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A tutorial on the design and development of automatic speaker-
recognition systems is presented. Automatic speaker recognition
is the use of a machine to recognize a person from a spoken
phrase. These systems can operate in two modes: toidentify
a particular person or toverify a person’s claimed identity.
Speech processing and the basic components of automatic speaker-
recognition systems are shown and design tradeoffs are discussed.
Then, a new automatic speaker-recognition system is given. This
recognizer performs with 98.9% correct identification. Last, the
performances of various systems are compared.
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I. INTRODUCTION

In keeping with this special issue on biometrics, the focus
of this paper is on facilities and network access-control
applications of speaker recognition. Speech processing is a
diverse field with many applications. Fig. 1 shows a few of
these areas and how speaker recognition relates to the rest
of the field; this paper focuses on the three boxed areas.

Speaker recognition encompasses verification and iden-
tification. Automatic speaker verification (ASV) is the use
of a machine to verify a person’s claimed identity from
his voice. The literature abounds with different terms for
speaker verification, including voice verification, speaker
authentication, voice authentication, talker authentication,
and talker verification. In automatic speaker identification
(ASI), there is noa priori identity claim, and the system
decides who the person is, what group the person is a
member of, or (in the open-set case) that the person is
unknown. General overviews of speaker recognition have
been given in [2], [12], [17], [37], [51], [52], and [59].

Speaker verification is defined as deciding if a speaker is
whom he claims to be. This is different than the speaker
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Fig. 1. Speech processing.

identification problem, which is deciding if a speaker is a
specific person or is among a group of persons. In speaker
verification, a person makes an identity claim (e.g., by
entering an employee number or presenting his smart card).
In text-dependent recognition, the phrase is known to the
system and can be fixed or prompted (visually or orally).
The claimant speaks the phrase into a microphone. This
signal is analyzed by a verification system that makes the
binary decision to accept or reject the user’s identity claim
or possibly to report insufficient confidence and request
additional input before making the decision.

A typical ASV setup is shown in Fig. 2. The claimant,
who has previously enrolled in the system, presents an
encrypted smart card containing his identification informa-
tion. He then attempts to be authenticated by speaking a
prompted phrase(s) into the microphone. There is generally
a tradeoff between accuracy and test-session duration. In
addition to his voice, ambient room noise and delayed
versions of his voice enter the microphone via reflective
acoustic surfaces. Prior to a verification session, users must
enroll in the system (typically under supervised conditions).
During this enrollment, voice models are generated and
stored (possibly on a smart card) for use in later verification
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Fig. 2. Typical speaker-verification setup.

Table 1 Sources of Verification Error

sessions. There is also generally a tradeoff between accu-
racy and the duration and number of enrollment sessions.

Many factors can contribute to verification and iden-
tification errors. Table 1 lists some of the human and
environmental factors that contribute to these errors, a few
of which are shown in Fig. 2. These factors generally are
outside the scope of algorithms or are better corrected by
means other than algorithms (e.g., better microphones).
These factors are important, however, because no matter
how good a speaker-recognition algorithm is, human er-
ror (e.g., misreading or misspeaking) ultimately limits its
performance.

A. Motivation

ASV and ASI are probably the most natural and econom-
ical methods for solving the problems of unauthorized use
of computer and communications systems and multilevel
access control. With the ubiquitous telephone network and
microphones bundled with computers, the cost of a speaker-
recognition system might only be for software.

Biometric systems automatically recognize a person by
using distinguishing traits (a narrow definition). Speaker
recognition is a performance biometric, i.e., you perform
a task to be recognized. Your voice, like other biometrics,
cannot be forgotten or misplaced, unlike knowledge-based
(e.g., password) or possession-based (e.g., key) access-
control methods. Speaker-recognition systems can be made
somewhat robust against noise and channel variations [33],
[49], ordinary human changes (e.g., time-of-day voice
changes and minor head colds), and mimicry by humans
and tape recorders [22].

Fig. 3. Generic speaker-verification system.

B. Problem Formulation

Speech is a complicated signal produced as a result
of several transformations occurring at several different
levels: semantic, linguistic, articulatory, and acoustic. Dif-
ferences in these transformations appear as differences in
the acoustic properties of the speech signal. Speaker-related
differences are a result of a combination of anatomical
differences inherent in the vocal tract and the learned speak-
ing habits of different individuals. In speaker recognition,
all these differences can be used to discriminate between
speakers.

C. Generic Speaker Verification

The general approach to ASV consists of five steps:
digital speech data acquisition, feature extraction, pattern
matching, making an accept/reject decision, and enrollment
to generate speaker reference models. A block diagram
of this procedure is shown in Fig. 3. Feature extraction
maps each interval of speech to a multidimensional feature
space. (A speech interval typically spans 10–30 ms of the
speech waveform and is referred to as a frame of speech.)
This sequence of feature vectors is then compared to
speaker models by pattern matching. This results in a match
score for each vector or sequence of vectors. The match
score measures the similarity of the computed input feature
vectors to models of the claimed speaker or feature vector
patterns for the claimed speaker. Last, a decision is made to
either accept or reject the claimant according to the match
score or sequence of match scores, which is a hypothesis-
testing problem.

For speaker recognition, features that exhibit high speaker
discrimination power, high interspeaker variability, and
low intraspeaker variability are desired. Many forms of
pattern matching and corresponding models are possible.
Pattern-matching methods include dynamic time warping
(DTW), the hidden Markov model (HMM), artificial neural
networks, and vector quantization (VQ). Template models
are used in DTW, statistical models are used in HMM, and
codebook models are used in VQ.

D. Overview

The purpose of this introductory section is to present a
general framework and motivation for speaker recognition,
an overview of the entire paper, and a presentation of
previous work in speaker recognition.

Section II contains an overview of speech processing,
including speech signal acquisition, the data base used
in later experiments, speech production, linear prediction
(LP), transformations, and the cepstrum. Section III
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presents feature selection, the divergence measure, and
the Bhattacharyya distance. This section is highlighted
by the development of the divergence shape measure and
the Bhattacharyya distance shape. Section IV introduces
pattern matching and Section V presents classification,
decision theory, and receiver operating characteristic
(ROC) curves. Section VI describes a simple but effective
speaker-recognition algorithm. Section VII demonstrates
the performance of various speaker-recognition algorithms,
and Section VIII concludes by summarizing this paper.

E. Previous Work

There is considerable speaker-recognition activity in in-
dustry, national laboratories, and universities. Among those
who have researched and designed several generations of
speaker-recognition systems are AT&T (and its derivatives);
Bolt, Beranek, and Newman; the Dalle Molle Institute
for Perceptual Artificial Intelligence (Switzerland); ITT;
Massachusetts Institute of Technology Lincoln Labs; Na-
tional Tsing Hua University (Taiwan); Nagoya Univer-
sity (Japan); Nippon Telegraph and Telephone (Japan);
Rensselaer Polytechnic Institute; Rutgers University; and
Texas Instruments (TI). The majority of ASV research is
directed at verification over telephone lines [36]. Sandia
National Laboratories, the National Institute of Standards
and Technology [35], and the National Security Agency [8]
have conducted evaluations of speaker-recognition systems.

Table 2 shows a sampling of the chronological advance-
ment in speaker verification. The following terms are used
to define the columns in Table 2: “source” refers to a cita-
tion in the references, “org” is the company or school where
the work was done, “features” are the signal measurements
(e.g., cepstrum), “input” is the type of input speech (labora-
tory, office quality, or telephone), “text” indicates whether
a text-dependent or text-independent mode of operation
is used, “method” is the heart of the pattern-matching
process, “pop” is the population size of the test (number
of people), and “error” is the equal error percentage for
speaker-verification systems “” or the recognition error
percentage for speaker identification systems “” given
the specified duration of test speech in seconds. This
data is presented to give a simplified general view of
past speaker-recognition research. The references should
be consulted for important distinctions that are not in-
cluded, e.g., differences in enrollment, differences in cross-
gender impostor trials, differences in normalizing “cohort”
speakers [53], differences in partitioning the impostor and
cohort sets, and differences in known versus unknown
impostors [8]. It should be noted that it is difficult to
make meaningful comparisons between the text-dependent
and the generally more difficult text-independent tasks.
Text-independent approaches, such as Gish’s segmental
Gaussian model [18] and Reynolds’ Gaussian Mixture
Model [49], need to deal with unique problems (e.g., sounds
or articulations present in the test material but not in
training). It is also difficult to compare between the binary-
choice verification task and the generally more difficult
multiple-choice identification task [12], [39].

