distances of -2 cm 
from the seed. The major species responsible for hydrolytic 
weakening in quartz appears to be H20. The water is present as 
small groups of H 2 0  molecules. H20 is more likely found in 
rapidly grown quartz. The near-IR spectra of a typical cultured 
quartz bar  is shown in Fig. 3. Shown are absorption features 
due to -850 ppm molecular H20 at 1920 nm, multiple peaks 
centered at 2250 nm due to X-OH groups (X =Na, Li, etc.), 
and two bands due to both H20 and X-OH at 1410 nm and 
2500 nm, respectively. These are superimposed upon a strong 
background absorption due to  X-OH stretch at 2900 nm (3400 
cm-’) [ 141. 

Sawyer [l51 plotted the relationship (shown in Fig. 4) be- 
tween infrared absorption at 3500 cm-’ (ALPHA3500)4ue 
to hydrogen content which is  related to QIR of quartz and the 
mechanical Q of specially contoured and mounted, precision 5 
MHz, 5th overtone quartz resonators. His plot also shows there 
is very little difference in using either Na2C03  or NaOH [ 161 
as the mineralizer in the hydrothermal growth of a-quartz. 
In general, the concentrations of other impurities seem to 
follow the concentration of hydrogen in a-quartz. In particular, 
the X-plus and 2-growth regions contain roughly equal OH- 
concentrations, whereas the OH-concentration in  the X-minus 
region is about an order of magnitude higher. The  X-plus 
and X-minus regions have similar concentrations of Al, Li, 
and Na, whereas the 2-growth regions are usually an order 
of magnitude lower in concentration for these ions [17]. The 
growth regions are  identified subsequently, in  Fig. 9. 

B. Mobility of Impurities 

Impurities can be either interstitial or substitutional. In 
a-quartz, interstitial impurities are possible because of the 
existence of large, open, (1-2 A) c-axis channels in the crystal 
structure. This allows the interstitial impurities to be  very 
mobile especially under conditions of high temperature and 
electric field,  used for  example, in the electrodiffusion process 
[18], [19].  This process, used generally in  the industry to 

0 

3 1c 
E 
v) 

10 

-1 I Premium Q quartz 
A Na2C03  process  
- Na2COg  process 
- - -  NaOH  process 

0 0.1 0.2 0.3 

Fig. 4. 5 MHz Q versus . ~ L P H . A ~ ~ . o o  data and empirical curves. Solid 
curve is plotted from a quadratic in reciprocal Q, computer-fitted to the data 
shown [15]. Dashed curve was computer-fitted to NaOH “fast grown” quartz 
data [16]. 

improve the radiation resistance of quartz resonators, also 
reduces the tendency of quartz to develop etch channels during 
etch processing of resonator blanks. Trivalent AI and Fe ions 
can substitute for silicon during crystal growth.  These require 
unipositive charge compensation to balance the single negative 
charge of a trivalent ion  in a quadrivalent site. The compensa- 
tion  is usually satisfied  by alkali-metal ions (Li+,  Na+,  etc.) 
incorporated at interstitial sites during crystal growth.  The 
alkali-metal ions are removed and replaced by hydrogen during 
the electrodiffusion process. The substitutional impurities are 
not removed (replaced) by  the electrodiffusion process. 

In the work of Sharp and Pace [20], using quartz resonators, 
impurity ions have been shown to migrate away from the 
nodal planes of vibration toward the antinodal planes where 
the stress of  the vibration is a minimum and the stress 
gradient is a maximum. In  Fig. 5 is shown the  third harmonic 
pattern of the strain gradient (dslds), strain (S) and  the 
vibrationally induced Raman scattering enhancements  (due to 
the presence of impurity ions which have migrated) versus 
resonator thickness. The impurity ion in this case was Ag+ 
(from the electrodes) whose ionic size and activation energy 
for electromigration [21] is similar to that of Li+, a major 
impurity in a-quartz. By contrast, Cook  and Breckenridge 
[22]  indicate that colloidal gold or gold atoms migrate into 
quartz from electrodes, but appear to migrate to regions of high 
vibrational  stress. Both [20] and [22] report that the migration 
initially occurred at elevated temperatures (~250°C) .  Since 
these results are not  in accordance, the situation is not clear 
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and further work should be done. In any case, the migration 
of impurities  under  vibrational  stress  increases '1 [22]. 

