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Nudging: A Method for Improving the Accuracy of

QuikSCAT Winds
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Abstract—The SeaWinds scatterometer was developed by
NASA JPL, Pasadena, CA, to measure the speed and direction of
ocean surface winds. It was then launched onboard the QuikSCAT
spacecraft. The accuracy of the majority of the swath and the size
of the swath are such that the SeaWinds on QuikSCAT Mission
(QSCAT) meets its science requirements despite shortcomings at
certain cross-track positions. Nonetheless, it is desirable to modify
the baseline processing in order to improve the quality of the less
accurate portions of the swath, in particular near the far swath
and nadir. Two disparate problems have been identified for these
regions. At far swath, ambiguity removal skill is degraded due
to the absence of inner beam measurements, limited azimuth
diversity and boundary effects. Near nadir, due to nonoptimal
measurement geometry, (measurement azimuths approximately
180 apart) there is a marked decrease in directional accuracy
even when ambiguity removal works correctly. Two algorithms
have been developed: direction interval retrieval (DIR) to address
the nadir performance issue and thresholded nudging (TN) to
improve ambiguity removal at far swath. We illustrate the impact
of the two techniques by exhibiting prelaunch simulation results
and postlaunch statistical performance metrics with respect to
ECMWF wind fields and buoy data.

Index Terms—Algorithms, backscatter, ocean winds, scatterom-
etry.

I. INTRODUCTION

SEAWINDS on QuikSCAT (QSCAT) was designed
by NASA JPL to measure ocean surface wind fields.

End-to-end simulations performed to estimate the performance
of QSCAT prior to its launch indicated that the directional ac-
curacy of the wind vectors varies across the swath. Postlaunch
comparisons between scatterometer data and analytical wind
fields support this conclusion, as does visual inspection of the
scatterometer wind fields. At far swath, ambiguity removal skill
is degraded due to the absence of inner beam measurements,
limited azimuth diversity and boundary effects. Near nadir,1due
to nonoptimal measurement geometry (measurement azimuths
approximately 180apart), there is a marked decrease in direc-
tional accuracy even when ambiguity removal works correctly.
Two algorithms have been developed to improve wind retrieval
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1In this context, nadir is taken to mean along the ground track of the satellite.
The antenna is never actually pointed perpendicular to the ground.

in these regions: direction interval retrieval (DIR) to address
the nadir performance issue and thresholded nudging (TN) to
improve ambiguity removal at far swath. These two algorithms
are now performed operationally by the JPL Ground Processing
System. The combined algorithm is referred to as direction
interval retrieval with TN (DIRTH). The DIRTH wind vectors
(as well as wind vectors produced without DIR) are included in
the QuikSCAT wind data product. In this paper, we discuss the
underlying theory behind the new algorithms (Section II) and
empirically compare their results (Section III) to those from the
baseline wind retrieval method. Wind vector accuracy relative
to analytical wind fields (ECMWF) and buoys are presented
for both the baseline and DIRTH cases.

A. Review

Before discussing the new algorithms in detail, we first
review some of the general theory of wind scatterometers as
well as some features peculiar to the QSCAT instrument. A
scatterometer is a microwave radar that measures the normal-
ized backscatter cross section. Geophysical model functions
(GMF) have been developed empirically to map ocean wind
speed and direction to [2]–[6]. The theoretical basis of this
relationship is the action of wind on small-scale (capillary)
ocean surface waves, which in turn affect the ocean surface
backscatter [7] (for a detailed overview of scatterometry, see
[1]). Fig. 1 illustrates the QSCAT-1 model function, the most
recent GMF used for QSCAT [5]. The-axis in Fig. 1 is
expressed in dB. The-axis is the angle between the radar
beam and the wind direction. This figure represents the model
function for V-polarized with a 54 incidence angle. Cases
with different incidence angles and polarization are numerically
different but similar in form.

