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Performance Limiting Micropipe Defects 
in Silicon Carbide Wafers 

Philip G. Neudeck, Member, IEEE and J .  Anthony Powell, Member, IEEE 

Abstract- We report on the characteristics of a major defect 
in mass-produced silicon carbide wafers which severely limits the 
performance of silicon carbide power devices. Micropipe defects 
originating in 4H- and 6H-Sic substrates were found to cause pre- 
avalanche reverse-bias point failures in most epitaxially-grown pn 
junction devices of 1 mm2 or larger in area. Until such defects 
are significantly reduced from their present density (on the order 
of 100’s of micropipedcm’), silicon carbide power device ratings 
will be restricted to around several amps or less. 

I. INTRODUCTION 
ILICON carbide enjoys some outstanding material prop- S erty advantages over silicon for use in solid-state power 

semiconductor device applications. These include a higher 
breakdown field (five times that of Si) that permits much 
smaller drift regions (i.e., much lower drift region resistances), 
a higher thermal conductivity (three times that of Si) that 
permits better heat dissipation, and a wide bandgap energy 
(2.9 eV for 6H-SiC, 3.2 eV for 4H-Sic) that enables higher 
junction operating temperatures. A recent theoretical appraisal 
conducted by Bhatnagar and Baliga [ 11 indicates that 6H-Sic 
power MOSFET’s and diode rectifiers would operate over 
higher voltage and temperature ranges, have superior switching 
characteristics, and yet have die sizes nearly twenty times 
smaller than correspondingly rated silicon-based devices. 

Since commercial one-inch diameter wafers of silicon car- 
bide have become available only as recently as 1989, S ic  
semiconductor technology is relatively young and unoptimized 
compared to silicon. Nevertheless, some extremely promis- 
ing power device characteristics have been demonstrated in 
prototype 6H-Sic diodes, MOSFET’s, BJT’s, and thyristors 
that were produced using nonoptimized fabrication processes 
[2]-[5]. However, these results were all obtained on small- 
area devices, which are not reflective of the large areas and 
operating currents required for most power applications. To 
date, there have been no reports of larger-area (greater than 
several mm’) high-current (greater than several amps) 6H-Sic 
power devices fabricated on mass-produced SjC wafers. 

This paper reports on the identification and characteristics 
of a major defect in mass-produced 6H- and 4H-Sic wafers 
which severely limits the areas and operating currents of 
silicon carbide power devices. This defect must be dealt with 
through improvements in bulk S ic  crystal growth before truly 
advantageous silicon carbide power devices can be realized. 
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11. EXPERIMENT 
The bulk of the investigation was conducted using several 

lots of epitaxially-grown 6H-Sic pn junction diodes and one 
lot of 4H-Sic pn diodes. The devices were fabricated starting 
from commercially available 6H [6] and 4H [7] (0001) silicon- 
face S ic  substrates. Using atmospheric pressure chemical 
vapor deposition [8], [9], a variety of pn diode structures 
were homoepitaxially grown onto the S ic  wafers. The lighter- 
doped sides of the 6H junction epilayers were all at least 4 pm 
thick and doped less than 2 x 10l6 ~ m - ~ .  Based on the high 
breakdown fields that have been experimentally observed on 
small-area 6H-Sic pn diodes [ 5 ] ,  [IO], the blocking voltages 
of these devices should have been greater than 1000 V [ I l l .  
Each substrate was cut into individual 1 mm x 1 mm square 
devices using a dicing saw. The resulting 1 mm2 devices 
were IV tested on a probing station using computer con- 
trolled source/measure units with tungsten probe tips directly 
contacting the heavily doped cap layers and the substrate 
chuck contacting the backside of the wafer. The absence of 
contact metallizations facilitated unobscured viewing of the 
entire device area and did not hinder determination of the 
general rectification behavior of the diodes. 

A small number of the 1 mm2 area 6H pn diodes exhibited 
rectification to reverse voltages beyond 1000 V. However, 
greater than 80% of the 1 mm2 diodes failed at reverse voltages 
below 500 V, well below predicted avalanche breakdown 
values. The typical reverse failure characteristics for a series 
of 1 mm2 devices cut from the same n f p  6H epilayered 
wafer are shown in Fig. 1. These failure characteristics were 
qualitatively analogous to those observed on all the epitaxial 
diode samples investigated in this work. At smaller reverse 
voltages, devices from the same wafer exhibited comparable 
leakages. When the reverse bias was further increased how- 
ever, the devices each suffered a substantial sudden increase in 
current at largely differing voltages. The voltage at which the 
current suddenly increased is defined as V J F ~ ~ ~ ,  the junction 
failure voltage unique to each device. The failures did not 
appear to damage the devices, as the I V  Characteristics were 
repeatable over many sweeps. When the reverse-biased diodes 
are microscopically observed in the dark on a probing station, 
clear evidence emerges that the junction failure takes place 
at specific points. The photograph of Fig. 2 shows the highly 
localized microplasmas that typically become visible when the 
1 mm2 6H- and 4H-Sic pn diodes are reverse-biased beyond 
V J : ~ F ~ ; ~  on a probing station. Each point microplasma became 
visible at its own unique voltage, with no microplasmas being 
visible until the applied reverse bias exceeded V J F ~ ~ ~  for each 
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Fig. 1. Reverse current-voltage characteristics of a typical batch of 1 mm x 1 
mm 6H-Sic pn diodes produced on the same wafer. The diodes fail at differing 
voltages well below the 6H-Sic avalanche breakdown field due to the presence 
of localized defects in the junctions. 