The general trend shows accuracy improvements over
time with larger tests (enabled by larger data bases), thus
increasing confidence in the performance measurements.
For high-security applications, these speaker-recognition
systems would need to be used in combination with other
authenticators (e.g., smart card). The performance of current
speaker-recognition systems, however, makes them suitable
for many practical applications. There are more than a
dozen commercial ASV systems, including those from
ITT, Lernout & Hauspie, T-NETIX, Veritel, and Voice
Control Systems. Perhaps the largest scale deployment of
any biometric to date is Sprint’s Voice FONCARD, which
uses TI’s voice verification engine.

Speaker-verification applications include access control,
telephone banking, and telephone credit cards. The ac-
counting firm of Ernst and Young estimates that high-tech
computer thieves in the United States steal $3–5 billion
annually. Automatic speaker-recognition technology could
substantially reduce this crime by reducing these fraudulent
transactions.

As automatic speaker-verification systems gain wide-
spread use, it is imperative to understand the errors made
by these systems. There are two types of errors: the false
acceptance of an invalid user (FA or Type I) and the false
rejection of a valid user (FR or Type II). It takes a pair
of subjects to make a false acceptance error: an impostor
and a target. Because of this hunter and prey relationship,
in this paper, the impostor is referred to as a wolf and the
target as a sheep. False acceptance errors are the ultimate
concern of high-security speaker-verification applications;
however, they can be traded off for false rejection errors.

After reviewing the methods of speaker recognition,
a simple speaker-recognition system will be presented.
A data base of 186 people collected over a three-month
period was used in closed-set speaker identification
experiments. A speaker-recognition system using methods
presented here is practical to implement in software on
a modest personal computer. The example system uses
features and measures for speaker recognition based
upon speaker-discrimination criteria (the ultimate goal of
any recognition system). Experimental results show that
these new features and measures yield 1.1% closed-set
speaker identification error on data bases of 44 and 43
people. The features and measures use long-term statistics
based upon an information-theoretic shape measure
between line spectrum pair (LSP) frequency features. This
new measure, thedivergence shape, can be interpreted
geometrically as the shape of an information-theoretic
measure called divergence. The LSP’s were found to be
very effective features in this divergence shape measure.

The following section contains an overview of digital
signal acquisition, speech production, speech signal pro-
cessing, LP, and mel cepstra.

II. SPEECH PROCESSING

Speech processing extracts the desired information from
a speech signal. To process a signal by a digital computer,
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Table 2 Selected Chronology of Speaker-Recognition Progress

the signal must be represented in digital form so that it can
be used by a digital computer.

A. Speech Signal Acquisition

Initially, the acoustic sound pressure wave is trans-
formed into a digital signal suitable for voice process-
ing. A microphone or telephone handset can be used to
convert the acoustic wave into an analog signal. This
analog signal is conditioned with antialiasing filtering (and
possibly additional filtering to compensate for any channel
impairments). The antialiasing filter limits the bandwidth
of the signal to approximately the Nyquist rate (half the

sampling rate) before sampling. The conditioned analog
signal is then sampled to form a digital signal by an
analog-to-digital (A/D) converter. Today’s A/D converters
for speech applications typically sample with 12–16 bits
of resolution at 8000–20 000 samples per second. Over-
sampling is commonly used to allow a simpler analog
antialiasing filter and to control the fidelity of the sampled
signal precisely (e.g., sigma–delta converters).

In local speaker-verification applications, the analog
channel is simply the microphone, its cable, and analog
signal conditioning. Thus, the resulting digital signal can
be very high quality, lacking distortions produced by
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Table 3 The YOHO Corpus

transmission of analog signals over long-distance telephone
lines.

B. YOHO Speaker-Verification Corpus

The work presented here is based on high-quality sig-
nals for benign-channel speaker-verification applications.
The primary data base for this work is known as the
YOHO Speaker-Verification Corpus, which was collected
by ITT under a U.S. government contract. The YOHO
data base was the first large-scale, scientifically controlled
and collected, high-quality speech data base for speaker-
verification testing at high confidence levels. Table 3 de-
scribes the YOHO data base [21]. YOHO is available from
the Linguistic Data Consortium (University of Pennsylva-
nia), and test plans have been developed for its use [8].
This data base already is in digital form, emulating the
third generation Secure Terminal Unit’s (STU-III) secure
voice telephone input characteristics, so the first signal
processing block of the verification system in Fig. 3 (signal
conditioning and acquisition) is taken care of.

In a text-dependent speaker-verification scenario, the
phrases are known to the system (e.g., the claimant is
prompted to say them). The syntax used in the YOHO
data base is “combination lock” phrases. For example,
the prompt might read, “Say: twenty-six, eighty-one, fifty-
seven.”

YOHO was designed for U.S. government evaluation
of speaker-verification systems in “office” environments.
In addition to office environments, there are enormous
consumer markets that must contend with noisy speech
(e.g., telephone services) and far-field microphones (e.g.,
computer access).

C. Speech Production

There are two main sources of speaker-specific character-
istics of speech: physical and learned. Vocal tract shape is
an important physical distinguishing factor of speech. The
vocal tract is generally considered as the speech production
organs above the vocal folds. As shown in Fig. 4 [14], this
includes the following:

• laryngeal pharynx (beneath the epiglottis);

• oral pharynx (behind the tongue, between the epiglottis
and velum);

Fig. 4. Human vocal system. (Reprinted with permission from J.
Flanagan,Speech Analysis and Perception,2nd ed. New York and
Berlin: Springer-Verlag, 1972, p. 10, Fig. 2.1. Springer-Verlag.)

• oral cavity (forward of the velum and bounded by the
lips, tongue, and palate);

• nasal pharynx (above the velum, rear end of nasal
cavity);

• nasal cavity (above the palate and extending from the
pharynx to the nostrils).

An adult male vocal tract is approximately 17 cm long [14].
The vocal folds (formerly known as vocal cords) are

shown in Fig. 4. The larynx is composed of the vocal folds,
the top of the cricoid cartilage, the arytenoid cartilages, and
the thyroid cartilage (also known as “Adam’s apple”). The
vocal folds are stretched between the thyroid cartilage and
the arytenoid cartilages. The area between the vocal folds
is called the glottis.

As the acoustic wave passes through the vocal tract, its
frequency content (spectrum) is altered by the resonances of
the vocal tract. Vocal tract resonances are calledformants.
Thus, the vocal tract shape can be estimated from the
spectral shape (e.g., formant location and spectral tilt) of
the voice signal.

Voice verification systems typically use features derived
only from the vocal tract. As seen in Fig. 4, the human vo-
cal mechanism is driven by an excitation source, which also
contains speaker-dependent information. The excitation is
generated by airflow from the lungs, carried by the trachea
(also called the “wind pipe”) through the vocal folds (or the
arytenoid cartilages). The excitation can be characterized as
phonation, whispering, frication, compression, vibration, or
a combination of these.
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Phonated excitation (phonation) occurs when air flow is
modulated by the vocal folds. When the vocal folds are
closed, pressure builds up underneath them until they blow
apart. Then the folds are drawn back together again by
their tension, elasticity, and the Bernoulli effect. This pulsed
air stream, arising from the oscillating vocal folds, excites
the vocal tract. The frequency of oscillation is called the
fundamental frequency, and it depends upon the length,
tension, and mass of the vocal folds. Thus, fundamental
frequency is another distinguishing characteristic that is
physically based.

Whispered excitation is produced by airflow rushing
through a small triangular opening between the arytenoid
cartilages at the rear of the nearly closed vocal folds. This
results in turbulent airflow, which has a wide-band noise
characteristic [40].

Frication excitation is produced by constrictions in the
vocal tract. The place, shape, and degree of constriction
determine the shape of the broad-band noise excitation. As
the constriction moves forward, the spectral concentration
generally increases in frequency. Sounds generated by
frication are calledfricatives or sibilants. Frication can
occur without phonation (e.g., “s” as in sass) or with
phonation (e.g., “z” as in zoos).

Compression excitation results from releasing a com-
pletely closed and pressurized vocal tract. This results in
silence (during pressure accumulation) followed by a short
noise burst. If the release is sudden, astop or plosive is
generated. If the release is gradual, anaffricate is formed.

Vibration excitation is caused by air being forced through
a closure other than the vocal folds, especially at the tongue
(e.g., trilled “r”).

Speech produced by phonated excitation is calledvoiced,
speech produced by phonated excitation plus frication is
calledmixed voiced,and speech produced by other types of
excitation is calledunvoiced. Because of the differences in
the manner of production, it is reasonable to expect some
speech models to be more accurate for certain classes of
excitation than others. Unlike phonation and whispering, the
places of frication, compression, and vibration excitation
are actually inside the vocal tract itself. This could cause
difficulties for models that assume an excitation at the
bottom end of the vocal tract. For example, the LP model
assumes a vocal tract excited at a closed end. Phonation
excitation is the only one that approximates this assumption.
Thus, it is reasonable to use different models or different
weighting for those regions of speech that violate any
modeling assumptions.