From Fig. 1, one can conclude that a singlemeasurement
does not contain enough information to uniquely determine a
wind vector. Multiple measurements from different look geome-
tries are required. In the past, the need for multiple looks has
been met by using multiple fan-beam antennas. This configu-
ration has been used for all previous spaceborne scatterometers
including the NASA Scatterometer (NSCAT) [1] and the Euro-
pean Research Satellite scatterometers (ERS-1 and ERS-2) [17].
How QSCAT’s look geometry is designed to obtain these dif-
fering measurements is illustrated by Fig. 2.

Unlike previous scatterometers, QSCAT employs two
conically scanning antenna beams. This configuration allows
QSCAT to obtain a wider measurement swath and thus more
frequent global coverage than fan-beam scatterometers. The
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Fig. 1. QSCAT1 geophysical model function. Thex-axis represents the azimuth component of the angle between the wind direction and the radar beam. The
y-axis is the normalized backscatter cross section in dB. The multiple curves represent different wind speeds. All the plots are done for V polarization and 54
incidence angle which correspond to the QSCAT outer beam.

Fig. 2. QSCAT viewing geometry. (a) and (b) depict the sweet-spot and nadir-viewing geometries, respectively. Black squares depict 25 km� 25 km wind vector
cells. The four spacecraft locations from which the cell is viewed are depicted by dots. Arrows from the dots to the squares indicate the viewing azimuths. Circles
depict rotations of the inner and outer beams. The nadir track is represented by a dashed line and the outer edges of the swath by solid lines.

two beams differ in incidence angle (46, inner beam; 54,
outer beam) and polarization (H pol, inner beam; V pol, outer
beam). For most of the swath, every 25 km25 km cell on
the ground is measured using four different look geometry
configurations. Fore and aft measurements are obtained for
each beam. The viewing geometry differs across the swath.
For the outer portions of the swath, the viewing geometry is
suboptimal: no inner beam measurements are available and
as the extreme edge of the swath is approached, the azimuth
diversity of the measurements approaches zero. At nadir, both
beams are available, but the antenna azimuths are nearly 180

apart between fore and aft looks. As we shall see in Section II,
this is also a suboptimal viewing geometry. For a more detailed
discussion of the QSCAT instrument, see [8].

B. Baseline Wind Retrieval

Before we discuss changes to the wind retrieval algorithm,
we first describe the baseline technique. Wind retrieval was im-
plemented for the NASA Scatterometer (NSCAT) and, initially,
for QSCAT as a two step procedure: 1) a pointwise maximum
likelihood estimator to calculate a set of likely wind vectors and
2) a median filter to select the best vector from the set. In the
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Fig. 3. Wind vector probability maps for (a) a sweet spot wind vector cell
(cross-track index 20) and (b) a nadir wind vector cell (cross-track index 38.)
Thex-axis is wind direction clockwise from north. They-axis is wind speed in
m/s. Darker regions are more probable. Regions of 80% probability are enclosed
by thick solid lines. Thin solid lines depict the best speed ridges for the inner and
outer forelooking measurements. Dashed lines depict the best speed ridges for
the two sets of aft-looking measurements. Each peak of the objective function
is denoted by anX .

first step, a search is performed in the space of all possible wind
directions and speeds (a speed range of 0–50 m/s is presumed)
to maximize a function that represents the likelihood that a cer-
tain trial wind direction and speed is the actual ocean surface
wind speed and direction existent when themeasurements
were obtained. The likelihood function is

(1)

The value of theth measurement is . The corresponding
calculated measurement is obtained from the trial
wind speed , direction and measurement geometry via the
GMF. The expected standard deviation,, of the th mea-
surement is computed from known characteristics of the instru-
ment noise. The trial wind speeds and directions corresponding
to maxima of the likelihood function are found by a heuristic
search technique. The maximum likelihood estimator alone has
been shown to be insufficient to choose a unique wind vector
[10]. For a small set of measurement azimuth angles, multiple
wind vectors may yield the same set ofvalues. Even if there
are enough measurements from enough different azimuth angles
to preclude this possibility, the addition of noise can still lead
to multiple solutions of significant likelihood. For this reason,
a discrete set of feasible solutions are obtained rather than a
single solution. The solution set thus obtained is the set of local
maxima of the likelihood function. For NSCAT, this solution
set resulted in acceptable directional accuracy. The likelihood
function dropped off quickly in the neighborhood of the local
maxima, so that the chance of the true wind vector being far
away from every vector in the solution set was small. As we shall
see, the previous statement is not true for scanning pencil-beam
scatterometers like QSCAT.