C. Uniformity of Hydrogen 

Uniformity with respect to hydrogen  content, which is 
related to Q, is  essential  for high device  production  yields. 
For  lower Q material,  quartz  bars become less uniform and 
are  subject to easier  breakage.  However,  even high Q material 
can be subject to nonuniformities.  For  example,  considerable 
nonuniformity in hydrogen  incorporation can result if non- 
porous  electrodes  are used  in the  electrodiffusion  process  [23], 
[24].  During  nonuniform  electrodiffusion,  aluminum  compen- 
sated by electron  holes (Al-h+) develops  along  with aluminum 
compensated by hydrogen  (Al-OH)  [25].  This  contributes 
to nonuniform  electrodiffusion  along  the  Z-axis of quartz 
bars [24], [26],  [27]  similar to that shown in Fig. 6. In 
this figure, the  integrated  absorption of a  series of infrared 
scans taken at various  distances  along  the  Z-axis  shows 
considerable  nonuniformity in A1-OH and depletion of the as- 
grown OH band near the anode.  These  nonuniformities  can be 
largely  eliminated if the  electrodes used in the  electrodiffusion 
process have a high degree of porosity [24].  Another )useful 
electrodiffusion method is to use electrodes that permit easy 
diffusion of hydrogen.  For  example, if electrically  conducting 
amorphous Y-Ba-Cu-0 film electrodes, known to allow hy- 
drogen  diffusion  are used, uniform formation of AI-OH occurs 
along the Z-axis  [24];  see  Fig.  7. 

l a r  0 AI-OH Region is  (3410-3350 em") 

Air Flow = 100 cclmin 
Au ICr Electrodes 

Max. Temp. = 540' C 
E= 1000 Vlcm 

t 
ANODE Distance Along Z-Axis ( mm ) 

Fig. 6 .  Integrated infrared absorption (300'K) of a series of spectral scans. 
The IR beam was unpolarized and in the S-direction.  The AI-OH band is 
nonuniform along the Z-axis [24], (271. 

V. DEFECTS 

A. Dislocations 

Q-values  are much affected by the  position of structural 
defects in the resonator.  The  greatest  loss  occurs when the 
defect in a  resonator  occupies  a  position  close to the nodal 
plane of the vibration, where the stress of the vibration is the 
largest  [28].  The  relation between Q-value  and  position of a 
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Fig. 8. Relation between Q-values and the position of a defect in a resonator 
bar. L is  the distance from the end of the bar [28]. 

defect in a  resonant  bar is shown in Fig. 8. This  result  suggests 
that defects in the nodal plane of plate resonators are affected 
similarly. 

Brice [21] reports that there  is no unique  relationship be- 
tween dislocation  density and hydrogen  content. He points out 
that  for any given  supplier  a  linear  relationship can be found; 
however  for any given  hydrogen  content,  the  dislocation 
densities  for any two suppliers will differ by a  factor of 7.4 
on average! 

The  source of dislocations in cultured  quartz has been 
mainly  attributed to inclusions,  bubbles,  the  propagation of 
dislocations present in the seed [29], and lattice parame- 
ter mismatch between  the  seed and the new crystal growth 
[30]. Some  quartz  crystal  growers [31], [32] have  chosen 
2-plate seeds from the X-plus growth region to minimize 
the  possibility of dislocations  traversing the seed plate (see 
Fig. 9). 2-seed plates cut from the  2-growth region produce 
dislocations  propagating roughly at right angles to the 2 -  
plate  along the direction of the growing  crystal. By contrast, 
Z-seed  plates  cut  from  the  X-plus  growth region produce 
dislocations  propagating  at low angles to the 2-face. Thus,  the 
dislocations  propagate  roughly  at  right  angles to the growth 
direction.  Therefore,  fewer  dislocations are expected in the 