The respiratory (thoracic area) plays a role in the res-
onance properties of the vocal system. The trachea is a
pipe, typically 12 cm long and 2 cm in diameter, made
up of rings of cartilage joined by connective tissue join-
ing the lungs and the larynx. When the vocal folds are
in vibration, there are resonances above and below the
folds. Subglottal resonances are largely dependent upon the
properties of the trachea [41]. Because of this physiological
dependence, subglottal resonances have speaker-dependent
properties.

Other physiological speaker-dependent properties include
vital capacity (the maximum volume of air one can blow
out after maximum intake), maximum phonation time (the
maximum duration a syllable can be sustained), phonation
quotient (ratio of vital capacity to maximum phonation
time), and glottal air flow (amount of air going through
vocal folds) [6]. Because sound and airflow are different,
these dimensions can be difficult to acquire from the acous-
tic signal alone. Plumpe, however, has shown encouraging
speaker-identification research using the glottal flow deriva-
tive waveform estimated from the acoustic signal [42].

Other aspects of speech production that could be useful
for discriminating between speakers are learned character-
istics, including speaking rate, prosodic effects, and dialect
(which might be captured spectrally as a systematic shift
in formant frequencies).

D. LP

The all-pole LP models a signal by a linear combina-
tion of its past values and a scaled present input [32]

(1)

where is the present output, is the prediction order,
are the model parameters called the predictor coefficients
(PC’s), are past outputs, is a gain scaling factor,
and is the present input. In speech applications, the input

is generally unknown, so it is ignored. Therefore, the LP
approximation , depending only on past output samples,
is

(2)

This greatly simplifies the problem of estimatingbecause
the source (i.e., the glottal input) and filter (i.e., the vocal
tract) have been decoupled. The source, which corre-
sponds to the human vocal tract excitation, is not modeled
by these PC’s. It is certainly reasonable to expect that some
speaker-dependent characteristics are present in this excita-
tion signal (e.g., fundamental frequency). Therefore, if the
excitation signal is ignored, valuable speaker-verification
discrimination information could be lost.

Defining the prediction error (also know as the resid-
ual) as the difference between the actual valueand the
predicted value yields

(3)

Therefore, the prediction error is identical to the scaled
input signal . Letting represent the mean squared
error (MSE)

(4)

The minimum MSE criterion resulting from

(5)
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is

(6)

where the summation ranges onhave been omitted for
generality. If the summation is of infinite extent (or over
the nonzero length of a finite extent window [20]), the
summations on are the autocorrelations at lags for
the left sum and at lag for the right sum. This results
in the “autocorrelation method” of LP analysis. (Other
LP methods, such as “covariance” and Burg’s, arise from
variations on windowing, the extent of the signal, and
whether the summations are one or two sided.) The time-
averaged estimates of the autocorrelation at lagcan be
expressed as

(7)

The autocorrelation method yields the system of equations
named after Yule’s pioneering all-pole modeling in sunspot
analysis and given by (8)

...

...
...

...
...

...
...

...
...

(8)
The LP model parameters we seek are. For a th order
prediction, the speech signal is modeled by a-dimensional

vector. As the Yule–Walker equation shows, this requires
the computation of autocorrelations and matrix in-
version. The matrix inversion problem is greatly simplified
because of the symmetric Toeplitz autocorrelation matrix on
the left-hand side of (8), , and the form of the
autocorrelation vector on the right, which are exploited by
Durbin’s recursive algorithm (9). This algorithm is the most
efficient method known for solving this particular system of
equations [32]. Note that in the process of solving for the
predictor coefficients of order , the for all orders
less than are obtained with their corresponding mean
square prediction error . In each recursion
of Durbin’s algorithm, the prediction order is increased and
the corresponding error is determined; this can be monitored
as a stopping criterion on the prediction order

(9)

Using the model parameters, (10) represents the funda-
mental basis of LP representation. It implies thatanysignal
is defined by a linear predictor and the corresponding LP
error. Obviously, the residual contains all the information
not contained in the PC’s

(10)

From (1), the LP transfer function is defined as

(11)

which yields

(12)

where is known as the th-order inverse filter.
LP analysis determines the PC’s of the inverse filter

that minimize the prediction error in some sense. Typ-
ically, the MSE is minimized because it allows a simple,
closed-form solution of the PC’s. Minimizing MSE error
tends to produce a flat (band-limited white) magnitude
spectrum of the error signal. Hence, the inverse filter
is also known as a “whitening” filter.

If a voiced speech signal “fits the model,” then the
residual is an impulse train that repeats at the rate of
vocal-fold vibration. Therefore, the maximum prediction
errors (residual peaks) occur at the vocal-fold vibration rate.
(Many “pitch detection” algorithms exploit this property.)
Thus, in the time domain, the majority of energy lost in the
PC’s occurs in the vicinity of these “pitch peaks.”

Features are constructed from the speech model pa-
rameters; for example, the shown in (12). These LP
coefficients typically are nonlinearly transformed into per-
ceptually meaningful domains suited to the application.
Some feature domains useful for speech coding and recog-
nition include reflection coefficients (RC’s); log-area ratios
(LAR’s) or arcsin of the RC’s; LSP frequencies, introduced
by Itakura [25], [27], [54]; and the LP cepstrum [44].

1) Reflection Coefficients:If Durbin’s algorithm is used
to solve the LP equations, the reflection coefficients are the
intermediate variables in the recursion. The reflection
coefficients can also be obtained from the LP coefficients
using the backward recursion [44]

(13)

2) Log Area Ratios:The vocal tract can be modeled as an
electrical transmission line, a waveguide, or an analogous
series of cylindrical acoustic tubes. At each junction, there
can be an impedance mismatch or an analogous difference
in cross-sectional areas between tubes. At each boundary,
a portion of the wave is transmitted and the remainder
is reflected (assuming lossless tubes). The reflection co-
efficients are the percentage of the reflection at these
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Fig. 5. Acoustic tube model of speech production.

discontinuities. If the acoustic tubes are of equal length,
the time required for sound to propagate through each
tube is equal (assuming planar wave propagation). Equal
propagation times allow simpletransformation for digital
filter simulation. For example, a series of five acoustic tubes
of equal lengths with cross-sectional areas
could look like Fig. 5. This series of five tubes represents
a fourth-order system that might fit a vocal tract minus
the nasal cavity. Given boundary conditions, the reflection
coefficients are determined by the ratios of the adjacent
cross-sectional areas [44]. For ath-order system, the
boundary conditions given in (14) correspond to a closed
glottis (zero area) and a large area following the lips

(14)

Thus, the reflection coefficients can be derived from an
acoustic tube model or an autoregressive model.

If the speech signal is preemphasized prior to LP analysis
to compensate for the effects of radiation and the non-
white glottal pulse, then the resulting cross-sectional areas
are often similar to the human vocal tract configuration
used to produce the speech under analysis [44]. They
cannot be guaranteed to match, however, because of the
nonuniqueness properties of the vocal-tract configuration.
For example, to keep their lip opening small, ventriloquists
exploit this property by compensating with the remainder
of their vocal tract configuration.

Narrow bandwidth poles result in . An inaccu-
rate representation of these RC’s can cause gross spectral
distortion. Taking the log of the area ratios results in more
uniform spectral sensitivity. The LAR’s are defined as the
log of the ratio of adjacent cross-sectional areas

(15)

3) Arcsin Reflection Coefficients:To avoid the singularity
of the LAR’s at while retaining approximately
uniform spectral sensitivity, the arcsin of the RC’s are a
common choice

(16)

Table 4 Example of Eighth-Order Linear Predictor
Coefficients for the Vowel /U/ (as in “Foot”)

4) LSP Frequencies:The LSP’s are a representation of
the PC’s of the inverse filter , where the zeros
of are mapped onto the unit circle in the-plane
through a pair of auxiliary ( )-order polynomials:
(symmetric) and (antisymmetric) [27]

(17)

where the LSP’s are the frequencies of the zeros of
and . By definition, a stable LP synthesis filter has
all its poles inside the unit circle in the-plane. The
corresponding inverse filter is therefore minimum phase
inverse because it has no poles or zeros outside the unit
circle. Any minimum phase polynomial can be mapped
by this transform to represent each of its roots by a pair
of frequencies (phases) with unit magnitude. The LSP
representation of the LP filter has a direct frequency-
domain interpretation that is especially useful in efficient
(accurate and compact) coding and smoothing of the LP
filter coefficients [7].

For example, an eighth-order 8-kHz LP analysis of the
vowel /U/ (as in “foot”) had the predictor coefficients shown
in Table 4. Evaluating the magnitude of the-transform of

at equally spaced intervals on the unit circle yields
the following power spectrum having formants (vocal tract
resonances or spectral peaks) at 390, 870, and 3040 Hz
(Fig. 6). These resonance frequencies are in agreement with
the Peterson and Barney formant frequency data for the
vowel /U/ [44].