After the maximum likelihood step is performed, median fil-
tering is used (with a 7 7 window size) to select among the
available solutions (ambiguities) [13], [14]. This process is ini-
tialized by selecting the closest of the two most likely ambigui-
ties to an analytical wind field. The initialization step is referred
to asnudging. Thetwomost likely ambiguities are used for his-
torical reasons. For NSCAT, by far the most common set of am-
biguities was two likely ambiguities approximately 180apart
and two other ambiguities with much lower likelihood values.

II. A LGORITHM

Two algorithms have been developed, direction interval re-
trieval (DIR) to address the nadir performance issue and TN to
improve ambiguity removal at far swath.

DIR is a set theoretical estimation technique [9]. It is similar
to the conventional (NSCAT) wind retrieval technique in that
first a set of wind vectors are determined which are consistent
with the data (solution set), then median filtering is used (spa-
tial information incorporated) to select a solution vector from
this set. DIR differs from the conventional method in that the
solution set is not a finite set of vectors, but rather a set of
disjoint one-dimensional (1-D) curves in the two-dimensional
(2-D) space of wind speed and direction. The range of wind di-
rection spanned by each of these curves is determined by a prob-
abilistic analysis of the noise on the measurements and its effect
on the directional discrimination information available (see Sec-
tion II-A)

TN is a technique for optimizing the manner in which ambi-
guity removal is initialized. In the baseline wind retrieval algo-
rithm, the closest of the two most likely ambiguities to a co-lo-
cated numerical weather product (NWP) wind vector is used to
initialize the median filter. With TN, the number of ambiguities
available for initialization is not limited to two; instead it is de-
termined by thresholding the likelihood values associated with
the ambiguities. In this manner, fewer ambiguities are consid-
ered in regions of high instrument skill and the impact of the
NWP field is lessened. On the other hand, in regions of lower
instrument skill, more ambiguities are considered and the im-
pact of the NWP field is heightened (see Section II-B).

A. Direction Interval Retrieval

For QSCAT, the rate at which the likelihood value drops off
from the maxima varies with cross-track distance. For wind
vector cells near nadir, there are large ranges of direction over
which the likelihood value is relatively similar and it is inaccu-
rate to represent the set of likely wind vectors by the likelihood
maxima alone. The DIR method addresses this problem by cal-
culating a solution set for each wind vector cell which includes
a range of wind directions around each likelihood maxima. The
extent of the ranges is determined independently for each wind
vector cell according to the specific shape of the likelihood func-
tion for that cell. Fig. 3 depicts the difference in the shape of the
likelihood function for a nadir QSCAT wind cell and a wind
cell in the optimal viewing geometry (sweet spot) portion of the
swath. The likelihood values are depicted by gray scale pixels.
Darker pixels indicate regions of greater likelihood. The bold
lines in the plots enclose regions of 80% probability. Given the
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Fig. 4. Simulated RMS direction error versus cross-track distance. Baseline and DIRTH methods are compared for four ranges of wind speeds using data from
25 simulated orbits. Cross track distance is defined to be the cross-track component of the wind vector cell position in km, with the nadir track set to zero.

QSCAT noise model, the true wind vector falls within this re-
gion with 80% probability. Notice that the 80% regions in the
NSCAT-like cell are much smaller than in the nadir wind cell,
so that choosing the likelihood maxima alone as a solution set
is a much better choice for the former than the latter. The thin
lines represent the best speed ridges for the four sets of mea-
surements (inner/fore, outer/fore, inner/aft, outer/aft). The best
speed ridge is the curve in the 2-D space of wind di-
rection and wind speed determined by choosing the wind speed,

, which maximizes the likelihood function, for each
wind direction, . For the nadir cell case, the four best speed
ridges calculated from the four sets of measurements all nearly
intersect for a large range of directions, leading to decreased di-
rectional discrimination.