(b) 

Fig. 9. X-ray transmission topographs of I k r o s s  sections of cultured quartz 
bars grown from Z-seed plates cut from: (a) the Z and (h) S-plus  growth 
regions of previously grown quartz. The growth regions are shown in the 
S-plus  growth sample. *Courtesy of A. Armington, J. Larkin. M .  Harris, 
and J.  Illorrigan. Homc Iabormxy  (AISC) Hanscom AFII, M A  01731- 
5000. 
new crystal.  However,  this  approach  does not address  the 
problem of lattice  parameter mismatch and inclusion-caused 
dislocations.  Successful  methods to handle these problems 
have yet to be fully  developed. 

These  extended  defects, in both natural and cultured  quartz 
have been studied by many investigators. X-ray topography 
and etching can  be used to show that dislocations  are  the 
source of etch  channels [33]-[36]. Nielson and Foster [37] 
have suggested that etch  channels were formed by leaching of 
impurities that had precipitated  along  dislocation  lines.  Others 
have suggested that channel  dissolution  is  aided by the release 
of potential  energy, stored as stress  along the dislocation line 
[38].  Diffraction  contrast  due to dislocations is revealed in 
X-ray  topographs.  The  contrast results from the strain field 
around  the  dislocation. Comparison of X-ray topographs made 
on  quartz  resonator  blanks  before and after  electrodiffusion 
show very little  change in either the diffraction  contrast or 
the  number of dislocations [39]. This would indicate that the 
formation of etch channels  is not influenced greatly by the 
dislocation  strain  energy.  The  impurity modification sugges- 



840 IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 41, NO. 6, NOVEMBER 1994 

tion is more likely  for  the  following  reasons:  electrodiffusion 
removes  alkali-metal  ions and quartz  is  attacked by alkaline 
solutions,  such  as  NaOH and NazSiOs  [40];  and  reductions in 
etch-channel  density  have been found when dislocations  were 
decorated with electrode-metal  impurities  [41],[42].  Others 
report that it  appears Ca++ and Mg++ are  localized  at  the  dis- 
torted  lattice  surrounding  a  dislocation and are  preferentially 
removed  during  etch-channel  formation  [43]. 

VI. RESONANT DEVICES 
When plane  acoustic waves propagate in isotropic  sub- 

stances such as  glass, it is  found that two  types of wave motion 
are  possible.  One type is  called  a  longitudinal  or  compressional 
wave  where  the  particle motion is  parallel to the  direction of 
wave propagation. The other wave, called  a  shear  wave, has 
motions  that  are  perpendicular  to  the  propagation  direction. In 
fact,  there  are  two  shear  waves with different  polarizations,  but 
identical  speeds  making  a total of three bulk acoustic  waves. 

When the plane  acoustic  wave  propagates in a  crystal such 
as  quartz,  it is found that there  are  still  three  waves,  but 
each  contains both shear and longitudinal  motions.  These  are 
called  quasi-longitudinal and quasi-shear  waves,  depending 
upon which motion is  predominant. When verbal  precision 
is not an issue, the qualifier "quasi" is usually dropped.  The 
two  shear waves in general have different  speeds; they are 
both slower than the compressional  wave.  The three particle 
motions  associated with the  three waves are  still  mutually 
perpendicular to each  other,  but  are in general  neither  along 
nor perpendicular  to the direction of wave  travel. When 
a  crystal  is  piezoelectric, the propagation of the  acoustic 
wave produces, in the quasistatic  approximation, an electric 
field in the direction of travel.  This  property  affects  the 
generation of acoustic  modes in a  crystal  resonator that uses 
external  electrodes  disposed  on  the  major  plate  surfaces.  The 
presence of piezoelectricity  also  further  tilts  the  particle motion 
vectors  for the three plane  waves, but they remain mutually 
orthogonal. 