Because the PC’s are real, the Fundamental Theorem
of Algebra guarantees that the roots of and

will occur in complex conjugate pairs. Because of
this conjugate property, the bottom half of the-plane is
redundant. The LSP’s at zero and are always present
by construction of and . Therefore, the PC’s can be
represented by the number of LSP’s equal to the prediction
order and are represented by the frequencies of the zeros
of and in the top-half -plane (Fig. 7).

The LSP’s satisfy an interlacing property of the zeros of
the and polynomials, which holds for all minimum
phase polynomials [27]

(18)

Each complex zero of maps into one zero in each
and . When the and frequencies are

close, it is likely that the original zero was close to
the unit circle, and a formant is likely to be in between
the corresponding LSP’s. Distant and zeros are likely
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Fig. 6. Frequency response for the vowel /U/.

Fig. 7. LSP frequencies and LP poles in thez-plane for the vowel
/U/.

to correspond to wide bandwidth zeros of and most
likely contribute only to shaping or spectral tilt. Figs. 6
and 7 demonstrate this behavior.

E. Mel-Warped Cepstrum

The mel-warped cepstrum is a very popular feature do-
main that does not require LP analysis. It can be computed
as follows:

1) window the signal;

2) take the fast Fourier transform (FFT);

3) take the magnitude;

4) take the log;

5) warp the frequencies according to the mel scale;

6) take the inverse FFT.

The mel warping transforms the frequency scale to place
less emphasis on high frequencies. It is based on the
nonlinear human perception of the frequency of sounds
[43]. The cepstrum can be considered as the spectrum
of the log spectrum. Removing its mean reduces the ef-
fects of linear time-invariant filtering (e.g., channel distor-
tion). Often, the time derivatives of the mel cepstra (also
known as delta cepstra) are used as additional features
to model trajectory information. The cepstrum’s density
has the benefit of being modeled well by a linear com-
bination of Gaussian densities as used in the Gaussian
mixture model [49]. Perhaps the most compelling reason
for using the mel-warped cepstrum is that it has been
demonstrated to work well in speaker-recognition sys-
tems [18] and, somewhat ironically, in speech-recognition
systems [43], too.

The next section presents feature selection, estimation
of mean and covariance, divergence, and Bhattacharyya
distance. It is highlighted by the development of the di-
vergence shape measure and the Bhattacharyya distance
shape.

III. FEATURE SELECTION AND MEASURES

To apply mathematical tools without loss of generality,
the speech signal can be represented by a sequence of
feature vectors. In this section, the selection of appropriate
features is discussed, along with methods to estimate (ex-
tract or measure) them. This is known as feature selection
and feature extraction.

Traditionally, pattern-recognition paradigms are divided
into three components: feature extraction and selection,
pattern matching, and classification. Although this division
is convenient from the perspective of designing system
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components, these components are not independent. The
false demarcation among these components can lead to
suboptimal designs because they all interact in real-world
systems.

In speaker verification, the goal is to design a system that
minimizes the probability of verification errors. Thus, the
underlying objective is to discriminate between the given
speaker and all others. A comprehensive review of the state
of the art in discriminant analysis is given in [19].

A. Traditional Feature Selection

Feature extraction is the estimation of variables, called
a feature vector, from another set of variables (e.g., an
observed speech signal time series). Feature selection is
the transformation of these observation vectors to feature
vectors. The goal of feature selection is to find a transfor-
mation to a relatively low-dimensional feature space that
preserves the information pertinent to the application while
enabling meaningful comparisons to be performed using
simple measures of similarity.

Although it might be tempting at first to select all the
extracted features, the “curse of dimensionality” quickly
becomes overwhelming [13]. As more features are used,
the feature dimensions increase, which imposes severe
requirements on computation and storage in both training
and testing. The demand for a large amount of training
data to represent a speaker’s voice characteristics grows
exponentially with the dimension of the feature space.
This severely restricts the usefulness of nonparametric
procedures (no assumed underlying statistical model) and
higher order transforms.

The traditional statistical methods to reduce dimensional-
ity, and avoid this curse, are principal component analysis
and factor analysis. Principal component analysis seeks
to find a lower dimensional representation that accounts
for variance of the features. Factor analysis seeks to find
a lower dimensional representation that accounts for cor-
relations among the features. In other disciplines, prin-
cipal component analysis is called theKarhunen–Lo`eve
expansion(KLE) or eigenvector orthonormal expansion.
Since each eigenvector can be ranked by its corresponding
eigenvalue, a subset of the eigenvectors can be chosen
to minimize the MSE in representing the data. Although
KLE is optimum for representing classes with the same
mean, it is not necessarily optimum for discriminating
between classes [61]. Since speaker recognition is a dis-
crimination problem, as opposed to a representation prob-
lem, we seek other means to reduce the dimensionality
of the data.

Linear transformations are capable of dividing the feature
space by a hyperplane. If data arelinearly separable,then
they can be discriminated by a hyperplane. In the case of a
two-dimensional feature space, the hyperplane collapses to
a line. As shown in (19), given a vector random variable
distributed normally with mean and covariance and
an by transformation matrix

is an -component feature vector and

Fig. 8. Linear transformation with perfect discrimination.

, where denotes matrix transpose

(19)

Thus, a linear transformation of a multivariate normal
vector also has a normal density. Any linear combination
of normally distributed random variables is again normal.
This can be used to tremendous advantage if the feature
densities of the speakers are assumed to be normal. This
allows us to lump all the other speaker probability density
functions (pdf’s) into a single, normal pdf. Thus, pair-wise
(two-class) discriminators can be designed to separate the
claimant speaker from other speakers.

In the special case where the transformation is a unit
length vector is a scalar that represents the
projection of onto a line in the direction of . In general,

is the variance of the projection of onto the
column space of . Thus, knowledge of the covariance
matrix allows us to calculate the dispersion of the data in
any direction.

In Fig. 8, two classes are represented by boxes and circles
in a two-dimensional feature space . Here, we see
that if feature or were used by itself, discrimination
errors would occur because of the overlap between the
projected classes onto the or axes. It is quite clear,
however, that the data are perfectly linearly separable by
the dashed line. If the data are linearly transformed onto
the column space of , perfect discrimination is achieved.
In addition, one can see a clustering effect by the reduced
variance of the projection onto the column space of.

It should be noted that data may not always be discrim-
inated well by a linear transformation. In these cases, a
nonlinear transformation may lead to improved discrimina-
tion. An example is the classes defined by the members of
interlocking spirals. No line can separate the spirals, but a
nonlinear transformation could yield perfect discrimination.

The goal of speaker-recognition feature selection is to
find a set that minimizes the probability of error. Unfortu-
nately, an explicit mathematical expression is unavailable
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except for trivial cases, which hinders rigorous mathe-
matical development. Even for normal pdf’s, a numerical
integration is required to determine probability of error
(except for the equal covariance case) [15].

To make the problem mathematically tractable, one ap-
proach is to select a feature set that exhibits low in-
traspeaker variability and high interspeaker variability. A
technique that can be used to find good features is analysis
of variance (ANOVA), which involves measuring Fisher’s

-ratio (20) between the sample pdf’s of different features.
For speaker verification, high -ratios are desirable

variance of speaker means
average intraspeaker variance

(20)

Unfortunately, ANOVA requires evaluating the-ratio for
many differentcombinationsof features to really be useful.
For example, two features with high individual-ratios
might be highly correlated and, as a feature vector, less
effective than two features that individually have low-
ratios. The usefulness of the-ratio as a discrimination
measure is further reduced if the classes are multimodal
or if they have the same means. This is a fatal flaw with
any criterion that is dominated by differences between class
means. This will now be demonstrated.

1) Normal Density with Equal Means:The normal pdf is
often a good approximation to real-world density functions.
Classes will exhibit normal densities when each pattern
of a class is a random vector formed by superposition
of a random vector upon a nonrandom vector, where the
superimposed random vectors are drawn from the same
normal density. This is a good approximation to real-
world situations characterized by independent identically
distributed additive Gaussian noise. The normal pdf has
some striking advantages. It is one of the simplest para-
metric models, being characterized by a mean and variance.
In addition, the sum of normal random variables yields a
normal random variable.

The -variate normal pdfis defined as

(21)

where is the -by- covariance matrix and is an
-dimensional column component mean vector. Note that

in (21), contours of constant probability occur for values
of where the argument of the exponential is constant.
Neglecting the scaling factor of 1/2, the argument of the
exponential is referred to as theMahalanobis distance
between and

(22)

Thus, the loci of points of constant density are hyperellip-
soids of constant Mahalanobis distance to. The principal
axes of these hyperellipsoids are given by the eigenvectors
of , and their eigenvalues determine the lengths of the
corresponding axes.