The DIR technique is a set theoretical estimation technique
[9] that incorporates information from the measurements and
a model of the noise on those measurements in order to construct
the solution set. Allowing the technique to consider all possible
sets of wind vectors would be time prohibitive, so a simplifying
assumption must be made regarding the types of sets to be con-
sidered. In the baseline technique, solution sets are four or fewer
points on the best speed ridge corresponding to local likelihood
maxima. In DIR, solution sets are generalized to four or fewer
segments of the best speed ridge, with each segment including a
local maxima. This choice of solution set is justified by the em-
pirical observations that likelihood drops off sharply for speeds
away from the best speed ridge and that whenever the wind di-
rection is determined accurately, the wind speed is as well.

The endpoints of the segments are determined by estimating
error bounds in a manner similar to techniques described in
[11] and [12]. These techniques estimate probability distribu-
tions (and confidence intervals) for each measurement and then
combine information by intersecting solution sets derived from
confidence intervals on each measurement. The DIR technique
instead estimates a joint probability distribution for all the mea-
surements and then directly computes the solution set, yielding a
more accurate (and more time-consuming) result. Since most of
the information needed for the calculation is already available
from the maximum likelihood [ML] estimator and the search
space is limited to one dimension (by the best speed ridge as-
sumption) computational efficiency is not a problem.

We assume the various noisy measurements come from
mutually independent Gaussian distributions. The means and
variances of these distributions can be calculated in a manner
consistent with the ML estimator algorithm. For a given wind
vector and known measurement geometry, the geophysical
model function is used to compute the conditional mean for
each measurement. The variances are computed using
known characteristics of the instrument noise. The means and
variances are then used to determine , the con-
ditional probability density of obtaining the measurements
given the wind vector. The conditional probability is related to
the likelihood function by

(2)
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Fig. 5. Simulated RMS speed error versus cross-track distance. Baseline and DIRTH methods are compared for four ranges of wind speeds using data from 25
simulated orbits.

for some constant . However, since the purpose of wind re-
trieval is to find the most likely wind vector for a given set of
values rather than vice versa, a more relevant probability den-
sity function is , the probability density of wind
vectors given an observed set of values. This function when
integrated over any region in wind vector space yields the prob-
ability that a wind vector within that region has occurred given
the observed backscatter measurements. The two probability
density functions are related by Bayes’ Theorem,

(3)

where is the a priori probability density of wind vectors
and is the a priori probability density of observa-
tions. For a given set of measurements, is a constant.

In order to restrict the solution space to the best speed ridge
we let for ( ) on the best speed ridge and
0 everywhere else. The ML estimator as used in the baseline
technique omits . This is mathematically equivalent to
assuming that in the absence of measurements, all wind speeds
(within the range of 0–50 m/s) and directions are equally likely.
We make the same assumption with the additional constraint of
limiting the nonzero probabilities to the best speed ridge. The
extra constraint is a heuristic simplification which improves the
computational efficiency of the algorithm. It is justified by the
observation that probability density drops off rapidly with in-
creasing distance from the best speed ridge.

By combining (2) and (3) and limiting consideration to wind
vectors on the best speed ridge we get

for which the constant is chosen to satisfy the probabilistic
identity

Now that the estimation of the probability density function
(pdf) has been obtained, the solution set segments are deter-
mined by thresholding the probability. Given a threshold, a
set of directional intervals around each of the local maxima is
selected such that the sum of the widths of the intervals is min-
imized, and the integral of the pdf over the intervals is.