If the plane wave (longitudinal  or  shear) in a  piezoelectric 
medium encounters  a  free  surface  parallel  to  itself, then it 
will freely reflect as  a  wave of the same type under  certain 
conditions; in general,  the reflection consists of  an admixture 
of all three wave types,  depending on the electrical boundary 
conditions. If there  are  two such parallel  boundaries, the 
piezoelectric  crystal  is then called  a  plate and acoustic  waves 
reflecting back and forth  between the free  surfaces  combine to 
constitute  modes of vibration at particular  frequencies  called 
resonances. If the surfaces  are  coated with electrodes, then the 
imposition of electrical  boundary  conditions in the  form of a 
short  circuit, an open  circuit, or an impedance  condition  allows 
one to adjust  the  critical  frequencies of the vibrating  structure. 
This  mechanically  vibrating  structure  can be characterized by 
the Butterworth-Van Dyke equivalent  circuit in the vicinity of 
any single  resonance. 

A. Intrinsic Properties and Device Geometry 

It  is important to understand the limitations  resulting  from 
the material itself and the limitations  resulting  from  the 
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Fig. 10. Values of Q for  .4T-cut  shear vibrating plates of different frequency, 
size and configuration, and the most probable Q versus frequency for quartz 
itself [3]. Slopes of -1 and +l are depicted. 

geometry of the  device in a  particular  application.  The  intrinsic 
internal  friction in quartz,  for  example,  limits the maximum 
obtainable Q. The room temperature  intrinsic Q of 16 x lo6 
at 1 MHz can be found  from  the  well-known  curve of Warner 
[3] shown in Fig. 10. Intrinsic Q and frequency  are  inversely 
related  such  that Q . f is  constant.  The  data in Fig.  10  were 
obtained by evaluating  quartz  plates of different  frequencies, 
sizes, and configurations. All groups of resonators  have  peaks 
of their  Q-values which occur at different  frequencies.  The 
peaks  are,  approximately, the intersections on a  log-log  scale 
of two straight  lines with slopes of +l and - 1. The - 1 slope 
is fixed by the f-' dependency of Q. It represents  a  limitation 
imposed by the quartz  itself.  The + l  slope  is an indication that 
"mounting" losses become increasingly  greater when a  quartz 
plate of a  given  diameter  is  operated  at  decreasingly  lower 
frequencies. Based on  the data of Fig. 10, the  average T~ values 
are  plotted in Fig. 11 versus  the  dimensionless  parameter, the 
diameter-to-thickness  ratio. In comparing  Fig. 10 to  Fig.  11, 
the separate  curves of Fig. 10 for  various  values of diameter 
are  normalized and grouped  closer  together in Fig. 11. Lines 
of positive unit slope in Fig. 10 become lines of -2  slope, 
while  those of negative unit slope  become  lines of zero  slope 
in Fig. 11. The zero  slope region indicates  the  presence of 
a  constant  intrinsic  loss,  independent of plate  geometry.  The 
intrinsic  value of T I  for  AT-cut  resonators is -10  fs. Fig. 11 
shows that this  value  is  closely  approached in some  cases. In 
other  cases,  the  presence of other loss mechanisms  such  as 
mounting  losses  and  acoustic energy lost to unwanted modes 
result in higher  values of effective q .  