Samples drawn from a multivariate normal density tend
to cluster. The center of the cluster is determined by the

Fig. 9. Unequal covariance.

Fig. 10. A bimodal class.

mean vector, and the shape of the cluster is determined
by the covariance matrix. In the bivariate case, it
is convenient for visualization to show the 1-sigma ellipse.
The 1-sigma ellipse is centered on the means, its major axes
are determined by the 1-sigma standard deviations, and its
orientation is determined by the covariance between the
variables. For example, Fig. 9 shows the bivariate 1-sigma
ellipses for two classes with equal means
and unequal covariance matrixes.

Although there is no line that can perfectly discriminate
these two classes, it is easy to visualize that a 45projection
would provide some discrimination power. However, the

-ratio would indicate that these features, and , are
powerless because the classes have the same means in the

– space.
Now consider a bimodal pdf. Fig. 10 shows class 1

as being bimodal in . The means of both classes are
the same; hence, the -ratio would show feature is
powerless. It is clear from Fig. 10, however, that is
powerful because significant discriminatory information
exists along feature .

Thus, caution should be used with any criteria, such as
the -ratio, that rely on class means. If the classes have
the same means or are not unimodal, the-ratio can be a
poor measure of discrimination power. Clearly, we seek
a criterion that more accurately portrays discrimination
power.

B. Mean and Covariance Estimation

The unbiased estimate (UBE) of the covariance is given
by the sample covariance

(23)
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Fig. 11. LSP covariance matrixes—different sessions, same
speaker.

The UBE and maximum likelihood estimate (MLE) of
covariance differ only by their scaling factors of

and , respectively, and they are both referred to
as sample covariance matrixes. When the mean is being
estimated too, the UBE is generally preferred; however,
they are practically identical when is large.

To estimate the mean and covariance when all samples
are not yet available or when dealing with a large number
of samples, recursive computation methods are desirable.
Denoting an estimate based uponsamples as and on

samples as , the sample mean is

(24)

Similarly, the UBE sample covariance matrix recursion
is

(25)

Sample covariance matrixes using LSP features are
shown in the mesh plots of Figs. 11 and 12. In each plot,
the variances and covariances of ten LSP coefficients are
represented in the vertical direction on a 1010 mesh.
From a total of 80 seconds of speech, each matrix (mesh
plot) was generated from the LSP vectors corresponding
to voiced speech.

Notice that these covariance matrixes for different ses-
sions of the same speaker appear to be similar.

These LSP covariance matrixes appear to have more
differences between speakers than similarities for the same
speaker. As shown later, the LSP covariance matrixes can
capture speaker identity.

C. Divergence Measure

Divergence is a measure of distance or dissimilarity
between two classes based upon information theory [28]. It

Fig. 12. LSP covariance matrixes—different speakers.

provides a means of feature ranking and evaluation of class-
discrimination effectiveness. The following development is
based upon Tou and Gonzalez’s derivation [61]. Let the
likelihood of occurrence of pattern, given that it belongs
to class , be

(26)

and likewise for class

(27)

Then, thediscriminating informationof an observation ,
in the Bayes classifier sense, for classversus class
can be measured by the logarithm of thelikelihood ratio:

(28)

Entropy is the statistical measure of information or uncer-
tainty. Thepopulation entropy for a given ensemble of
pattern vectors having a pdf is the expectation

(29)

Similarly, the entropy of the th class of population of
patterns is

(30)

The average discriminating informationfor class versus
class over all observations, also known asdirected di-
vergence, Kullback–Leibler number[28], or discrimination
[5], is then

(31)

Likewise, the discriminating information for class versus
class can be measured by the logarithm of the likelihood
ratio

(32)
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The average discriminating information for classis then

(33)

The divergence (the symmetric directed divergence) is
defined as the total average information for discriminating
class from class

(34)

Now, to select features with this measure, we need the
feature pdf for each pattern class. Assuming the pattern
classes are -variate normal populations

(35)

Substituting (21) into (28) yields the log likelihood ratio

(36)

where is the matrix trace function. The average informa-
tion for discrimination between these two classes is

(37)

Let the difference in the means be represented as

(38)

The average information for discrimination between these
two classes is

(39)

Hence, thedivergencefor these two normally distributed
classes is

(40)

1) Divergence Shape:Note that (40) is the sum of two
components, one based solely upon differences between
the covariance matrixes and the other involving differences
between the mean vectors,. These components can be
characterized, respectively, as differences in shape and size
of the pdf’s. This shape component, thedivergence shape,
will prove very useful later on

(41)

Equation (40) is slightly complicated, so let us consider
two simplifying special cases.

2) Equal Covariance Divergence:First, for the equal co-
variance case, let

(42)

This leaves only the last term from (37)

(43)

and therefore

(44)

Comparing this with (22), the divergence for this normal
equal covariance case is simply the Mahalanobis distance
between the two class means.

For a univariate normal equal variance ,
population

(45)

Reassuringly, the divergence in this equal covariance case
is the familiar -ratio

(46)
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3) Equal Mean Divergence:Next, for the equal popula-
tion means case

(47)

The average information is

(48)

The divergence is

(49)

4) Divergence Properties:The divergence satisfies all the
metric properties except the triangle inequality. Thus, di-
vergence is not termed a distance [29]. The following
properties of divergence are proven in the landmark paper
of Kullback and Leibler [29]. Positivity (i.e., almost positive
definite) and symmetry properties are satisfied

and iff

(50)

By counterexample, divergence can be shown to violate the
triangle inequality by taking
and ; thus, .

Additional measurements (increased dimensionality) can-
not decrease divergence

(51)

As should be expected from an information-theoretic
measure, processing cannot increase divergence [5]. Thus,
transformation of the feature space must maintain or de-
crease divergence. Furthermore, divergence can be shown
to be invariant underonto measurable transformation [29].
Kullback’s real-analysis-based proof is rather difficult to
follow, so let us consider the special case of proving the
invariance of the divergence measure under nonsingular lin-
ear transformation (affine transformation could be similarly
shown)

if where and

let where

then

.

let

then

(52)

This is a powerful result because of the many use-
ful linear transformations (e.g., discrete Fourier transform,
discrete cosine transform, and discrete convolution). For
example, if the frequency domain can be attained via linear
transformation, there is no need separately to consider this
mapping of the features. This invariance also implies that
linear feature selection is unnecessary unless dimensionality
reduction is desired.

Divergence is additive for independent measurements

(53)

This allows ranking of the importance of each feature
according to its associated divergence.

5) Example of Equal Covariance Divergence:The pre-
ceding concepts are demonstrated here based upon an
example taken from Tou and Gonzalez [61]. Intermediate
steps have been added to aid the reader. Given the
observations of (54)

(54)
where the first index indicates class or . These patterns
are shown in Fig. 13. From this figure, it is obvious that
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Fig. 13. Original observation vectors (after Tou and Gonzalez
[61]).

the data could be perfectly discriminated by a plane slicing
through the data. Let us see how the divergence measure
separates the classes.

To estimate the population means, we approximate the
mean vectors by the sample average oversamples

(55)

If the mean is not considered a random variable, the
covariance may be similarly estimated using a sample
average

(56)

For each class, plugging in the observation vectors, we find
that the means are unequal and the covariances are equal

(57)

(58)

To maximize divergence in this special case, choose the
transformation matrix as the transpose of the nonzero eigen-

value’s corresponding eigenvector of (a closed-
form solution does not exist for the general case) [62]

(59)

(60)

(61)

(62)

(63)

A perfect discrimination rule would be to choose class
2 if feature is greater than zero. These transformed
patterns are nonoverlapping between the classes and, hence,
the three-dimensional (3-D) observation vectors have been
successfully mapped to one-dimensional (1-D) points with
perfect discrimination. For comparison, the KLE transfor-
mation to 1-D fails to discriminate the data perfectly [61].

D. Bhattacharyya Distance

The calculation of error probability is a difficult task,
even when the observation vectors have a normal pdf.
Closed-form expressions for probability of error exist only
for trivial, uninteresting situations. Often, the best we can
hope for is a closed-form expression of some upper bound
of error probability. The Bhattacharyya distance is closely
tied to the probability of error as an upper bound on
the Bayes error for normally distributed classes [15]. For
normal pdf’s, theBhattacharyya distancebetween class
and , also referred to as , is

(64)

The Bhattacharyya distance directly compares the estimated
mean vector and covariance matrix of the test segment
with those of the target speaker. If inclusion of the test
covariance in the metric is useful, Bhattacharyya distance
will outperform Mahalanobis distance. Neglecting scaling,
the second term is the Mahalanobis distance using an
average covariance matrix. As will be shown later, if the
Mahalanobis distance using an average covariance matrix
performs poorly, a different pair of scale factors can yield
better discrimination.