The choice of the threshold is an important consideration.
A value that is too low, i.e., 0.1, results in a solution set that is
too small to sufficiently represent the uncertainty in the mea-
surements. In such a case the DIR technique will not go far
enough in reducing the near nadir directional error (the base-
line technique is identical to DIR with ). A value which
is too high, i.e., 0.95, overestimates the uncertainty in the mea-
surements allowing the ambiguity removal step to oversmooth
the data. In simulation, , the value used in producing
the QSCAT wind data product, is found to be reasonable. Per-
formance is found to be insensitive to small changes in. The
choice of deserves further study because simulation studies
and analysis wind field comparisons are insufficient to deter-
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Fig. 6. RMS direction difference from ECMWF. Baseline and DIRTH methods are compared for four ranges of wind speeds. Difference is plotted versus cross
track distance, using 4500 orbits of QSCAT data. Data flagged for rain is omitted from the statistics.

Fig. 7. RMS speed difference from ECMWF. Baseline and DIRTH methods are compared for four ranges of wind speeds. Difference is plotted versus cross track
distance using 4500 orbits of QSCAT data. Data flagged for rain is omitted from the statistics.
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mine its impact on mesoscale phenomena. Depending on how
well mesoscale phenomena are preserved in the current product

may be decreased to reduce smoothing or increased to im-
prove noise removal.

Once the solution set has been calculated for each wind
vector. Ambiguity removal is performed to select a unique
solution vector from each solution set. A two-step procedure
is employed. First, one of the disjoint segments that composes
each solution set is selected by performing ambiguity removal
in the usual manner.2 Ambiguity removal is performed on the
local likelihood maximas and the segment which encloses
the selected maxima is chosen. Next, a unique vector within
the chosen segment is selected by iteratively choosing the
vector which is closest in direction to the median vector of the
surrounding 7 7 window.3 Each wind vector cell is initialized
by the maxima within the selected segment. Wind vectors are
not updated until after each median filtering pass is complete.
Passes continue until no wind vectors change by more than a
threshold amount (5) or a maximum number of passes (100)
is exceeded. In practise, the maximum number of passes is
seldom reached and typically the vast majority of the wind
vectors are determined by the fourth pass.

B. Thresholded Nudging

The baseline nudging algorithm chooses an ambiguity to ini-
tialize the median filter. The algorithm only allows one of the
two most likely ambiguities to be chosen. The rationale for that
limit is based on NSCAT experience, where we assume that the
scatterometer can choose the correct streamline and want the
nudging field to select the proper ambiguity from that line. The
other reason for limiting to two the number of ambiguities from
which the nudging field can choose is to limit the influence of
the nudging field and to rely on the scatterometer information as
much as possible. If all ambiguities are allowed to be selected by
the nudging field, the retrieved wind field would be very close
to the nudging field, defeating the point of making the measure-
ment.

The QSCAT situation is somewhat different from the NSCAT
situation. In the outer swath, the scatterometer cannot always
select the correct streamline. A significant percentage of the
time (10–15% in simulation), the ambiguity closest to the truth
is the third or fourth ranked ambiguity. Given that situation,
one method that suggests itself is to use more ambiguities for
nudging in the outer swath.

The likelihood function can be converted into an estimate
of probability (see previous section). We calculaterelative like-
lihood , a quantity proportional to for each
ambiguity .

(4)

with some constant . The value of is chosen for each
wind vector cell so that the relative likelihood of the first

2with the exception that the median filter is initialized using TN. See the next
section for more detail.

3The window size was chosen to correspond to the size used by the baseline
median filtering algorithm. Additional window sizes deserve further study both
for DIR and the standard algorithm.

Fig. 8. Cumulative probability of directional difference from buoys. Three
QSCAT data sets were compared: DIRTH, TN only and baseline data. Results
were further divided into three cross track locations: (a) far swath (750–900
km), (b) sweet spot (400–700 km) and (c) nadir (0–300 km). Thex-axis is the
directional difference from the buoy wind vector. They-axis is the cumulative
probability. A point on the curve (x; y) indicates thaty% of the buoy hits had
directional differences less thanx�. Buoy hits were restricted to a set of 24
moored NDBC buoys more than 100 km from land. A buoy was co-located with
a QSCAT wind vector if it was within 30 min in time and 25 km in distance.
Rain-flagged cells and cells with buoy wind speeds less than 7 m/s were omitted.