The  plane  wave  concept  assumes the plate has infinite 
lateral  extension. If a  real  resonator  plate has a  diameter 50 
to 100 times its thickness, then the plate  appears  infinite 
in comparison to the  propagating  acoustic  wavelength. In 
this case,  lateral  variations in the wave  do not have to be 
considered. When these  lateral  variations  can be neglected, 
the  modes  are  called  simple  thickness  modes.  For bulk wave 
resonators with large diameter-to-thickness  ratio, it is  easy 
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Fig. 1 1 .  Time constant rl for .AT-cut quartz plates as a function of 
diameter-thickness ratio, average values. Plate diameters and overtones (U) 
are given in the legend [46]. 

to design the mounting structure such that only the intrinsic 
friction in the material  is involved in the time constant. As 
the diameter-to-thickness ratio becomes much lower than 50, 
mounting losses increase and must be considered.  The general 
case of simple thickness modes, too comprehensive to be 
discussed here,  is treated in [44]  and  for the same reason, 
the practical aspects of quartz resonator design are adequately 
addressed in [45], including how  the effective time constant, 
7 1 ,  increases with diameter-to-thickness ratio. Fig. 12 shows 
that a diameter-to-thickness ratio  of about 50 represents a 
dividing line. For ratios below 50, contouring and mounting 
are important. For ratios greater than 50 the 71 should be 
constant, but the figure shows q increases in some cases. This 
is attributed to lack of parallelism of the crystal blank faces. 
For large ratios, maintaining sufficient parallelism becomes 
important [46]. 

B. Limits on Achieving Resonance with Plates 

What  are the maximum frequency/overtone limits imposed 
on plate resonators by material values? The following argu- 
ment is an attempt to answer this question. 

The figure of merit, F of a resonator is  defined as [ l ] ,  [45], 
1471 

3 = Q/r .  (15) 

In [47] it is justified that when a resonator ceases to possess 
an inductive region, i.e., when the resonant and antiresonant 
frequencies are equal ( f ~  = f ~ ) ,  resonance ceases and at this 
point it  is explained in [45], [47] that F 2 .  If  we want to 
relate maximum operating frequency and maximum useable 
harmonic for a material we set 3 = 2 ;  then 

3 = 2 = Q / r  = (27r~l ) - ' ( l / j )  ( 8 k 2 / r 2 )  (1/M2) 

= (4k2/r3rl) ( f ~ ~ 1 - l .  (16) 

* n  = 5 
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Fig. 12. Time constant r1 for shaped, .4T-cut, quartz plates in air as a 
function of diameter-thickness ratio, with overtone ( 1 0  as parameter, minimum 
values, room temperature [46]. 

so 

This gives the maximum operating frequency for a given 
overtone (and material). Further, if we can relate frequency 
to harmonic and thickness ( t  = 2h): 

f ( h . f )  = f = operating frequency at the Mth harmonic. 
= .v, . lW/ t ,  

(18) 
where N O  = "frequency  constant" = v/2 and v is given in 
(10). Thus, 

If we introduce this into (17) we obtain: 

where M is  the maximum harmonic that can be  used at the 
resonator thickness t and  still have a point of zero reactance 
( f ~  = f.4, or 3 = 2) .  Since (2k2/r3r lNo)  has dimensions 
of [meter-'], we can choose to call it the reciprocal of a 
characteristic length = LO'. LO has this meaning: it  is the 
thickness ( t  = 2h) for which the maximum useable overtone 
is  unity (fundamental harmonic). Thus: 

For AT-cut  quartz, k 2  M 0.77%, T~ x 11.8 fs, N o  x 1661 d s  
and, therefore, LO M 39 nm or 390 A. The operating frequency 
at M,,, is, using (18) and (21), 



If  we define f o  = N O / &  as the fundamental  frequency of a 
plate of thickness LO, and f l  = No/t  as  the  fundamental  fre- 
quency of a  plate of thickness t ,  then the operating  frequency, 
f ,  at maximum  useable  overtone M,,,, is 

f = f y 3  . f:/3 = ( f o  . f l )  2 1 j 3  9 (23) 

or f is the  geometric mean of f o  and f : .  
The characteristic  length, LO, is a  critical  physical  parameter 