Fig. 2. Point-microplasmas observed in the dark on a probing station when 
a 1 mm' 6H-Sic pn diode is reverse-biased beyond its failure voltage 1 jFarl .  

device. Though some diodes were observed to have failed 
along the saw-cut pn junction periphery, the vast majority of 
diode point failures occurred within the bulk junction area. 

Since the high-voltage performance reported in small-area 
6H-Sic pn junctions does not apparently translate into larger- 
area devices, identification of the defect responsible is clearly 
of great importance. Reproducible S i c  wafers like those 
employed in this work are presently grown using the boule 
sublimation growth technique [ 121-[ 151. These wafers are 
known to contain micropipe defects (also referred to as mi- 
cropore, microtube, capillary, or pinhole defects) which run 
perpendicular to the polished wafer surface roughly parallel 
to the crystallographic c-axis [16]-[18]. The density of the 
micropipes observed in this work was on the order of 100's of 
micropipes/cm2 in the boule-grown 6H-Sic wafers, consistent 
with those densities reported by others [3], [16]. Previously, 
these defects have been shown to adversely affect 6H-Sic 
LED's [16]. 
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Fig. 3 .  Transmission optical microscopy setup ;sed to view 6H-Sic mi- 
cropipes. The positions of micropipes within the l mm2 diode areas were 
ascertained using the edge-on viewing technique, and were found to correlate 
with the positions of failure microplasmas (Fig. 2) in the majority of cases. The 
application of bias facilitated the direct observation of failure microplasmas 
in the micropipes (Fig. 4). 

The tubal diameter of visible substrate micropipes varies 
roughly on the order of a micron, so the micropipes are 
observable when the 1 mm2 samples are viewed edge-on 
with optical transmission microscopy as illustrated in Fig. 3. 
Using this technique, the positions of the micropipes within 
the 1 mm2 diode sample areas were ascertained. These po- 
sitions were then compared with the positions of localized 
microplasmas observed during reverse junction failures (Fig. 
2). In the majority of diodes cataloged, the positions of failure 
microplasmas corresponded to micropipe locations. 

Even greater evidence of the link between epitaxial pn 
junction failure and micropipe defects is shown in Fig. 4. 
The photograph in this figure is an extreme close-up of the 
micropipes running through the epitaxial metallurgical pn 
junction of a 6H device while biased at a reverse voltage in 
excess of V J F ~ ~ ~ .  On all samples observed with this technique, 
the failure microplasmas were localized at the micropipes, 
and were only visible when the pn junction was biased 
beyond V J F ~ ~ ~ .  This and other extreme close-up edge-on views 
collected in our work verify that the 4H- and 6H-Sic substrate 
micropipe defects cause harmful electrical consequences, even 
in epitaxially grown devices. 

It is worth noting that we have not observed micropipes in 
S i c  crystals grown by the Lely technique [19] (which are not 
generally considered suitable for mass production), nor has 
there been any reported in the literature. 

111. DISCUSSION AND SUMMARY 

The establishment of micropipes in mass-produced 4H- and 
6H-Sic wafers as a defect limiting the areas of high-voltage 
pn junctions has grave near-term implications concerning the 
realization of high-current silicon carbide power devices. As 
an example, the less than 20% present-day yield for device 
sizes of 1 mm2 would practically limit the operating current 
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Fig. 4. Transmission optical micrograph (- 400X) of point microplasma 
viewed edge-on during failure. The microplasma is only visible when the 
diode is reverse-biased beyond its failure voltage ( l , > ~ ~ i l ) ,  and its location 
roughly corresponds to the position of the metallurgical pn junction (Fig. 3). 

of a 3000 V unipolar 6H-Sic power device to approximately 
1 A, assuming the device was operating near its theoretical 
maximum current density of around 100 A/cm2 [l]. Though a 
family of small-area S i c  power devices could offer advantages 
in high-temperature operation, switching speed, and radiation 
hardness [l] ,  [20], [21], the voltage and current ratings of 
silicon carbide power devices will not out-perform existing sil- 
icon power devices until improvements in S ic  crystal growth 
enable larger defect-free areas. 

Two possible mechanisms for micropipe formation have 
been put forth to date. The first suggests that micropipes are 
open core super screw dislocations that propagate along the 
C-axis from the seed crystal during growth [22]. The second 
is based upon contaminant particles introduced during the 
growth process [ 181. Therefore, we speculate that minimiza- 
tion of both contaminants and seed crystal dislocations should 
reduce micropipe densities. Palmour, et al. recently reported 
a 50% reduction in micropipe density to approximately 150 
micropipeskm’ in 6H wafers [3], but the methods used to at- 
tain the improvement were not revealed. Nevertheless, it is the 
authors’ opinion that the eradication of defects from 4H- and 
6H-Sic wafers and epilayers remains paramount and should be 
pursued vigorously so that the considerable theoretical promise 
of silicon carbide power devices can be fulfilled. 
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