ranked (highest likelihood) ambiguity is one ( ).
We set the maximum rank for nudging by choosing the
number of ambiguities above a certain thresholdin relative
likelihood. For example, if there are four ambiguities and

, then the closest of the
first, second, and third ambiguities to the nudging field is
used to initialize the median filter. The optimal threshold is a
function of the quality of the nudging field. The value used in
the QSCAT data product, , was chosen to optimize
ambiguity removal skill in simulation. As we shall see in
Section III-C, comparisons of QSCAT data with buoys indicate
that TN with results in improvement in ambiguity
selection over the baseline technique. These results imply that

is reasonable for real data but not necessarily optimal.

III. STATISTICAL ANALYSIS

In this section, we discuss empirical comparisons between
the baseline wind retrieval technique and the DIRTH method.
Three types of results are presented: comparisons to analytical
wind fields, comparisons to buoys, and simulation results. Sim-
ulation studies performed prior to launch were used in the de-
velopment of the DIRTH algorithm. Although the simulation re-
sults are superseded by results obtained later from real data, they
have the advantage that they can be compared with “truth.” Real
QSCAT data can only be compared with analytical wind fields
which have their own sources of error, or buoy measurements
which are sparse and not entirely consistent with scatterometer
measurements. The simulations were performed using an exten-
sive high fidelity simulation package which has been developed
over a number of years using lessons learned during the NSCAT
mission (see [15] for an overview of the simulation strategy
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Fig. 9. Example-selected ambiguity wind field. An example of the selected wind vectors in the QSCAT wind data product as computed with TN but without
direction interval retrieval. Note the noisy nature of the vectors along the nadir track.

employed and [16] for a detailed description of the QuikSCAT
End-To-End Simulator). For these reasons, we have included a
discussion of our simulation results along with the other com-
parison metrics.

A. Simulation Study

Twenty five orbits were simulated using 1 1 ECMWF
fields as truth. Fig. 4 illustrates the selected (after ambiguity re-
moval) root mean square (RMS) direction error for the baseline
and DIRTH techniques. Results are depicted as a function of
cross track distance for four ranges of true wind speeds. Wind
speed error results are depicted similarly in Fig. 5.

Applying DIRTH significantly improves the simulated
directional RMS error across the swath for all four ranges of
wind speeds. The most noticeable improvement is at nadir
where RMS direction error is improved by more than 10for
all wind speed ranges. For most wind speed ranges and cross
track positions the RMS speed error is also improved although
not as significantly. One notable exception is a slight increase
in RMS speed error ( m/s) for wind speeds between 3
and 5.5 m/s and cross track distance between 400 and 700 km
on both sides of the swath. This degradation in performance
may be due to quantization errors in the interpolation scheme

used to calculate the DIRTH speed once the DIRTH direction
has been determined. In any case the problem is small.

Because these results are simulated, there are of course a
number of caveats worthy of examination. Perhaps, the most
unrealistic aspect of the simulation is the use of 11 true
wind fields thereby eliminating small scale changes in the wind
field from consideration. Clearly, the DIR method, because it
makes greater use of spatial information in determining the
wind vector, is more prone to losing high resolution informa-
tion. Since DIR is applied preferentially to cases in which the
quality of the directional information is subject to doubt, the
loss of useful information is theoretically minimal. Clearly,
the simulation results alone do not address this issue satis-
factorily. We justify our choice of true field, by pleading the
lack of realistic fields with small scale variation. All available
small scale fields of which we were aware are obtained from
previous scatterometers and thus have edge effects due to time
difference between passes or ambiguity removal problems.
Such edge effects might drastically impact median filtering
thereby producing confusing results. Another major caveat
of the simulation is that the geophysical model function was
treated as the truth. Although random measurement errors were
modeled extensively, the GMF was assumed to be free from
systematic error.
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Fig. 10. Example DIRTH wind field. The same wind field as in Fig. 9, with direction interval retrieval performed.