that incorporates  acoustic  velocity,  piezoelectric  coupling, 
and  phonon viscosity. Listed in Table I11 are  motional  time 
constants  and  characteristic  lengths  for  advanced  piezoelectric 
materialskuts of interest.  Using  (21) and (22) the relationships 
between  frequency,  harmonic and thickness  are  plotted  in 
Fig. 13 for  a  few of these  materialskuts.  Besides  viscosity, 
there  are, of course,  other  losses to be considered, such as 
ambient,  mounting,  electrode films-especially for very thin 
membranes,  and  contact  resistance.  However,  for  plate  res- 
onator  operation, the minimum  thickness LO, is the dominant 
factor.  Thus, the difficult  problem in achieving the maximum 
frequency/overtone  limits of plate  resonators  is not the Q of the 
device but the fabrication of very thin and uniform membranes 
with  thin  and low resistance  electrodes.  Equation  (22)  is 
plotted in Figs.  13(a) and (b)  for  the  materialskuts of interest. 
Also  plotted  on  each  curve  are  the  discrete  harmonic  points 
from  (21). One sees  the  future  potential  for  these  resonators 
for  direct  operation  at  radar  frequencies. 

C. Recent Advances 

A number of advances using new resonator  designs have 
recently been reported.  These  include  bulk  resonators  employ- 
ing  surface  transverse wave ( S W )  structures [48], mini-BVA 
[49], and new crystal  cuts  using  quartz  [50]  and  dilithium 
tetraborate [5 l]. Advanced  resonator  devices using thin-film 
technology  should be included with this group. Most thin- 
film research has been concentrated  on  composite  resonators 
employing  ZnO and AlN piezoelectric films on  substrates 
of GaAs or Si [52]. Use of these substrates  does not allow 
motional  time  constants below -16 fs. Reductions in this 
motional time constant will require the use of  low acoustic 
loss substrates  such  as  sapphire.  Edge-supported ZnO and 
AIN thin-film  resonators  have  been  reported,  but  these  have 
time constants  above  30  fs  [52].  Lower 71 edge-supported 
devices  are  possible if higher  quality  piezoelectric  materials 
can be fabricated in thin-film form. In addition, low 71 devices 
can be  realized with overmoded  resonators using piezoelectric 
films as  transducers to excite waves in low acoustic  loss 
substrates  having  parallel  surfaces [53]. If the substrate  is many 
acoustic  wavelengths  thick, the resonator  operates at a  large 
mode number and at a low q .  (See Table 111; Fig. 14 gives 
schematics of the thin-film resonators.) 

VII. CONCLUSION 
The  motional time constant, 71, was employed to compare 

different  piezoelectric  materials and devices. Use  of the time 
constant  allows  interpreting the causes of losses in vibrating 
devices and assists in attributing the losses to different mech- 
anisms,  e.g.,  intrinsic  loss,  mounting  loss,  etc.  Because of its 
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Fig. 13. Operating frequency versus plate thickness for thin membrane 
resonators of (a) temperature compensated materialskuts including: quartz 
(AT-cut) and (SC-cut), langasite (Y-cut), and dilithium tetraborate (DLTB) 
(TA-cut), subject to the constraint that the figure of merit F = 2. Symbols 
indicate harmonics 1,3,5. . . 2 5  at which different resonators of varying 
thickness operate with this constraint;  (b)  Same as (a) for nontemperature com- 
pensated materialskuts including: lithium niobate (Z-cut), langasite (X'-cut), 
and aluminum nitride and zinc oxide thin-film edge-supported resonators 
(c-axis  orientation). 

fundamental  interpretation, TI can be equivalently  evaluated 
using  pulse-echo and velocity measurements  or by using 
equivalent  circuit  parameters. 