1) Bhattacharyya Shape:Note that (64) is the sum of
two components, one based solely upon the covariance
matrixes and the other involving differences between the
mean vectors. These components can be characterized,
respectively, as an average shape and the difference in
size of the pdf’s. This shape component, theBhattacharyya
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shape, will prove very useful later on

(65)

The Bhattacharyya distance and the divergence measure
have many similarities [4], [11], [26], [30]. As will be
seen later, they both yield similar speaker-identification
performance.

The next section introduces statistical pattern matching.

IV. PATTERN MATCHING

The pattern-matching task of speaker verification in-
volves computing a match score, which is a measure of
the similarity of the input feature vectors to some model.
Speaker models are constructed from the features extracted
from the speech signal. To enroll users into the system,
a model of the voice, based on the extracted features,
is generated and stored (possibly on an encrypted smart
card). Then, to authenticate a user, the matching algorithm
compares/scores the incoming speech signal with the model
of the claimed user.

There are two types of models: stochastic models and
template models. In stochastic models, the pattern matching
is probabilistic and results in a measure of the likelihood, or
conditional probability, of the observation given the model.
For template models, the pattern matching is deterministic.
The observation is assumed to be an imperfect replica of the
template, and the alignment of observed frames to template
frames is selected to minimize a distance measure. The
likelihood can be approximated in template-based models
by exponentiating the utterance match scores

(66)

where is a positive constant (equivalently, the scores are
assumed to be proportional to log likelihoods). Likelihood
ratios can then be formed using global speaker models or
cohorts to normalize .

The template model and its corresponding distance mea-
sure is perhaps the most intuitive method. The template
method can be dependent or independent of time. An exam-
ple of a time-independent template model is VQ modeling
[58]. All temporal variation is ignored in this model, and
global averages (e.g., centroids) are all that is used. A time-
dependent template model is more complicated because it
must accommodate variability in the human speaking rate.

A. Template Models

The simplest template model consists of a single template
, which is the model for a frame of speech. The match

score between the templatefor the claimed speaker and
an input feature vector from the unknown user is given
by . The model for the claimed speaker could be
the centroid (mean) of a set of training vectors

(67)

Fig. 14. DTW of two energy signals.

Many different distance measures between the vectors
and can be expressed as

(68)

where is a weighting matrix. If is an identity
matrix, the distance isEuclidean; if is the inverse
covariance matrix corresponding to mean, then this is the
Mahalanobis distance,as shown in (22). The Mahalanobis
distance gives less weight to the components having more
variance and is equivalent to a Euclidean distance on
principal components, which are the eigenvectors of the
original space as determined from the covariance matrix
[13].

1) DTW: The most popular method to compensate for
speaking-rate variability in template-based systems is
known as DTW [55]. A text-dependent template model
is a sequence of templates that must be
matched to an input sequence . In general,

is not equal to because of timing inconsistencies in
human speech. The asymmetric match scoreis given by

(69)

where the template indexes are typically given by a
DTW algorithm. Given reference and input signals, the
DTW algorithm does a constrained, piece-wise linear map-
ping of one (or both) time axis(es) to align the two signals
while minimizing . At the end of the time warping, the
accumulated distance is the basis of the match score. This
method accounts for the variation over time (trajectories)
of parameters corresponding to the dynamic configuration
of the articulators and vocal tract. Fig. 14 shows what a
warp path looks like when the energies of the two speech
signals are used as warp features.

If the warp signals were identical, the warp path would
be a diagonal line and the warping would have no effect.
The Euclidean distance between the two signals in the
energy domain is the accumulated deviation off the dashed
diagonal warp path. The parallelogram surrounding the
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Fig. 15. Nearest neighbor method.

warp path represents the Sakoe slope constraints of the warp
[55], which act as boundary conditions to prevent excessive
warping over a given segment.

2) VQ Source Modeling:Another form of template
model uses multiple templates to represent frames of speech
and is referred to as VQ source modeling [58]. A VQ
codebook is designed by standard clustering procedures
for each enrolled speaker using his training data, usually
based upon reading a specific text. The pattern match score
is the distance between an input vector and the minimum
distance code word in the VQ codebook C. The match
score for frames of speech is

(70)

The clustering procedure used to form the codebook aver-
ages out temporal information from the code words. Thus,
there is no need to perform a time alignment. The lack
of time warping greatly simplifies the system. However, it
neglects speaker-dependent temporal information that may
be present in the prompted phrases.

3) Nearest Neighbors (NN):A new method combining
the strengths of the DTW and VQ methods is called NN
[21], [24]. Unlike the VQ method, the NN method does
not cluster the enrollment training data to form a compact
codebook. Instead, it keeps all the training data and can,
therefore, use temporal information.

As shown in Fig. 15, the interframe distance matrix is
computed by measuring the distance between test-session
frames (the input) and the claimant’s enrollment-session
frames (stored). The NN distance is the minimum distance
between a test-session frame and the enrollment frames.
The NN distances for all the test-session frames are then
averaged to form a match score. Similarly, as shown in
the rear planes of Fig. 15, the test-session frames are also
measured against a set of stored reference “cohort” speakers
to form match scores. The match scores are then combined
to form a likelihood ratio approximation [21], as described
in Section VI.

The NN method is one of the most memory- and
compute-intensive speaker-verification algorithms. It is
also one of the most powerful methods, as illustrated later
in Fig. 21.

B. Stochastic Models

Template models dominated early work in text-dependent
speaker recognition. This deterministic approach is in-
tuitively reasonable, but stochastic models recently have
been developed that can offer more flexibility and result
in a more theoretically meaningful probabilistic likelihood
score.

Using a stochastic model, the pattern-matching prob-
lem can be formulated as measuring the likelihood of an
observation (a feature vector of a collection of vectors
from the unknown speaker) given the speaker model. The
observation is a random vector with a conditional pdf that
depends upon the speaker. The conditional pdf for the
claimed speaker can be estimated from a set of training
vectors, and, given the estimated density, the probability
that the observation was generated by the claimed speaker
can be determined.

The estimated pdf can be either a parametric or a non-
parametric model. From this model, for each frame of
speech (or average of a sequence of frames), the prob-
ability that it was generated by the claimed speaker can
be estimated. This probability is the match score. If the
model is parametric, then a specific pdf is assumed and
the appropriate parameters of the density can be estimated
using the maximum likelihood estimate. For example, one
useful parametric model is the multivariate normal model.
Unbiased estimates for the parameters of this model, the
mean and the covariance , are given by (24) and (25),
respectively. In this case, the probability that an observed
feature vector was generated by the model is

model

(71)

Hence, model is the match score. If nothing is
known about the true densities, then nonparametric statistics
can be used to find the match score.

The match scores for text-dependent models are given by
the probability of a sequence of frames without assuming
the independence of speech frames. Although a correlation
of speech frames is implied by the text-dependent model,
deviations of the speech from the model are usually as-
sumed to be independent. This independence assumption
enables estimation of utterance likelihoods by multiplying
frame likelihoods. The model represents a specific sequence
of spoken words.

A stochastic model that is very popular for modeling
sequences is the HMM. In conventional Markov models,
each state corresponds to a deterministically observable
event. Thus, the output of such sources in any given state
is not random and lacks the flexibility needed here. In
an HMM, the observations are a probabilistic function of
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Fig. 16. An example of a three-state HMM.

the state, i.e., the model is a doubly embedded stochastic
process where the underlying stochastic process is not
directly observable (it is hidden). The HMM can only be
viewed through another set of stochastic processes that
produce the sequence of observations [46]. The HMM
is a finite-state machine, where a pdf (or feature vector
stochastic model) is associated with each state
(the main underlying model). The states are connected by
a transition network, where the state transition probabilities
are . For example, a hypothetical three-state
HMM is illustrated in Fig. 16.

The probability that a sequence of speech frames was
generated by this model is found by using Baum–Welch
decoding [43], [45]. This likelihood is the score for
frames of input speech given the model

model

(72)

This is a theoretically meaningful score. HMM-based meth-
ods have been shown to be comparable in performance to
conventional VQ methods in text-independent testing [60]
and more recently to outperform conventional methods in
text-dependent testing (e.g., [48]).

Classification methods and statistical decision theory
complete the system presentation and are presented in the
following section.

V. CLASSIFICATION AND DECISION THEORY

Having computed a match score between the input
speech-feature vector and a model of the claimed speaker’s
voice, a verification decision is made whether to accept
or reject the speaker or to request another utterance (or,
without a claimed identity, an identification decision is
made). The accept or reject decision process can be an
accept, continue, time-out, or reject hypothesis-testing
problem. In this case, the decision-making, or classification,
procedure is a sequential hypothesis-testing problem [63].