B. Comparisons to ECMWF Wind Fields

In this section, we compare QSCAT retrieved winds using
both the baseline and DIRTH techniques with European Centre
for Medium-Range Weather Forecasts (ECMWF) analysis wind
fields. The 1 1 ECMWF wind fields were used and interpo-
lated spatially (but not temporally) to the QSCAT wind vector
cell locations. ECMWF wind fields are produced every six hours
and each 100 min QSCAT orbit was only co-located with a
single ECMWF field, so that the greatest possible temporal dif-
ference is three hours and 50 min. When on occasion a partic-
ular ECMWF wind field was unavailable, the orbits temporally
co-located with that field were left out of the analysis. Of course,
one must take these comparisons with a grain of salt. Clearly,
the time difference between QSCAT and ECMWF winds and
the spatial resolution difference (25 km versus 1) can lead to
substantial differences between the two wind fields even if both
are error-free. For this reason, the magnitude of the difference
between the fields indicates little about the absolute accuracy
of either the QSCAT or ECMWF fields. However, comparing
QSCAT with ECMWF is useful as means of comparing the rel-
ative accuracy of the DIRTH and baseline wind retrieval tech-
niques, especially when used in conjunction with buoy compar-
isons and simulation results.

Fig. 6 depicts the RMS direction difference between
ECMWF and the retrieved winds. The directional differences

are plotted versus cross track distance for four ranges of
ECMWF wind speeds. Fig. 7 depicts the RMS speed differ-
ences similarly. Wind vector cells in which the QSCAT rain
contamination flag is set are omitted from the analysis.

Applying DIRTH reduces the directional differences from
ECMWF significantly across the entire swath for all ranges of
wind speeds. The impact is less than that observed in simulation
with the maximal nadir improvements of 6rather than the more
dramatic 10observed in simulation. The speed RMS difference
values are similar for the baseline and DIRTH cases. The only
substantial differences are slight advantages for DIRTH in the
mid swath region for the two highest wind speed ranges.

The ECMWF comparisons differ from the simulated results
in that the improvement due to DIRTH is smaller. There are
several reasons for this result. Notice that the differences from
ECMWF for both DIRTH and the baseline wind retrieval are
much larger than the simulated error values. This result is ex-
pected because the difference from ECMWF includes not only
the errors in the QSCAT retrieved winds but also errors in the
ECMWF wind fields, temporal differences between ECMWF
and QSCAT and any high resolution ( 1 ) information
in the QSCAT fields. Also any systematic error in the model
function will produce errors in both sets of QSCAT winds. Sys-
tematic model function error was assumed to be zero in simula-
tion.



88 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 40, NO. 1, JANUARY 2002

The addition of these extra sources of noise results in RMS
directional and speed differences being greater than the simu-
lated error values. It also results in a compression in the apparent
improvement due to DIRTH. DIRTH can reduce the errors in
the QSCAT retrieved winds and arguably smooth high resolu-
tion information, but it has no impact on other sources of direc-
tional difference such as time differences between ECMWF and
QSCAT or error in ECMWF. Due to these additional sources of
noise, the height of the nadir bumps in the baseline directional
accuracy curve are much less in Fig. 6 than in Fig. 4. DIRTH
dramatically reduces the nadir bumps in both figures. The addi-
tional noise sources also provide a possible explanation for the
much poorer baseline directional performance and DIRTH im-
provement at lower wind speeds, as one would expect errors in
the ECMWF wind fields and high resolution information to be
more significant at lower wind speeds.

C. Comparisons to Buoy Winds

In this section, we compare QSCAT retrieved winds with
co-located buoy wind measurements. Three wind retrieval
methods are examined: DIRTH, TN-only, and the baseline
wind retrieval algorithm. Due to varying buoy heights, the
wind speed measurements are not easily comparable between
buoys and scatterometer measurements. Wind speed varies
significantly with distance from the ocean surface. The direc-
tions do not vary as significantly with height, so in order to
simplify our analysis and discussion, we only present direction
comparisons. We analyzed co-locations with National Data
Buoy Center moored buoys between July 1999 and April 2000.
Only co-locations within 25 km and 30 min and with buoy
wind speeds within the range of 7–30 m/s were included in the
analysis. Buoys within 100 km of land were excluded. QSCAT
wind vector cells which were flagged for rain contamination
were also omitted. In all, 9761 co-locations with 24 buoys were
included in the analysis.