The  equivalent  circuit  parameters  can be evaluated using 
material constants;  however, the measurable  material  prop- 
erties  are  subject to variation  depending on impurities  (e.g., 
hydrogen in quartz) and defects. In the  example of quartz, all 
impurity  concentrations  rise  with  hydrogen  concentration, and 
high  dislocation  density  directly  degrades  device  performance 
and  also  promotes  hydrogen  incorporation.  Also,  uniformity 
with respect to hydrogen  content  relates to T~ and this uni- 
formity  is  greatly  influenced  by  electrodiffusion  processing. 
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TABLE 111 
MOTIONAL TIME CONSTANTS AND CHARACTERISTIC 

LENGTHS FOR SOME PIEZOELECTRIC RESOSATORS 

Type/Cut N. Q r, k’ L. Reference 
( r n l s ~  ( X  10’) (fs) ($1 (m)  

Bulk Resonotors 

Quartz  (AT) 1 , 6 6 1  1 1 . 8  0 . 7 7  3 9 . 2 4  [ 4 5 ]  

Quartz  (ET) 2 , 5 3 6  4 , 9  0 . 3 2  6 0 . 9 9  ( 4 5 1  

Quartz  (sc) 1 , 7 9 7  1 1 . 7  0 . 2 5  1 3 0 . 9  ( 4 5 1  

Quartz  (STW) 3 . 3  24  C481 

2500  13  C491 Quartz 
(mini-BvA) 
Quartz  (TC) 1600   10   c501  

Limo, ( 8 )  1 , 7 8 7   2 . 9 4   6 0 . 7   0 . 1 3   [ 5 8 ]  

LA,GalSiO,a 1 , 3 8 4  

La,Ga,SiO,, 2 , 8 9 2   4 . 2   0 . 6 4   2 9 . 4 2   [ 8 , 9 , 1 3 ]  

(Yl 

( X )  + 

(TA) 

6 . 3   2 . 8 9   4 . 6 8   [ 8 , 9 , 1 3 ]  

Li,B,?, 2 , 5 5 0  4 5 0  7 . 8  1 . 3 2   2 3 . 3 6   [ 5 1 , 5 4 ]  

Thin-Film Resonators 
zno  (c-axis) 2,500‘ 7 4 5  8 2 1 . 7 9   [ 5 2 ]  
( e d g e - s p t ‘ d )  

A1N  (C-Axis) 5,000‘ 5 32 9 2 7 . 5 5   [ 5 2 ]  
l e d u e - s o t ’ d l  

+Measured  for the a-mode. 
‘Measured for the b-mode. 
’ Assuming a thickness of 5 pm. 

ELECTRODES PIEZOELECTRIC ELECTRODES 

ELECTRODES PIEZOELECTRIC PIEZOELECTRIC 

GROUND PLANE 

( C )  (d) 

Fig. 14.  One- and two-port thin-film resonator configurations for microwave 
frequencies: (a) a composite structure that  uses a p+ layer a5 an etch 
stop  for a selective chemical etch, the resultant p+membrane is used as a 
platform for subsequent deposition of piezoelectric layers; (b) an overmoded 
resonator consisting of a thin-film piezoelectric transducer fabricated on a 
low-loss  (Z-cut sapphire) substrate having reflecting surfaces; (c) a thin-film 
fundamental mode resonator supported by  the edges of a substrate; and (d) a 
stacked crystal filter having two single layers of piezoelectric film, connected 
in series to bring the output electrode to the surface [53] .  

In addition, T~ can be increased by the mobility of impurities 
under vibrational stress and the position of defects with respect 
to high stress regions (nodes) in resonators. 

For  quartz resonator devices operating above 10 MHz, 
internal friction losses dominate 71.  A large part of these 
losses arises from  defects and impurities in the crystal; these 
are  dependent  on the growth  and postgrowth (electrodiffusion) 
processes. Since  the internal friction has been correlated with 
IR absorption, a simple IR test can be used for  quality  control. 

For the  singular topic of the maximum frequency limit 
imposed  on a resonator plate by material values, a physical 

parameter L,-,, a characteristic  length,  was identified. This 
length  is the thickness of a plate resonator  for which the max- 
imum useable overtone  is the fundamental  harmonic; it  points 
to the future availability of membrane resonators operating 
at frequencies well above  current  limits [45], [55]-[57].  A 
number of advances leading to low motional time constants 
by  using  new materials and  new devices were discussed and 
their characteristic lengths were compared. 
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