A. Hypothesis Testing

Given a match score, the binary choice ASV classification
problem involves choosing between two hypotheses: that
the user is the claimed speaker or that he is not the claimed
speaker (an impostor). Let be the hypothesis that the
user is an impostor and let be the hypothesis that the
user is, indeed, the claimed speaker. As shown in Fig. 17,

Fig. 17. Valid and impostor densities.

Table 5 Probability Terms and Definitions

the match scores of the observations form two different
pdf’s according to whether the user is the claimed speaker
or an impostor.

The names of the probability areas in Fig. 17 are given
in Table 5. To find a given performance probability area,
the hypothesis determines over which pdf to integrate, and
the threshold determines which decision region forms the
limits of integration.

Let be the conditional density function of the
observation score generated by speakers other than the
claimed speaker, and likewise for the claimed
speaker. If the true conditional score densities for the
claimed speaker and the other speakers are known, then the
Bayes test with equal misclassification costs for speaker
is based upon the likelihood ratio for speaker [15]

(73)

Fig. 18 shows an example of two score pdf’s. The
probability of error, which is minimized by Bayes’ decision
rule, is determined by the amount of overlap in the two
pdf’s. The smaller the overlap between the two pdf’s,
the smaller the probability of error. The overlap in two
Gaussian pdf’s with means and and equal variance

can be measured by the-ratio

(74)

If the true conditional score densities for the claimed
speaker and other speakers are unknown, the two pdf’s
can be estimated from sample experimental outcomes. The
conditional pdf given true speaker is
estimated from the speaker’s own scores using his model.
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Fig. 18. An example of score densities.

The conditional pdf for impostors, , is estimated
from other speakers’ scores using speaker’s model.

Now that the likelihood ratio for speaker can
be determined, the classification problem can be stated as
choosing a threshold so that the decision rule is

if
choose
choose

(75)

The threshold can be determined by

1) setting equal to an estimate of to approx-
imate minimum error performance, where and

are the a priori probabilities that the user is
an impostor and that the user is the true speaker,
respectively;

2) choosing to satisfy a fixed FA or FR criterion
(Neyman–Pearson);

3) varying to find different FA/FR ratios and choosing
to give the desired FA/FR ratio.

With cautious constraints, could be made speaker spe-
cific, speaker adaptive, and/or risk adaptive (e.g., break-ins
may be more likely at night).

B. ROC

Since either of the two types of errors can be reduced at
the expense of an increase in the other, a measure of overall
system performance must specify the levels of both types
of errors. The tradeoff between FA and FR is a function
of the decision threshold. This is depicted in the ROC
curve, which plots probability of FA versus probability
of FR (or FA rate versus FR rate). For example, Fig. 19
shows a hypothetical family of ROC’s plotted on a log-
log scale. The line of equal error probability is shown as a
dotted diagonal line. The family of lines at45 represents
systems with different FAFR products, with better systems
being closer to the origin. For any particular system, the
ROC is traversed by changing the threshold of acceptance
for the likelihood ratio. The straight line ROC’s in Fig. 19
indicate that the product of the probability of FA and the
probability of FR is a constant for this hypothetical system
(this is not true in general) and is equal to the square of
what is referred to as the equal error rate (EER). The EER
is the value for which the FA errors and FR errors are equal.

VI. A N EW SPEAKER-RECOGNITION SYSTEM

A simple speaker-recognition system was constructed to
evaluate the effectiveness of the LP-based features and

Fig. 19. Hypothetical ROC’s.

information theoretic measures presented in this paper. The
basic building blocks needed are 1) signal acquisition, 2)
feature extraction and selection, 3) pattern matching, and 4)
decision criterion. The signal acquisition stage in Fig. 20 is
shown for completeness; however, it is unnecessary here
because the speech signal is already available in digital
form from the YOHO CD-ROM. As shown in Fig. 20,
the feature extraction begins with an LP analysis, followed
by transformation to log area ratios (15), LSP frequencies
[zeros of (17)], and LP cepstra [44]. The LP coefficients are
estimated on unpreemphasized speech sampled at 8 kHz
every 10 ms using a tenth-order autocorrelation analysis
method with 20 ms overlapping Hamming windows and
15 Hz bandwidth expansion. The bandwidth expansion
operation replaces the LP analysis predictor coefficients

by , where for a 15 Hz expansion.
This broadens the formant bandwidths by shifting the poles
radially toward the origin in the -plane by the weighting
factor for . This LP analysis is similar to that
used in Federal Standard 1016 speech coding [7]. Thus,
this method is applicable to remote speaker recognition via
digital speech coding.

As shown in Fig. 20, feature selection consists of keeping
only voiced features (to reduce the effects of acoustic noise
and comply with LP modeling assumptions) and forms
vectors consisting of one or more of the extracted features.
For example, if ten dimensional LAR’s and ten dimensional
LP cepstra are selected, the resultant feature vector is their
20-dimensional concatenation, and it is used only if the
frame is voiced.

During training, each speaker’s mean vector (67) and
covariance matrix (23) are computed and stored as a model.
During testing, the recursive mean (24) and recursive
covariance (25) are computed and compared with the
stored models. Using the recursive estimates allows the
comparisons to occur as the speech sample is being taken
so that early recognition decisions can be made. The mean
vector and covariance matrix used to model each speaker
can be compactly represented. For the shape measures, only
the covariance matrix is needed. For a ten-dimensional
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Fig. 20. New speaker-recognition system.

feature (e.g., the LSP’s from a tenth-order LP analysis),
each speaker is represented by the covariance matrix of his
ten LSP frequencies. Because of symmetry, a covariance
matrix can be uniquely represented by its upper (or lower)
triangular section. Exploiting this symmetry, a person’s 10

10 covariance matrix can be represented with only 55
elements, thus allowing for very compact speaker models.

Various measures are computed to be evaluated in com-
bination with various features. The following measures are
computed for pattern matching: the divergence shape (41),
Bhattacharyya shape (65), Bhattacharyya distance (64),
divergence measure (40), Mahalanobis distance (22), and
Euclidean distance (68).

Last, the decision criterion is to choose the closest
speaker according to the selected feature and measure (this
criterion suffices for evaluating features and measures but
is insufficient for open-set conditions). For most real-world
applications, where open-set impostors exist, thresholding
the match score to ensure some degree of closeness is
necessary before making a recognition decision. Threshold
determination should account for the costs of different types
of errors the system can commit (e.g., a false acceptance
error might be more costly than a false rejection error) and

the probabilities of those errors’ occurring, which might
vary (e.g., attacks might be more likely at night than during
the day).

Use of the LSP features with the divergence shape
measure is shown to have strong speaker discriminatory
power in the following section. The LSP and LP cepstral
features are also found to be powerful when used with the
divergence measures and Bhattacharyya distances.

VII. PERFORMANCE

Using the YOHO prerecorded speaker-verification data
base, the following results on wolves and sheep were
measured. The impostor testing was simulated by randomly
selecting a valid user (a potential wolf) and altering his
identity claim to match that of a randomly selected target
user (a potential sheep). Because the potential wolf is
not intentionally attempting to masquerade as the potential
sheep, this is referred to as the “casual impostor” paradigm.
The full YOHO data base has ten test sessions for each of
186 subjects. For only one test session, there are

pair-wise combinations. Because of computational
limitations, not all pair-wise combinations for all ten test
sessions were tested. Thus, the simulated impostor testing
drew randomly across the ten test sessions. Testing the
system to a certain confidence level implies a minimum
requirement for the number of trials. In this testing, there
were 9300 simulated impostor trials to test to the desired
confidence [8], [22].

A. DTW System

The DTW ASV system tested here was created by
Higgins et al. [22]. This system is a variation on a DTW
approach that introduced likelihood ratio scoring via cohort
normalization in which the input utterance is compared
with the claimant’s voice model and with an alternate
model composed of models of other users with simi-
lar voices. Likelihood ratio scoring allows for a fixed,
speaker-independent, phrase-independent acceptance crite-
rion. Pseudo-randomized phrase prompting, consistent with
the YOHO corpus, is used in combination with speech
recognition to reduce the threat of playback (e.g., tape
recorder) attacks. The enrollment algorithm creates users’
voice models based upon subword models (e.g., “twen,”
“ti,” and “six”). Enrollment begins with a generic male or
female template for each subword and results in a speaker-
specific template model for each subword. These models
and their estimated word endpoints are successively refined
by including more examples collected from the enrollment
speech material [22].

Cross-speaker testing (casual impostors) was performed,
confusion matrixes for each system were generated, wolves
and sheep of DTW and NN systems were identified, and
errors were analyzed.

Table 6 shows two measures of wolves and sheep for the
DTW system: those who were wolves or sheep at least once
and those who were wolves or sheep at least twice. Thus,
FA errors occur in a very narrow portion of the population,
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Table 6 Known Wolves and Sheep of the DTW System

Table 7 Wolf and Sheep Sexual Characteristics

especially if two errors are required to designate a person as
a wolf or sheep. The difficulty in acquiring enough data to
represent the wolf and sheep populations adequately makes
it challenging to study these errors.