Fig. 8 depicts the cumulative probability of the differences
between buoy wind directions and the directions from each of
three cases: baseline wind retrieval, TN-only, and DIRTH. Cu-
mulative probability functions are reported for three portions of
the swath: nadir, far swath and the sweet spot. Nadir was defined
to be within 300 km of the nadir track, sweet zone from 400 to
700 km and far swath from 750 to 900 km. Transitional regions
were omitted in order to better demonstrate the cross-track vari-
ations in performance. The outer two cross-track locations on
each side of the swath (cross track distance km) were also
omitted. These cross-track locations are only observed sporadi-
cally and exhibit poor wind performance. The curves depicted in
Fig. 8 are cumulative probability functions, with the-axis rep-
resenting directional difference from the buoys and the-axis
representing percentage of co-locations. For example if a curve
passes through the point that means 90% of
the buoy co-locations had directional differences less than 20.

Fig. 8(a) depicts the directional difference probability
functions for the far swath. TN results in a modest ambiguity
removal improvement in the far swath. Direction differences
from the buoys greater than 90occur 2.5% of the time for the
baseline wind vectors as opposed to 1.7% and 1.8% for the

DIRTH and TN-only cases. It is is important to note that the far
swath had significantly fewer buoy hits (1580) than the nadir
and sweet spot (3329 and 3300, respectively). Fig. 8(b) depicts
the sweet spot direction difference probability functions. In the
sweet spot, all three wind retrieval methods compare similarly
with the buoys. Fig. 8(c) illustrates the nadir case. Clearly, the
DIRTH wind retrieval scheme compares more favorably with
buoys than does either of the other two cases. For the DIRTH
case, the directional difference from the buoys exceeds 20
only 13% of the time as opposed to 20% for the other two wind
retrieval methods. This difference is particularly dramatic,
when one considers buoy directional errors as well as inherent
differences in the measurements (point measurements versus
25-km averages) are contributing to the directional differences.

D. Example Wind Field

In addition to computing performance statistics, one can de-
termine the effectiveness of a wind retrieval technique by ob-
serving the retrieved wind fields. Fig. 9 depicts a wind field ob-
tained using the TN algorithm only. Fig. 10 depicts the same
field with the DIR algorithm also employed. Notice that DIR
cleans up the noisy wind vectors along the nadir track without
impacting the abrupt change in wind direction in the northwest
corner of the wind field.

IV. SUMMARY

In conclusion, end-to-end simulation studies and compar-
isons of QSCAT data to analytical wind fields and buoy winds
indicate that the DIRTH wind processing algorithms reduce
errors in the wind directions of the QSCAT wind vectors.
Performance improvement is especially evident for wind vector
cells near the nadir track. Comparisons to buoy winds also
indicate that TN results in a modest improvement in ambiguity
removal at far swath.

While, both simulation studies and analytical wind field
comparisons fail to address the question of whether or not
DIR is oversmoothing the data, the comparisons with buoy
winds do address this question somewhat: one would expect
an oversmoothed wind field not to compare favorably with
buoys (clearly the higher the resolution the more closely the
wind field approximates point measurements). Near nadir, the
DIRTH winds compare more favorably with buoys than do
winds produced without DIR. In the rest of the swath, DIR and
the the standard technique compare similarly with the buoy
data. These results suggest that any oversmoothing resulting
from DIR is minimal. Furthermore, any oversmoothing in the
nadir region is overshadowed by noise reduction, yielding
significantly improved buoy comparisons. Nonetheless, the
question of oversmoothing still deserves further research. There
are two DIRTH parameters which can be adjusted to further
optimize the noise reduction/oversmoothing tradeoff. These
are the error bar probability (currently 80%) and the median
filter window size (currently 7 7). Developing methods to
improve these parameters would be an interesting avenue for
further research.
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