From the 9300 trials, there were 19 FA errors for the
DTW system. Table 7 shows that these 19 pairs of wolves
and sheep have interesting sexual characteristics. The data
base contains four times as many males as it does females,
but the 18:1 ratio of male wolves to female wolves is
disproportionate. It is also interesting to note that one male
wolf successfully preyed upon three different female sheep.

The YOHO data base provides at least 19 pairs of wolves
and sheep under the DTW system for further investigation.
It should be noted that because of computational limitations,
not all possible wolf and sheep combinations have been
tested. Even with this large data base, relatively few wolves
and sheep have been discovered to date.

B. ROC of DTW and NN Systems

Fig. 21 shows the NN system’s ROC curve and a point
on the ROC for the DTW system (ROC’s of better systems
are closer to the origin). The NN system was the first one
known to meet the 0.1% FA and 1% FR performance level
at the 80% confidence level, and it outperforms the DTW
system by about half an order of magnitude.

These overall error rates do not show the individual wolf
and sheep populations of the two systems. As shown in the
following sections, the two systems commit different errors.

C. Wolves and Sheep

FA errors due to individual wolves and sheep are shown
in the 3-D histogram plots of Figs. 22–25. Fig. 22 shows
the individual speakers who were falsely accepted as other
speakers by the DTW system. For example, the person with
an identification number of 97 328 is never a wolf and is a
sheep once under the DTW system.

The DTW system rarely has the same speaker as both
a wolf and a sheep (there are only two exceptions in
this data). These exceptions, calledwolf-sheep,probably

Fig. 21. Receiver operating characteristics.

Fig. 22. Speaker versus FA errors for the DTW system’s wolves
and sheep.

have poor models because they match a sheep’s model
more closely than their own, and a wolf’s model also
matches their model more closely than their own. These
wolf-sheepwould likely benefit from retraining to improve
their models.

Now let us look at the NN system. Fig. 23 shows the FA
errors committed by the NN system.

Two speakers, who are sheep, are seen to dominate the
NN system’s FA errors. A dramatic performance improve-
ment would result if these two speakers were recognized
correctly by the system.

Now we will investigate the relations between the NN
and DTW systems. Fig. 24 shows the sheep of the NN and
DTW systems. It should be noted from Fig. 24 that the two
sheep who dominate the FA errors of the NN system were
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Fig. 23. Speaker versus FA errors for NN system’s wolves and sheep.

Fig. 24. Speaker versus FA errors for DTW and NN systems’
sheep.

not found to be sheep in the DTW system. This suggests the
potential for making a significant performance improvement
by combining the systems.

Fig. 25 shows that the wolves of the NN system are
dominated by a few individuals who do not cause errors
in the DTW system. Again, this suggests the potential

for realizing a performance improvement by combining
elements of the NN and DTW systems. In fact, a speaker-
detection system consisting of eight combined systems
that outperforms each of its individual systems has been
demonstrated recently [35].

Fig. 26 shows the number of FA errors that occur for
various test sessions of the NN system. The figure clearly
shows that a couple of sessions, namely, numbers 880
and 1858, have an excessive number of FA errors. Upon
listening to sessions 880 and 1858, it sounds like these
sessions have more boominess than the other test (and
enrollment) sessions. The acoustic environment might have
changed during these problem sessions.

Wolves and sheep come in pairs. Fig. 27 shows the DTW
system’s wolf and sheep pairings for the YOHO data base.
It should be noted that under the DTW system, speaker
82 798 is a particularly vulnerable sheep with respect to
wolves 81 920, 82 866, and 79 866. These speakers, in
addition to the others shown in Fig. 27, will be of prime
interest in the following experiments.

D. New Speaker-Recognition System

The new speaker-recognition system, described in Sec-
tion III, was evaluated in closed-set speaker-identification
testing. Speaker identification experiments using 44 and 43
speaker subsets of the YOHO data base were performed. In
the 44-person test from the YOHO data base, each speaker
is compared to a different session of himself and to two
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Fig. 25. Speaker versus FA errors for DTW and NN systems’ wolves.

sessions of 43 other speakers using 80 seconds of speech
for training and a separate 80 seconds of speech for testing.

In the mesh plots of Figs. 28–31, each of the 44 people
is shown along the - and -axes; the -axis represents
speech collected from session one versus the-axis, with
speech collected from session two. Thus, there are 44
measures, each represented by a point on the mesh. The

-axis is the reciprocal of the measure indicated in the
figure’s caption using LSP features. Thus, “close” speakers
will cause a peak along the-axis. The ideal structure,
representing perfect speaker identification, would be a
prominent diagonal such that .

Notice the nearly ideal prominent diagonal structure in
Fig. 28 provided by the LSP divergence shape. Thus, its
discrimination power is strong. The single confusion error
made by the LSP divergence shape, shown by an arrow
in Fig. 28, is between session one of speaker 59 771 and
session two of speaker 79 082. It is interesting to note that
this is not one of the DTW system’s pairs of wolves and
sheep, as shown in Fig. 27. It is also interesting to note that
this same error occurs in all the LSP-based divergence and
Bhattacharyya distance systems, as shown by a peak at the
same location as the arrow in Fig. 28 in each of the mesh
plots in Figs. 29–31.
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Fig. 26. FA errors versus session number for NN system.

Fig. 27. Wolf and sheep pairings of the DTW system.

Fig. 28. LSP divergence shape (one error).

Notice the similarity in structure between the mesh plots
of the LSP Bhattacharyya shape shown in Fig. 29 and the
LSP divergence shape. Not only do these measures perform
similarly well but the measures also appear to be related.

Fig. 29. LSP Bhattacharyya shape (two errors).

Fig. 30. LSP Bhattacharyya distance (four errors).

Fig. 31. LSP divergence measure (three errors).

Note the slight degradation in performance of the LSP
Bhattacharyya distance in Fig. 30 versus the LSP Bhat-
tacharyya shape. The inclusion of the means in the Bhat-
tacharyya distance degraded its performance. This discov-
ery provided the insight toward the development of the
shape measures.

Note the degraded performance of the LSP divergence
measure in Fig. 31 relative to the divergence shape. Again,
inclusion of the means degraded the performance.

The power of using the LSP features in these measures is
shown by the prominent diagonal structure in the previous
figures.

The results are summarized in Table 8, with additional
identification experiments performed on the same data.
Out of the 1936 measures, Euclidean distance commits
38 confusion errors (1.96% confusion) and Mahalanobis
distance makes 21 confusion errors (1.08% confusion)
when using LP cepstrum combined with LAR features.
The LSP divergence shape performs the best among these
experiments, with only one confusion error (0.05% confu-
sion). A single confusion error across the 88 identification
tests corresponds to a 1.1% closed-set speaker-identification
error rate.
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Table 8 Confusions Using Various Features and Measures

One might conclude from these results that the means of
the features tested tend to be unreliable, while the variances
and covariances in the features have reliable discrimination
power. In fact, the author was led to the divergence shape
and Bhattacharyya shape (removing the means) by the
mediocre performance of the Euclidean and Mahalanobis
distances.

The simple LSP divergence shape is shown to have
speaker-discriminatory power. The LSP and LP cepstral
features were found to be powerful in the divergence
measures and Bhattacharyya distances. The LSP divergence
shape performs the best among these tests with only one
confusion error (0.05%); however, a larger test would be
needed to claim that this is significantly better than the
Bhattacharyya-distance-based results.

We conclude by reviewing the problem at hand and
summarizing the major concepts of this paper.

VIII. SUMMARY AND CONCLUSIONS

Automatic speaker recognition is the use of a machine
to recognize a person from a spoken phrase. Speaker-
recognition systems can be used in two modes: toidentify
a particular person or toverify a person’s claimed identity.
The basics of speaker recognition have been covered,
and simple features and measures for speaker recognition
were presented and compared with traditional ones using
speaker-discrimination criteria. The scope of this work is
limited to speech collected from cooperative users in real-
world office environments and without adverse microphone
or channel impairments.

A new speaker-recognition system was presented that
uses an information-theoretic shape measure and LSP fre-
quency features to discriminate between speakers. This
measure, thedivergence shape,can be interpreted geomet-
rically as the shape of an information-theoretic measure
called divergence. The LSP frequencies were found to
be effective features in this divergence-shape measure. A
speaker-identification test yielded 98.9% correct closed-
set speaker identification, using cooperative speakers with
high-quality telephone-bandwidth speech collected in real-
world office environments under a constrained grammar
across 44 and 43 speaker subsets of the YOHO corpus,
with 80 seconds of speech for training and testing. The
new speaker-recognition system presented here is practical
to implement in software on a modest personal computer.
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